1932

Abstract

Marine invertebrates are ecologically and economically important and have formed holobionts by evolving symbiotic relationships with cellular and acellular microorganisms that reside in and on their tissues. In recent decades, significant focus on symbiotic cellular microorganisms has led to the discovery of various functions and a considerable expansion of our knowledge of holobiont functions. Despite this progress, our understanding of symbiotic acellular microorganisms remains insufficient, impeding our ability to achieve a comprehensive understanding of marine holobionts. In this review, we highlight the abundant viruses, with a particular emphasis on bacteriophages; provide an overview of their diversity, especially in extensively studied sponges and corals; and examine their potential life cycles. In addition, we discuss potential phage–holobiont interactions of various invertebrates, including participating in initial bacterial colonization, maintaining symbiotic relationships, and causing or exacerbating the diseases of marine invertebrates. Despite the importance of this subject, knowledge of how viruses contribute to marine invertebrate organisms remains limited. Advancements in technology and greater attention to viruses will enhance our understanding of marine invertebrate holobionts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-021623-093133
2024-01-17
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-021623-093133.html?itemId=/content/journals/10.1146/annurev-marine-021623-093133&mimeType=html&fmt=ahah

Literature Cited

  1. Ainsworth TD, Thurber RV, Gates RD. 2010. The future of coral reefs: a microbial perspective. Trends Ecol. Evol. 25:23340
    [Google Scholar]
  2. Alagely A, Krediet CJ, Ritchie KB, Teplitski M. 2011. Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens. ISME J. 5:160920
    [Google Scholar]
  3. Almeida GMF, Laanto E, Ashrafi R, Sundberg LR. 2019. Bacteriophage adherence to mucus mediates preventive protection against pathogenic bacteria. mBio 10:e01984-19
    [Google Scholar]
  4. Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. 2014. Sulfur oxidation genes in diverse deep-sea viruses. Science 344:75760
    [Google Scholar]
  5. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44:W1621
    [Google Scholar]
  6. Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ et al. 2018. Metaorganisms in extreme environments: Do microbes play a role in organismal adaptation?. Zoology 127:119
    [Google Scholar]
  7. Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML et al. 2013a. Bacteriophage adhering to mucus provide a non-host-derived immunity. PNAS 110:1077176
    [Google Scholar]
  8. Barr JJ, Youle M, Rohwer F. 2013b. Innate and acquired bacteriophage-mediated immunity. Bacteriophage 3:e25857
    [Google Scholar]
  9. Bass D, Rueckert S, Stern R, Cleary AC, Taylor JD et al. 2021. Parasites, pathogens, and other symbionts of copepods. Trends Parasitol. 37:87589
    [Google Scholar]
  10. Bensing BA, Siboo IR, Sullam PM. 2001. Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage. Infect. Immun. 69:618692
    [Google Scholar]
  11. Breitbart M. 2012. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4:42548
    [Google Scholar]
  12. Brooks JF II, Gyllborg MC, Cronin DC, Quillin SJ, Mallama CA et al. 2014. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. PNAS 111:1728489
    [Google Scholar]
  13. Brouwer S, Barnett TC, Ly D, Kasper KJ, De Oliveira DMP et al. 2020. Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes. Nat. Commun. 11:5018
    [Google Scholar]
  14. Buerger P, Alvarez-Roa C, Weynberg KD, Baekelandt S, van Oppen MJH. 2016. Genetic, morphological and growth characterisation of a new Roseofilum strain (Oscillatoriales, Cyanobacteria) associated with coral black band disease. PeerJ 4:e2110
    [Google Scholar]
  15. Buerger P, Weynberg KD, Wood-Charlson EM, Sato Y, Willis BL, van Oppen MJH. 2019. Novel T4 bacteriophages associated with black band disease in corals. Environ. Microbiol. 21:196979
    [Google Scholar]
  16. Cardenas A, Ye J, Ziegler M, Payet JP, McMinds R et al. 2020. Coral-associated viral assemblages from the central Red Sea align with host species and contribute to holobiont genetic diversity. Front. Microbiol. 11:572534
    [Google Scholar]
  17. Casamatta D, Stanic D, Gantar M, Richardson LL. 2012. Characterization of Roseofilum reptotaenium (Oscillatoriales, Cyanobacteria) gen. et sp. nov. isolated from Caribbean black band disease. Phycologia 51:48999
    [Google Scholar]
  18. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB. 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:34042
    [Google Scholar]
  19. Chen EY-S. 2021. Often overlooked: understanding and meeting the current challenges of marine invertebrate conservation. Front. Mar. Sci. 8:690704
    [Google Scholar]
  20. Cohen Y, Pollock FJ, Rosenberg E, Bourne DG. 2013. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. MicrobiologyOpen 2:6474
    [Google Scholar]
  21. Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. 2021. Revisiting the rules of life for viruses of microorganisms. Nat. Rev. Microbiol. 19:50113
    [Google Scholar]
  22. Daniels CA, Baumgarten S, Yum LK, Michell CT, Bayer T et al. 2015. Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease. Front. Mar. Sci. 2:62
    [Google Scholar]
  23. Den Uyl PA, Richardson LL, Jain S, Dick GJ. 2016. Unraveling the physiological roles of the cyanobacterium Geitlerinema sp. BBD and other black band disease community members through genomic analysis of a mixed culture. PLOS ONE 11:e0157953
    [Google Scholar]
  24. Dion MB, Oechslin F, Moineau S. 2020. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18:12538
    [Google Scholar]
  25. Dittami SM, Arboleda E, Auguet JC, Bigalke A, Briand E et al. 2021. A community perspective on the concept of marine holobionts: current status, challenges, and future directions. PeerJ 9:e10911
    [Google Scholar]
  26. Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. 2017. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9:50
    [Google Scholar]
  27. Dubilier N, Bergin C, Lott C. 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6:72540
    [Google Scholar]
  28. Dzunkova M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. 2019. Defining the human gut host-phage network through single-cell viral tagging. Nat. Microbiol. 4:2192203
    [Google Scholar]
  29. Engelberts JP, Robbins SJ, Herbold CW, Moeller FU, Jehmlich N et al. 2022. Metabolic reconstruction of the near complete microbiome of the model sponge Ianthella basta. Environ. Microbiol. 25:64660
    [Google Scholar]
  30. Florez LV, Biedermann PHW, Engl T, Kaltenpoth M. 2015. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32:90436
    [Google Scholar]
  31. Friedman CS, Wight N, Crosson LM, Vanblaricom GR, Lafferty KD. 2014. Reduced disease in black abalone following mass mortality: phage therapy and natural selection. Front. Microbiol. 5:78
    [Google Scholar]
  32. Giraldes BW, Goodwin C, Al-Fardi NAA, Engmann A, Leitao A et al. 2020. Two new sponge species (Demospongiae: Chalinidae and Suberitidae) isolated from hyperarid mangroves of Qatar with notes on their potential antibacterial bioactivity. PLOS ONE 15:e0232205
    [Google Scholar]
  33. Gödeke J, Paul K, Lassak J, Thormann KM. 2011. Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J. 5:61326
    [Google Scholar]
  34. Hadas E, Marie D, Shpigel M, Ilan M. 2006. Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol. Oceanogr. 51:154850
    [Google Scholar]
  35. Holt CC, Boscaro V, Van Steenkiste NWL, Herranz M, Mathur V et al. 2022. Microscopic marine invertebrates are reservoirs for cryptic and diverse protists and fungi. Microbiome 10:161
    [Google Scholar]
  36. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. 2017. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11:151120
    [Google Scholar]
  37. Ignacio-Espinoza JC, Laperriere SM, Yeh Y-C, Weissman J, Hou S et al. 2020. Ribosome-linked mRNA-rRNA chimeras reveal active novel virus host associations. bioRxiv 2020.10.30.332502. https://doi.org/10.1101/2020.10.30.332502
  38. Jackson DJ, Macis L, Reitner J, Worheide G. 2011. A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy. BMC Evol. Biol. 11:238
    [Google Scholar]
  39. Jahn MT, Arkhipova K, Markert SM, Stigloher C, Lachnit T et al. 2019. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 26:54250
    [Google Scholar]
  40. Jahn MT, Lachnit T, Markert SM, Stigloher C, Pita L et al. 2021. Lifestyle of sponge symbiont phages by host prediction and correlative microscopy. ISME J. 15:200111
    [Google Scholar]
  41. Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA et al. 2016. Lytic to temperate switching of viral communities. Nature 531:46670
    [Google Scholar]
  42. Kowalska JD, Kazimierczak J, Sowinska PM, Wojcik EA, Siwicki AK, Dastych J. 2020. Growing trend of fighting infections in aquaculture environment—opportunities and challenges of phage therapy. Antibiotics 9:301
    [Google Scholar]
  43. Krediet CJ, Carpinone EM, Ritchie KB, Teplitski M. 2013a. Characterization of the gacA-dependent surface and coral mucus colonization by an opportunistic coral pathogen Serratia marcescens PDL100. FEMS Microbiol. Ecol. 84:290301
    [Google Scholar]
  44. Krediet CJ, Ritchie KB, Alagely A, Teplitski M. 2013b. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J. 7:98090
    [Google Scholar]
  45. Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E. 2001. Vibrio shiloi sp. nov., the causative agent of bleaching of the coral Oculina patagonica. Int. J. Syst. Evol. Microbiol. 51:138388
    [Google Scholar]
  46. Kwon HJ, Seong WJ, Kim JH. 2013. Molecular prophage typing of avian pathogenic Escherichia coli. Vet. Microbiol. 162:78592
    [Google Scholar]
  47. Laffy PW, Wood-Charlson EM, Turaev D, Jutz S, Pascelli C et al. 2018. Reef invertebrate viromics: diversity, host specificity and functional capacity. Environ. Microbiol. 20:212541
    [Google Scholar]
  48. Lai JYH, Zhang H, Chiang MHY, Lun CHI, Zhang R, Lau SCK. 2018. The putative functions of lysogeny in mediating the survivorship of Escherichia coli in seawater and marine sediment. FEMS Microbiol. Ecol. 94:fix187
    [Google Scholar]
  49. Lawrence SA, Davy JE, Aeby GS, Wilson WH, Davy SK. 2014. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss. Coral Reefs 33:68791
    [Google Scholar]
  50. Lawrence SA, Floge SA, Davy JE, Davy SK, Wilson WH. 2017. Exploratory analysis of Symbiodinium transcriptomes reveals potential latent infection by large dsDNA viruses. Environ. Microbiol. 19:3909-19
    [Google Scholar]
  51. Leigh B, Karrer C, Cannon JP, Breitbart M, Dishaw LJ. 2017. Isolation and characterization of a Shewanella phage-host system from the gut of the tunicate, Ciona intestinalis. Viruses 9:60
    [Google Scholar]
  52. Li J, Kuang WQ, Long LJ, Zhang S. 2017. Production of quorum-sensing signals by bacteria in the coral mucus layer. Coral Reefs 36:123541
    [Google Scholar]
  53. Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. 2005. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438:8689
    [Google Scholar]
  54. Liu Y, Gong Q, Qian X, Li D, Zeng H et al. 2020. Prophage phiv205-1 facilitates biofilm formation and pathogenicity of avian pathogenic Escherichia coli strain DE205B. Vet. Microbiol. 247:108752
    [Google Scholar]
  55. Maguire F, Jia B, Gray KL, Lau WYV, Beiko RG, Brinkman FSL. 2020. Metagenome-assembled genome binning methods with short reads disproportionately fail for plasmids and genomic islands. Microb. Genom. 6:mgen000436
    [Google Scholar]
  56. Mahmoud H, Jose L. 2017. Phage and nucleocytoplasmic large viral sequences dominate coral viromes from the Arabian Gulf. Front. Microbiol. 8:2063
    [Google Scholar]
  57. Marbouty M, Thierry A, Millot GA, Koszul R. 2021. MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut. eLife 10:e60608
    [Google Scholar]
  58. McCutcheon JP, Moran NA. 2011. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10:1326
    [Google Scholar]
  59. Müller MG, Ing JY, Cheng MKW, Flitter BA, Moe GR. 2013. Identification of a phage-encoded Ig-binding protein from invasive Neisseria meningitidis. J. Immunol. 191:328796
    [Google Scholar]
  60. Myrmel M, Berg EM, Rimstad E, Grinde B. 2004. Detection of enteric viruses in shellfish from the Norwegian coast. Appl. Environ. Microbiol. 70:267884
    [Google Scholar]
  61. Nguyen M, Liu M, Thomas T. 2014. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol. Ecol. 23:163545
    [Google Scholar]
  62. Nguyen M, Wemheuer B, Laffy PW, Webster NS, Thomas T. 2021. Taxonomic, functional and expression analysis of viral communities associated with marine sponges. PeerJ 9:e10715
    [Google Scholar]
  63. Nguyen-Kim H, Bettarel Y, Bouvier T, Bouvier C, Hai DN et al. 2015. Coral mucus is a hot spot for viral infections. Appl. Environ. Microbiol. 81:577383
    [Google Scholar]
  64. Nguyen-Kim H, Bouvier T, Bouvier C, Doan-Nhu H, Nguyen-Ngoc L et al. 2014. High occurrence of viruses in the mucus layer of scleractinian corals. Environ. Microbiol. Rep. 6:67582
    [Google Scholar]
  65. Ninawe AS, Sivasankari S, Ramasamy P, Kiran GS, Selvin J. 2020. Bacteriophages for aquaculture disease control. Aquac. Int. 28:192538
    [Google Scholar]
  66. Nyholm SV, McFall-Ngai MJ. 2004. The winnowing: establishing the squid–Vibrio symbiosis. Nat. Rev. Microbiol. 2:63242
    [Google Scholar]
  67. Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ. 2000. Establishment of an animal–bacterial association: recruiting symbiotic vibrios from the environment. PNAS 97:1023135
    [Google Scholar]
  68. Pascelli C, Laffy PW, Botte E, Kupresanin M, Rattei T et al. 2020. Viral ecogenomics across the Porifera. Microbiome 8:144
    [Google Scholar]
  69. Pascelli C, Laffy PW, Kupresanin M, Ravasi T, Webster NS. 2018. Morphological characterization of virus-like particles in coral reef sponges. PeerJ 6:e5625
    [Google Scholar]
  70. Richards GP. 2014. Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage 4:e975540
    [Google Scholar]
  71. Roossinck MJ, Bazan ER. 2017. Symbiosis: viruses as intimate partners. Annu. Rev. Virol. 4:12339
    [Google Scholar]
  72. Russell SL, Pepper-Tunick E, Svedberg J, Byrne A, Ruelas Castillo J et al. 2020. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. PLOS Genet. 16:e1008935
    [Google Scholar]
  73. Saffo MB. 1992. Invertebrates in endosymbiotic associations. Am. Zool. 32:55765
    [Google Scholar]
  74. Santos ED, Alves N, Dias GM, Mazotto AM, Vermelho A et al. 2011. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J. 5:147183
    [Google Scholar]
  75. Sayavedra L, Kleiner M, Ponnudurai R, Wetzel S, Pelletier E et al. 2015. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. eLife 4:e07966
    [Google Scholar]
  76. Shah JN, Desai PT, Weimer BC. 2014. Genetic mechanisms underlying the pathogenicity of cold-stressed Salmonella enterica serovar Typhimurium in cultured intestinal epithelial cells. Appl. Environ. Microbiol. 80:694353
    [Google Scholar]
  77. Silveira CB, Coutinho FH, Cavalcanti GS, Benler S, Doane MP et al. 2020. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genom. 21:126
    [Google Scholar]
  78. Silveira CB, Rohwer FL. 2016. Piggyback-the-Winner in host-associated microbial communities. npj Biofilms Microbiomes 2:16010
    [Google Scholar]
  79. Sogin EM, Leisch N, Dubilier N. 2020. Chemosynthetic symbioses. Curr. Biol. 30:R113742
    [Google Scholar]
  80. Starcevic A, Akthar S, Dunlap WC, Shick JM, Hranueli D et al. 2008. Enzymes of the shikimic acid pathway encoded in the genome of a basal metazoan, Nematostella vectensis, have microbial origins. PNAS 105:253337
    [Google Scholar]
  81. Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT. 2023. Phage therapy: from biological mechanisms to future directions. Cell 186:1731
    [Google Scholar]
  82. Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M et al. 2019. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363:eaat9691
    [Google Scholar]
  83. Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71:295347
    [Google Scholar]
  84. Thingstad TF. 2000. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45:132028
    [Google Scholar]
  85. Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU et al. 2011. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. PNAS 108:E75764
    [Google Scholar]
  86. Touchon M, Bernheim A, Rocha EP. 2016. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 10:274454
    [Google Scholar]
  87. van Oppen MJH, Blackall LL. 2019. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17:55767
    [Google Scholar]
  88. Visick KL. 2009. An intricate network of regulators controls biofilm formation and colonization by Vibrio fischeri. Mol. Microbiol. 74:78289
    [Google Scholar]
  89. Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM et al. 2022. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses 2022. Arch. Virol. 167:242940
    [Google Scholar]
  90. Wang WQ, Tang KH, Wang PX, Zeng ZS, Xu T et al. 2022. The coral pathogen Vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction. Nat. Ecol. Evol. 6:113244
    [Google Scholar]
  91. Webster NS, Negri AP, Webb RI, Hill RT. 2002. A spongin-boring alpha-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Mar. Ecol. Prog. Ser. 232:3059
    [Google Scholar]
  92. Welsh JE, Steenhuis P, de Moraes KR, van der Meer J, Thieltges DW, Brussaard CPD. 2020. Marine virus predation by non-host organisms. Sci. Rep. 10:5221
    [Google Scholar]
  93. Weynberg KD, Laffy PW, Wood-Charlson EM, Turaev D, Rattei T et al. 2017a. Coral-associated viral communities show high levels of diversity and host auxiliary functions. PeerJ 5:e4054
    [Google Scholar]
  94. Weynberg KD, Neave M, Clode PL, Voolstra CR, Brownlee C et al. 2017b. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs 36:77384
    [Google Scholar]
  95. Weynberg KD, Voolstra CR, Neave MJ, Buerger P, van Oppen MJH. 2015. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5:17889
    [Google Scholar]
  96. Wiles TJ, Norton JP, Smith SN, Lewis AJ, Mobley HL et al. 2013. A phyletically rare gene promotes the niche-specific fitness of an E. coli pathogen during bacteremia. PLOS Pathog. 9:e1003175
    [Google Scholar]
  97. Wood-Charlson EM, Weynberg KD, Suttle CA, Roux S, van Oppen MJ. 2015. Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise. Environ. Microbiol. 17:344049
    [Google Scholar]
  98. WoRMS Ed. Board 2022. World Register of Marine Species (WoRMS) Accessed Oct. 11, 2022. http://www.marinespecies.org
  99. Yoshida-Takashima Y, Nunoura T, Kazama H, Noguchi T, Inoue K et al. 2012. Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments. Appl. Environ. Microbiol. 78:131120
    [Google Scholar]
  100. Zhou K, Qian PY, Zhang T, Xu Y, Zhang R. 2021a. Unique phage-bacterium interplay in sponge holobionts from the southern Okinawa Trough hydrothermal vent. Environ. Microbiol. Rep. 13:67583
    [Google Scholar]
  101. Zhou K, Xu Y, Zhang R, Qian PY. 2021b. Arms race in a cell: genomic, transcriptomic, and proteomic insights into intracellular phage-bacteria interplay in deep-sea snail holobionts. Microbiome 9:182
    [Google Scholar]
  102. Zhou K, Xu Y, Zhang R, Qian PY. 2022. Phages associated with animal holobionts in deep-sea hydrothermal vents and cold seeps. Deep-Sea Res. I 190:103900
    [Google Scholar]
  103. Zhou K, Zhang R, Sun J, Zhang W, Tian R-M et al. 2019. Potential interactions between clade SUP05 sulfur-oxidizing bacteria and phages in hydrothermal vent sponges. Appl. Environ. Microbiol. 85:e00992-19
    [Google Scholar]
/content/journals/10.1146/annurev-marine-021623-093133
Loading
/content/journals/10.1146/annurev-marine-021623-093133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error