1932

Abstract

Microbialites provide geological evidence of one of Earth's oldest ecosystems, potentially recording long-standing interactions between coevolving life and the environment. Here, we focus on microbialite accretion and growth and consider how environmental and microbial forces that characterize living ecosystems in Shark Bay and the Bahamas interact to form an initial microbialite architecture, which in turn establishes distinct evolutionary pathways. A conceptual three-dimensional model is developed for microbialite accretion that emphasizes the importance of a dynamic balance between extrinsic and intrinsic factors in determining the initial architecture. We then explore how early taphonomic and diagenetic processes modify the initial architecture, culminating in various styles of preservation in the rock record. The timing of lithification of microbial products is critical in determining growth patterns and preservation potential. Study results have shown that all microbialites are not created equal; the unique evolutionary history of an individual microbialite matters.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-021423-124637
2024-01-17
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-021423-124637.html?itemId=/content/journals/10.1146/annurev-marine-021423-124637&mimeType=html&fmt=ahah

Literature Cited

  1. Airo A. 2010. Biotic and abiotic controls on the morphological and textural development of modern microbialites at Lago Sarmiento, Chile PhD Thesis Stanford Univ. Stanford, CA:
    [Google Scholar]
  2. Allen MA, Goh F, Burns BP, Neilan BA. 2009. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7:8296
    [Google Scholar]
  3. Allwood AC, Burch IW, Rouchy JM, Coleman M. 2013. Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Astrobiology 13:87086
    [Google Scholar]
  4. Anderson NL, Barrett KL, Jones SE, Belovsky GE. 2020. Impact of abiotic factors on microbialite growth (Great Salt Lake, Utah, USA): a tank experiment. Hydrobiologia 847:211322
    [Google Scholar]
  5. Andres MS, Reid RP. 2006. Growth morphologies of modern marine stromatolites: a case study from Highborne Cay, Bahamas. Sediment. Geol. 185:31928
    [Google Scholar]
  6. Arp G, Reimer A, Reitner J. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292:17014
    [Google Scholar]
  7. Arp G, Reimer A, Reitner J. 2003. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. J. Sediment. Res. 73:10527
    [Google Scholar]
  8. Arp G, Thiel V, Reimer A, Michaelis W, Reitner J. 1999. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sediment. Geol. 126:15976
    [Google Scholar]
  9. Awramik SM. 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science 174:82527
    [Google Scholar]
  10. Awramik SM 1992. The history and significance of stromatolites. Early Organic Evolution: Implications for Mineral and Energy Resources M Schidlowski, S Golubic, MM Kimberley, DM McKirdy, PA Trudinger 43549. Berlin: Springer
    [Google Scholar]
  11. Babel M. 2005. Selenite-gypsum microbialite facies and sedimentary evolution of the Badenian evaporite basin of the northern Carpathian Foredeep. Acta Geol. Pol. 55:187210
    [Google Scholar]
  12. Babilonia J, Conesa A, Casaburi G, Pereira C, Louyakis AS et al. 2018. Comparative metagenomics provides insight into the ecosystem functioning of the Shark Bay Stromatolites, Western Australia. Front. Microbiol. 9:1359
    [Google Scholar]
  13. Bahamas Mar. EcoCent 2023. Stromatolites. Bahamas Marine EcoCentre. https://bahamas-marine-ecocentre.org/stromatolites
    [Google Scholar]
  14. Benlloch S, López-López A, Casamayor EO, Øvreås L, Goddard V et al. 2002. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4:34960
    [Google Scholar]
  15. Benzerara K, Skouri-Panet F, Li J, Férard C, Gugger M et al. 2014. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. PNAS 111:1093338
    [Google Scholar]
  16. Black M. 1933. The algal sediments of Andros Island, Bahamas. Philos. Trans. R. Soc. 222:16592
    [Google Scholar]
  17. Bowlin EM, Klaus JS, Foster JS, Andres MS, Custals L, Reid RP. 2012. Environmental controls on microbial community cycling in modern marine stromatolites. Sediment. Geol. 263–64:4555
    [Google Scholar]
  18. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT. 2007. Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:40111
    [Google Scholar]
  19. Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C et al. 2009. Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol. Ecol. 67:293307
    [Google Scholar]
  20. Bruggmann S, Rodler AS, Klaebe RM, Goderis S, Frei R. 2020. Chromium isotope systematics in modern and ancient microbialites. Minerals 10:928
    [Google Scholar]
  21. Burne RV. 2016. The role and significance of authigenic magnesium silicates in the organomineralisation of microbialites in the Yalgorup Lakes, Western Australia MPhil Thesis Aust. Natl. Univ. Canberra:
    [Google Scholar]
  22. Burne RV, Hunt G. 1990. The Geobiology of Hamelin Pool: Research Reports of the Baas Becking Geobiological Laboratory's Shark Bay Project Canberra, Aust.: Bur. Miner. Resour. Geol. Geophys.
    [Google Scholar]
  23. Burne RV, Moore LS. 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:24154
    [Google Scholar]
  24. Burne RV, Moore LS, Christy AG, Troitzsch U, King PL et al. 2014. Stevensite in the modern thrombolites of Lake Clifton, Western Australia: a missing link in microbialite mineralization?. Geology 42:57578
    [Google Scholar]
  25. Burns BP, Anitori R, Butterworth P, Henneberger R, Goh F et al. 2009. Modern analogues and the early history of microbial life. Precambr. Res. 173:1018
    [Google Scholar]
  26. Burns BP, Goh F, Allen M, Neilan BA. 2004. Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ. Microbiol. 6:1096101
    [Google Scholar]
  27. Campbell MA, Grice K, Visscher PT, Morris T, Wong HL et al. 2020. Functional gene expression in Shark Bay hypersaline microbial mats: adaptive responses. Front. Microbiol. 11:560336
    [Google Scholar]
  28. Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B et al. 2002. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4:33848
    [Google Scholar]
  29. Chafetz HS, Buczynski C. 1992. Bacterially induced lithification of microbial mats. Palaios 7:27793
    [Google Scholar]
  30. Chagas AAP, Webb GE, Burne RV, Southam G. 2016. Modern lacustrine microbialites: towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth-Sci. Rev. 162:33863
    [Google Scholar]
  31. Charlesworth JC, Watters C, Wong HL, Visscher PT, Burns BP. 2019. Isolation of novel quorum-sensing active bacteria from microbial mats in Shark Bay Australia. FEMS Microbiol. Ecol. 95:fiz035
    [Google Scholar]
  32. Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N et al. 2020. Discovery of an abundance of biosynthetic gene clusters in Shark Bay microbial mats. Front. Microbiol. 11:1950
    [Google Scholar]
  33. Collins LB, Jahnert RJ. 2014. Stromatolite research in the Shark Bay world heritage area. J. R. Soc. West. Aust. 97:189219
    [Google Scholar]
  34. Decho AW, Visscher PT, Reid RP. 2005. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219:7186
    [Google Scholar]
  35. Dill RF. 1991. Subtidal stromatolites, ooids, and crusted-lime muds at the Great Bahama Bank margin. From Shoreline to Abyss: Contributions in Marine Geology in Honor of Francis Parker Shepard RH Osborne. Tulsa: OK: Soc. Sediment. Geol. https://doi.org/10.2110/pec.91.09
    [Google Scholar]
  36. Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP. 1986. Giant subtidal stromatolites forming in normal salinity waters. Nature 324:5558
    [Google Scholar]
  37. Dillon JG, Carlin M, Gutierrez A, Nguyen V, McLain N. 2013. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Front. Microbiol. 4:399
    [Google Scholar]
  38. Dravis JT. 1983. Hardened subtidal stromatolites, Bahamas. Science 219:38586
    [Google Scholar]
  39. Dupraz C, Fowler A, Tobias C, Visscher PT. 2013. Stromatolitic knobs in Storr's Lake (San Salvador, Bahamas): a model system for formation and alteration of laminae. Geobiology 11:52748
    [Google Scholar]
  40. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96:14162
    [Google Scholar]
  41. Dupraz C, Reid RP, Visscher PT. 2011. Microbialites, modern. Encyclopedia of Geobiology J Reitner, V Thiel 61735. Dordrecht, Neth: Springer
    [Google Scholar]
  42. Dupraz C, Visscher PT. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13:42938
    [Google Scholar]
  43. Dupraz C, Visscher PT, Baumgartner LK, Reid RP. 2004. Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:74565
    [Google Scholar]
  44. Farmer DM, McNeil CL, Johnson BD. 1993. Evidence for the importance of bubbles in increasing air-sea gas flux. Nature 361:62023
    [Google Scholar]
  45. Fischer AG. 1965. Fossils, early life, and atmospheric history. PNAS 53:120515
    [Google Scholar]
  46. Fisher A, Wangpraseurt D, Larkum AWD, Johnson M, Kühl M et al. 2019. Correlation of bio-optical properties with photosynthetic pigment and microorganism distribution in microbial mats from Hamelin Pool, Australia. FEMS Microbiol. Ecol. 95:fiy219
    [Google Scholar]
  47. Garrett P. 1970. Phanerozoic stromatolites: noncompetitive ecologic restriction by grazing and burrowing animals. Science 169:17173
    [Google Scholar]
  48. Gerdes G, Krumbein WE, Holtkamp E 1985. Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. Hypersaline Ecosystems GM Friedman, WE Krumbein 23866. Berlin: Springer
    [Google Scholar]
  49. Ginsburg RN 1991. Controversies about stromatolites: vices and virtues. Controversies in Modern Geology DW Müller, JA McKenzie, H Weissert 2536. London: Academic
    [Google Scholar]
  50. Glunk C, Dupraz C, Braissant O, Gallagher KL, Verrecchia EP, Visscher PT. 2011. Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas). Sedimentology 58:72036
    [Google Scholar]
  51. Goh F, Allen MA, Leuko S, Kawaguchi T, Decho AW et al. 2009. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J 3:38396
    [Google Scholar]
  52. Golubic S. 1976. Organisms that build stromatolites. Stromatolites MR Walter 11326. Dev. Sedimentol. Vol. 20 Amsterdam: Elsevier
    [Google Scholar]
  53. Grey K, Awramik SM. 2020. Handbook for the Study and Description of Microbialites Perth: Geol. Survey. West. Aust.
    [Google Scholar]
  54. Grotzinger JR, Knoll AH. 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?. Annu. Rev. Earth Planet. Sci. 27:31358
    [Google Scholar]
  55. Gudhka RK, Neilan BA, Burns BP. 2015. Adaptation, ecology, and evolution of the halophilic stromatolite archaeon Halococcus hamelinensis inferred through genome analyses. Archaea 2015:241608
    [Google Scholar]
  56. Havemann SA, Foster JS. 2008. Comparative characterization of the microbial diversities of an artificial microbialite model and a natural stromatolite. Appl. Environ. Microbiol. 74:741021
    [Google Scholar]
  57. Hongxia J, Yasheng W, Min L, Yuan W. 2013. Diagenesis of the microbialites in the Permian-Triassic boundary section at Laolongdong, Chongqing, South China. J. Palaeogeogr. 2:18391
    [Google Scholar]
  58. Jahnert RJ, Collins LB. 2012. Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Mar. Geol. 303–6:11536
    [Google Scholar]
  59. Johnson M, Burns B, Herdean A, Angeloski A, Ralph P et al. 2022. A cyanobacteria enriched layer of Shark Bay stromatolites reveals a new Acaryochloris strain living in near infrared light. Microorganisms 10:1035
    [Google Scholar]
  60. Kawaguchi T, Decho AW. 2000. Biochemical characterization of cyanobacterial extracellular polymers (EPS) from modern marine stromatolites (Bahamas). Prep. Biochem. Biotechnol. 30:32130
    [Google Scholar]
  61. Kempe S, Kazmierczak J, Landmann G, Konuk T, Reimer A, Lipp A. 1991. Largest known microbialites discovered in Lake Van, Turkey. Nature 349:6058
    [Google Scholar]
  62. Kim LH, Chong TH. 2017. Physiological responses of salinity-stressed Vibrio sp. and the effect on the biofilm formation on a nanofiltration membrane. Environ. Sci. Technol. 51:124958
    [Google Scholar]
  63. Kromkamp J, Perkins R, Dijkman N, Consalvey M, Andres M, Reid R. 2007. Resistance to burial of cyanobacteria in stromatolites. Aquat. Microb. Ecol. 48:12330
    [Google Scholar]
  64. Langmuir D. 1997. Aqueous Environmental Geochemistry Upper Saddle River, NJ: Prentice Hall
    [Google Scholar]
  65. Li F, Deng J, Kershaw S, Burne R, Gong Q et al. 2021. Microbialite development through the Ediacaran-Cambrian transition in China: distribution, characteristics, and paleoceanographic implications. Glob. Planet. Change 205:103586
    [Google Scholar]
  66. Logan BW, Hoffman P, Gebelein CD. 1974. Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. Evolution and Diagenesis of Quaternary Carbonate Sequences, Shark Bay, Western Australia14094. Tulsa, OK: Am. Assoc. Pet. Geol.
    [Google Scholar]
  67. Luoma SN. 1983. Bioavailability of trace metals to aquatic organisms—a review. Sci. Total Environ. 28:122
    [Google Scholar]
  68. Lyman RL. 2010. What taphonomy is, what it isn't, and why taphonomists should care about the difference. J. Taphon. 8:116
    [Google Scholar]
  69. Macintyre IG, Prufert-Bebout L, Reid RP. 2000. The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47:91521
    [Google Scholar]
  70. Martin RE. 1999. Taphonomy: A Process Approach Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  71. Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R et al. 1999. The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int. J. Biol. Macromol. 26:316
    [Google Scholar]
  72. Monty CLV. 1972. Recent algal stromatolitic deposits, Andros Island, Bahamas. Preliminary report Geol. Rundsch. 61:74283
    [Google Scholar]
  73. Monty CLV. 1973. Precambrian background and Phanerozoic history of stromatolitic communities, an overview. Ann. Soc. Geol. Belg. 96:585624
    [Google Scholar]
  74. Moore KR, Pajusalu M, Gong J, Sojo V, Matreux T et al. 2020. Biologically mediated silicification of marine cyanobacteria and implications for the Proterozoic fossil record. Geology 48:86266
    [Google Scholar]
  75. Morris TE, Visscher PT, O'Leary MJ, Fearns PRCS, Collins LB 2020. The biogeomorphology of Shark Bay's microbialite coasts. Earth-Sci. Rev. 205:102921
    [Google Scholar]
  76. Oren A. 2011. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol. 13:190823
    [Google Scholar]
  77. Pace A, Bourillot R, Bouton A, Vennin E, Galaup S et al. 2016. Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites. Sci. Rep. 6:31495
    [Google Scholar]
  78. Paterson DM, Aspden RJ, Reid RP. 2010. Biodynamics of modern marine stromatolites. Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems J Seckbach, A Oren 22335. Dordrecht, Neth.: Springer
    [Google Scholar]
  79. Paterson DM, Aspden RJ, Visscher PT, Consalvey M, Andres MS et al. 2008. Light-dependant biostabilisation of sediments by stromatolite assemblages. PLOS ONE 3:e3176
    [Google Scholar]
  80. Pedley M. 2014. The morphology and function of thrombolitic calcite precipitating biofilms: a universal model derived from freshwater mesocosm experiments. Sedimentology 61:2240
    [Google Scholar]
  81. Pentecost A. 2003. Cyanobacteria associated with hot spring travertines. Can. J. Earth Sci. 40:144757
    [Google Scholar]
  82. Perkins R, Kromkamp J, Reid R. 2007. Importance of light and oxygen for photochemical reactivation in photosynthetic stromatolite communities after natural sand burial. Mar. Ecol. Prog. Ser. 349:2332
    [Google Scholar]
  83. Planavsky N, Ginsburg RN. 2009. Taphonomy of modern marine Bahamian microbialites. Palaios 24:517
    [Google Scholar]
  84. Playford PE, Cockbain AE, Berry PF, Roberts AP, Haines PW, Brooke BP. 2013. Geology of Shark Bay Perth: Geol. Surv. West. Aust.
    [Google Scholar]
  85. Rasuk MC, Leiva MC, Kurth D, Farías ME. 2020. Complete characterization of stratified ecosystems of the Salar de Llamara (Atacama Desert). Microbial Ecosystems in Central Andes Extreme Environments ME Farías 15364. Cham, Switz.: Springer
    [Google Scholar]
  86. Reid RP, James NP, Macintyre IG, Dupraz CP, Burne RV. 2003. Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49:299324
    [Google Scholar]
  87. Reid RP, Macintyre IG. 2000. Microboring versus recrystallization: further insight into the micritization process. J. Sediment. Res. 70:2428
    [Google Scholar]
  88. Reid RP, Macintyre IG, Browne KM, Steneck RS, Miller T. 1995. Modern marine stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies 33:117
    [Google Scholar]
  89. Reid RP, Oehlert AM, Suosaari EP, Demergasso C, Chong G et al. 2021. Electrical conductivity as a driver of biological and geological spatial heterogeneity in the Puquios, Salar de Llamara, Atacama Desert, Chile. Sci. Rep. 11:12769
    [Google Scholar]
  90. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM et al. 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:98992
    [Google Scholar]
  91. Reitner J, Paul J, Arp G, Hause-Reitner D 1996. Lake Thetis domal microbialites—a complex framework of calcified biofilms and organomicrites (Cervantes, Western Australia). Globale und regionale Steuerungsfaktoren biogener Sedimentation Part 1 Riff-Evolution J Reitner, F Neuweiler, F Gunkel 8589. Göttingen. Ger.: Geol. Inst. Georg-August-Univ. Göttingen
    [Google Scholar]
  92. Sancho-Tomás M, Somogyi A, Medjoubi K, Bergamaschi A, Visscher PT et al. 2018. Distribution, redox state and (bio)geochemical implications of arsenic in present day microbialites of Laguna Brava, Salar de Atacama. Chem. Geol. 490:1321
    [Google Scholar]
  93. Sancho-Tomás M, Somogyi A, Medjoubi K, Bergamaschi A, Visscher PT et al. 2020. Geochemical evidence for arsenic cycling in living microbialites of a high altitude Andean Lake (Laguna Diamante, Argentina). Chem. Geol. 549:119681
    [Google Scholar]
  94. Saona LA, Soria M, Villafañe PG, Lencina AI, Stepanenko T, Farías ME 2020. Andean microbial ecosystems: traces in hypersaline lakes about life origin. Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth V Souza, A Segura, JS Foster 16781. Cham, Switz.: Springer
    [Google Scholar]
  95. Sforna MC, Daye M, Philippot P, Somogyi A, van Zuilen MA et al. 2017. Patterns of metal distribution in hypersaline microbialites during early diagenesis: implications for the fossil record. Geobiology 15:25979
    [Google Scholar]
  96. Shapiro RS, Aalto KR, Dill RF, Kenny R 1995. Stratigraphic setting of a subtidal stromatolite field, Iguana Cay, Exumas, Bahamas. Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda HA Curran, B White 13955. Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  97. Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56:187209
    [Google Scholar]
  98. Suosaari EP, Lascu I, Oehlert AM, Parlanti P, Mugnaioli E et al. 2022a. Authigenic clays as precursors to carbonate precipitation in saline lakes of Salar de Llamara, Northern Chile. Commun. Earth Environ. 3:325
    [Google Scholar]
  99. Suosaari EP, Oehlert AM, Lascu I, Decho AW, Piggot AM et al. 2022b. Environmental and biological controls on sedimentary bottom types. Geosciences 12:247
    [Google Scholar]
  100. Suosaari EP, Reid RP, Andres MS. 2019b. Stromatolites, so what?! A tribute to Robert N. Ginsburg. Depos. Rec. 5:48697
    [Google Scholar]
  101. Suosaari EP, Reid RP, Araujo TAA, Playford PE, Holley DK et al. 2016a. Environmental pressures influencing living stromatolites in Hamelin Pool, Shark Bay, Western Australia. Palaios 31:48396
    [Google Scholar]
  102. Suosaari EP, Reid RP, Mercadier C, Vitek BE, Oehlert AM et al. 2022c. The microbial carbonate factory of Hamelin Pool, Shark Bay, Western Australia. Sci. Rep. 12:12902
    [Google Scholar]
  103. Suosaari EP, Reid RP, Oehlert AM, Playford PE, Steffensen CK et al. 2019a. Stromatolite provinces of Hamelin pool: physiographic controls on stromatolites and associated lithofacies. J. Sediment. Res. 89:20726
    [Google Scholar]
  104. Suosaari EP, Reid RP, Playford PE, Foster JS, Stolz JF et al. 2016b. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci. Rep. 6:20557
    [Google Scholar]
  105. Thorpe SA, Humphries PN. 1980. Bubbles and breaking waves. Nature 283:46365
    [Google Scholar]
  106. Trompette R. 1982. Upper Proterozoic (1800–570 Ma) stratigraphy: a survey of lithostratigraphic, paleontological, radiochronological and magnetic correlations. Precambr. Res. 18:2752
    [Google Scholar]
  107. Visscher PT, Gallagher KL, Bouton A, Farias ME, Kurth D et al. 2020. Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean. Commun. Earth Environ. 1:24
    [Google Scholar]
  108. Visscher PT, Reid RP, Bebout BM. 2000. Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28:91922
    [Google Scholar]
  109. Visscher PT, Stolz JF. 2005. Microbial mats as bioreactors: populations, processes, and products. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219:87100
    [Google Scholar]
  110. Vitek BE, Suosaari EP, Oehlert AM, Dupraz C, Pollier CGL, Reid RP. 2023. Bidirectional fabric evolution in Hamelin Pool microbialites, Shark Bay, Western Australia. Depos. Rec. In press. https://doi.org/10.1002/dep2.244
    [Google Scholar]
  111. Vitek BE, Suosaari EP, Stolz JF, Oehlert AM, Reid RP. 2022. Initial accretion in Hamelin Pool microbialites: the role of Entophysalis in precipitation of microbial micrite. Geosciences 12:304
    [Google Scholar]
  112. Walter MR. 1994. Stromatolites: the main geological source of information on the evolution of the early benthos. Early Life on Earth S Bengtson 27086. New York: Columbia Univ. Press
    [Google Scholar]
  113. Walter MR, Heys GR. 1985. Links between the rise of the metazoa and the decline of stromatolites. Precambr. Res. 29:14974
    [Google Scholar]
  114. Webb GE, Kamber BS. 2011. Trace element geochemistry as a tool for interpreting microbialites. Earliest Life on Earth: Habitats, Environments and Methods of Detection SD Golding, M Glikson 12770. Dordrecht, Neth.: Springer
    [Google Scholar]
  115. White RA, Visscher PT, Burns BP. 2021. Between a rock and a soft place: the role of viruses in lithification of modern microbial mats. Trends Microbiol. 29:20413
    [Google Scholar]
  116. White RA, Wong HL, Ruvindy R, Neilan BA, Burns BP. 2018. Viral communities of Shark Bay modern stromatolites. Front. Microbiol. 9:1223
    [Google Scholar]
  117. Wong HL, Ahmed-Cox A, Burns B. 2016. Molecular ecology of hypersaline microbial mats: current insights and new directions. Microorganisms 4:6
    [Google Scholar]
  118. Wong HL, MacLeod FI, White RA, Visscher PT, Burns BP. 2020. Microbial dark matter filling the niche in hypersaline microbial mats. Microbiome 8:135
    [Google Scholar]
  119. Wong HL, Smith D-L, Visscher PT, Burns BP. 2015. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5:15607
    [Google Scholar]
  120. Wong HL, Visscher PT, White RA III, Smith D-L, Patterson MM, Burns BP 2017. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci. Rep. 7:46160
    [Google Scholar]
  121. Wong HL, White RA, Visscher PT, Charlesworth JC, Vázquez-Campos X, Burns BP. 2018. Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME J 12:261939
    [Google Scholar]
  122. Xi H, Burgess PM. 2022. The stratigraphic significance of self-organization: exploring how autogenic processes can generate cyclical carbonate platform strata. Sedimentology 69:176988
    [Google Scholar]
  123. Xi H, Burgess PM, Kozlowski E, Hunt DW, Jurkiw A, Masiero I. 2022. Spatial self-organization of marine agglutinated microbial carbonate build-ups: insights from stratigraphic forward modelling using Stromatobyte3D. Sediment. Geol. 429:106081
    [Google Scholar]
  124. Zeyen N, Benzerara K, Li J, Groleau A, Balan E et al. 2015. Formation of low-T hydrated silicates in modern microbialites from Mexico and implications for microbial fossilization. Front. Earth Sci. 3:64
    [Google Scholar]
  125. Zhao L, She Z, Jin C, Yang S, Guo L et al. 2016. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress. Bioprocess Biosyst. Eng. 39:137589
    [Google Scholar]
/content/journals/10.1146/annurev-marine-021423-124637
Loading
/content/journals/10.1146/annurev-marine-021423-124637
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error