1932

Abstract

Understanding the long-term effects of ongoing global environmental change on marine ecosystems requires a cross-disciplinary approach. Deep-time and recent fossil records can contribute by identifying traits and environmental conditions associated with elevated extinction risk during analogous events in the geologic past and by providing baseline data that can be used to assess historical change and set management and restoration targets and benchmarks. Here, we review the ecological and environmental information available in the marine fossil record and discuss how these archives can be used to inform current extinction risk assessments as well as marine conservation strategies and decision-making at global to local scales. As we consider future research directions in deep-time and conservationpaleobiology, we emphasize the need for coproduced research that unites researchers, conservation practitioners, and policymakers with the communities for whom the impacts of climate and global change are most imminent.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-021723-095235
2024-01-17
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-021723-095235.html?itemId=/content/journals/10.1146/annurev-marine-021723-095235&mimeType=html&fmt=ahah

Literature Cited

  1. Albano PG, Filippova N, Steger J, Kaufman DS, Tomašových A et al. 2016. Oil platforms in the Persian (Arabian) Gulf: living and death assemblages reveal no effects. Cont. Shelf Res. 121:2134
    [Google Scholar]
  2. Albano PG, Gallmetzer I, Haselmair A, Tomašových A, Stachowitsch M, Zuschin M. 2018. Historical ecology of a biological invasion: the interplay of eutrophication and pollution determines time lags in establishment and detection. Biol. Invasions 20:6141730
    [Google Scholar]
  3. Allen MJ, Mikel T, Cadien D, Kalman JE, Jarvis ET, Schiff KC et al. 2007. Southern California Bight 2003 Regional Monitoring Program, Vol. IV: demersal fishes and megabenthic invertebrates Rep. South. Calif. Coast. Water Res. Proj. Costa Mesa, CA:
  4. Angeles IB, Romero-Martínez ML, Cavaliere M, Varrella S, Francescangeli F et al. 2023. Encapsulated in sediments: eDNA deciphers the ecosystem history of one of the most polluted European marine sites. Environ. Int. 172:107738
    [Google Scholar]
  5. Antell GS, Fenton IS, Valdes PJ, Saupe EE. 2021. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. PNAS 118:18e2017105118
    [Google Scholar]
  6. Armbrecht LH. 2020. The potential of sedimentary ancient DNA to reconstruct past ocean ecosystems. Oceanography 33:211623
    [Google Scholar]
  7. Arnstein SR. 1969. A ladder of citizen participation. J. Am. Inst. Plann. 35:421624
    [Google Scholar]
  8. Aronson RB, Smith KE, Vos SC, McClintock JB, Amsler MO et al. 2015. No barrier to emergence of bathyal king crabs on the Antarctic shelf. PNAS 112:42129973002
    [Google Scholar]
  9. Arreguín-Rodríguez GJ, Thomas E, Alegret L 2022. Some like it cool: benthic foraminiferal response to Paleogene warming events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 593:110925
    [Google Scholar]
  10. Asaad I, Lundquist CJ, Erdmann MV, Van Hooidonk R, Costello MJ. 2018. Designating spatial priorities for marine biodiversity conservation in the Coral Triangle. Front. Mar. Sci. 5:400
    [Google Scholar]
  11. Bass N. 2021. Indigenous life on the Nansemond River. ArcGIS StoryMaps Oct. 10. https://storymaps.arcgis.com/stories/efa89a87874044328af43b7a4357bb04
    [Google Scholar]
  12. Behrensmeyer AK, Fürsich FT, Gastaldo RA, Kidwell SM, Kosnik MA et al. 2005. Are the most durable shelly taxa also the most common in the marine fossil record?. Paleobiology 31:460723
    [Google Scholar]
  13. Beier P, Hansen LJ, Helbrecht L, Behar D. 2017. A how-to guide for coproduction of actionable science: coproducing actionable science. Conserv. Lett. 10:328896
    [Google Scholar]
  14. Black HD, Andrus CFT, Lambert WJ, Rick TC, Gillikin DP. 2017. 15N values in Crassostrea virginica shells provides early direct evidence for nitrogen loading to Chesapeake Bay. Sci. Rep. 7:44241
    [Google Scholar]
  15. Bottjer DJ. 2016. Paleoecology: Past, Present and Future Hoboken, NJ: Wiley & Sons
  16. Braje T, Rick T, Erlandson J, Rogers-Bennett L, Catton C. 2015. Historical ecology can inform restoration site selection: the case of black abalone (Haliotis cracherodii) along California's Channel Islands: black abalone restoration site location. Aquat. Conserv. Mar. Freshw. Ecosyst. 26:47081
    [Google Scholar]
  17. Burke KD, Williams JW, Chandler MA, Haywood AM, Lunt DJ, Otto-Bliesner BL. 2018. Pliocene and Eocene provide best analogs for near-future climates. PNAS 115:521328893
    [Google Scholar]
  18. Calif. Dep. Fish Game Mar. Reg 2005. Abalone recovery and management plan Rep. Calif. Dep. Fish Game Mar. Reg. Monterey, CA:
  19. Caribb. Shark Coalit 2020. Home page. Caribbean Shark Coalition. https://caribbeansharks.co
    [Google Scholar]
  20. Casey MM, Post DM. 2011. The problem of isotopic baseline: reconstructing the diet and trophic position of fossil animals. Earth-Sci. Rev. 106:113148
    [Google Scholar]
  21. Clapham ME. 2017. Organism activity levels predict marine invertebrate survival during ancient global change extinctions. Glob. Change Biol. 23:4147785
    [Google Scholar]
  22. Clapham ME, Payne JL. 2011. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39:11105962
    [Google Scholar]
  23. Clapham ME, Renne PR. 2019. Flood basalts and mass extinctions. Annu. Rev. Earth Planet. Sci. 47:275303
    [Google Scholar]
  24. Cole SR, Hopkins MJ. 2021. Selectivity and the effect of mass extinctions on disparity and functional ecology. Sci. Adv. 7:19eabf4072
    [Google Scholar]
  25. Collins KS, Edie SM, Hunt G, Roy K, Jablonski D. 2018. Extinction risk in extant marine species integrating palaeontological and biodistributional data. Proc. R. Soc. B 285: 1887.20181698
    [Google Scholar]
  26. Cramer KL, O'Dea A, Clark TR, Zhao J, Norris RD 2017. Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish. Nat. Commun. 8:114160
    [Google Scholar]
  27. Crampton JS, Cooper RA, Sadler PM, Foote M. 2016. Greenhouse–icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton. PNAS 113:61498503
    [Google Scholar]
  28. Cui Y, Li M, van Soelen EE, Peterse F, Kürschner WM. 2021. Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction. PNAS 118:37e2014701118
    [Google Scholar]
  29. Darroch SAF, Saupe EE. 2018. Reconstructing geographic range-size dynamics from fossil data. Paleobiology 44:12539
    [Google Scholar]
  30. David-Chavez DM, Gavin MC. 2018. A global assessment of Indigenous community engagement in climate research. Environ. Res. Lett. 13:12123005
    [Google Scholar]
  31. Dietl GP, Kidwell SM, Brenner M, Burney DA, Flessa KW et al. 2015. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43:79103
    [Google Scholar]
  32. Dietl GP, Smith JA. 2017. Live-dead analysis reveals long-term response of the estuarine bivalve community to water diversions along the Colorado River. Ecol. Eng. 106:74956
    [Google Scholar]
  33. Dillon EM, McCauley DJ, Morales-Saldaña JM, Leonard ND, Zhao J, O'Dea A. 2021. Fossil dermal denticles reveal the preexploitation baseline of a Caribbean coral reef shark community. PNAS 118:29e2017735118
    [Google Scholar]
  34. Dowsett HJ, Robinson MM, Stoll DK, Foley KM, Johnson ALA et al. 2013. The PRISM (Pliocene palaeoclimate) reconstruction: time for a paradigm shift. Philos. Trans. R. Soc. A 371:200120120524
    [Google Scholar]
  35. Dulvy NK, Pinnegar JK, Reynolds JD. 2009. Holocene extinctions in the sea. Holocene Extinctions ST Turvey 12950. Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  36. Dunhill AM, Foster WJ, Azaele S, Sciberras J, Twitchett RJ. 2018. Modelling determinants of extinction across two Mesozoic hyperthermal events. Proc. R. Soc. B 285:188920180404
    [Google Scholar]
  37. Dunne JA, Williams RJ, Martinez ND, Wood RA, Erwin DH. 2008. Compilation and network analyses of Cambrian food webs. PLOS Biol 6:4e102
    [Google Scholar]
  38. Edwards ME. 2020. The maturing relationship between Quaternary paleoecology and ancient sedimentary DNA. Quat. Res. 96:3947
    [Google Scholar]
  39. Fenton IS, Woodhouse A, Aze T, Lazarus D, Renaudie J et al. 2021. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8:1160
    [Google Scholar]
  40. Finnegan S, Anderson SC, Harnik PG, Simpson C, Tittensor DP et al. 2015. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348:623456770
    [Google Scholar]
  41. Finnegan S, Payne JL, Wang SC. 2008. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:331841
    [Google Scholar]
  42. Fischer H, Meissner KJ, Mix AC, Abram NJ, Austermann J et al. 2018. Palaeoclimate constraints on the impact of 2°C anthropogenic warming and beyond. Nat. Geosci. 11:747485
    [Google Scholar]
  43. Grace M, Akçakaya HR, Bennett E, Hilton-Taylor C, Long B et al. 2019. Using historical and palaeoecological data to inform ambitious species recovery targets. Philos. Trans. R. Soc. Lond. B 374:178820190297
    [Google Scholar]
  44. Graham N, Dulvy N, Jennings S, Polunin N. 2005. Size-spectra as indicators of the effects of fishing on coral reef fish assemblages. Coral Reefs 24:111824
    [Google Scholar]
  45. Groesbeck AS, Rowell K, Lepofsky D, Salomon AK. 2014. Ancient clam gardens increased shellfish production: adaptive strategies from the past can inform food security today. PLOS ONE 9:3e91235
    [Google Scholar]
  46. Groff DV, McDonough MacKenzie C, J Pier JQ, Shaffer AB, Dietl GP 2023. Knowing but not doing: quantifying the research-implementation gap in conservation paleobiology. Front. Ecol. Evol. 11:1058992
    [Google Scholar]
  47. Haas H, Braje TJ, Edwards MS, Erlandson JM, Whitaker SG. 2019. Black abalone (Haliotis cracherodii) population structure shifts through deep time: management implications for southern California's northern Channel Islands. Ecol. Evol. 9:8427032
    [Google Scholar]
  48. Haggan N, Turner N, Carpenter J, Jones JT, Mackie Q, Menzies C. 2004. 12,000+ years of change: linking traditional and modern ecosystem science in the Pacific Northwest Paper presented at the Society for Ecological Restoration International Conference Victoria, Can.: Aug. 24
  49. Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K et al. 2015. Spatial and temporal changes in cumulative human impacts on the world's ocean. Nat. Commun. 6:17615
    [Google Scholar]
  50. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F et al. 2008. A global map of human impact on marine ecosystems. Science 319:586594852
    [Google Scholar]
  51. Harnik PG. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. PNAS 108:331359499
    [Google Scholar]
  52. Harnik PG, Lotze HK, Anderson SC, Finkel ZV, Finnegan S et al. 2012a. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27:1160817
    [Google Scholar]
  53. Harnik PG, Simpson C, Payne JL. 2012b. Long-term differences in extinction risk among the seven forms of rarity. Proc. R. Soc. B 279:1749496976
    [Google Scholar]
  54. Harnik PG, Torstenson ML, Williams MA. 2017. Assessing the effects of anthropogenic eutrophication on marine bivalve life history in the northern Gulf of Mexico. Palaios 32:1167888
    [Google Scholar]
  55. Hong Y, Yasuhara M, Iwatani H, Chao A, Harnik PG, Wei C-L. 2021. Ecosystem turnover in an urbanized subtropical seascape driven by climate and pollution. Anthropocene 36:100304
    [Google Scholar]
  56. Hong Y, Yasuhara M, Iwatani H, Harnik PG, Chao A et al. 2022. Benthic ostracod diversity and biogeography in an urbanized seascape. Mar. Micropaleontol. 174:102067
    [Google Scholar]
  57. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ et al. 2012. The geological record of ocean acidification. Science 335:6072105863
    [Google Scholar]
  58. Hsiang AY, Brombacher A, Rillo MC, Mleneck-Vautravers MJ, Conn S et al. 2019. Endless forams: >34,000 modern planktonic foraminiferal images for taxonomic training and automated species recognition using convolutional neural networks. Paleoceanogr. Paleoclimatol 34:7115777
    [Google Scholar]
  59. Hsiang AY, Nelson K, Elder LE, Sibert EC, Kahanamoku SS et al. 2018. AutoMorph: accelerating morphometrics with automated 2D and 3D image processing and shape extraction. Methods Ecol. Evol. 9:360512
    [Google Scholar]
  60. Irwin EG, Culligan PJ, Fischer-Kowalski M, Law KL, Murtugudde R, Pfirman S. 2018. Bridging barriers to advance global sustainability. Nat. Sustain. 1:732426
    [Google Scholar]
  61. Ivany LC, Pietsch C, Handley JC, Lockwood R, Allmon WD, Sessa JA. 2018. Little lasting impact of the Paleocene-Eocene Thermal Maximum on shallow marine molluscan faunas. Sci. Adv. 4:9eaat5528
    [Google Scholar]
  62. Jablonski D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:473412933
    [Google Scholar]
  63. Jablonski D. 2005. Mass extinctions and macroevolution. Paleobiology 31:Suppl. 2192210
    [Google Scholar]
  64. Jackson J, Donovan M, Cramer K, Lam V, eds. 2014. Status and trends of Caribbean coral reefs: 1970–2012 Rep. Glob. Coral Reef Monit. Netw. Washington, DC:
  65. Jenkins JA, Gallivan MD. 2020. Shell on Earth: oyster harvesting, consumption, and deposition practices in the Powhatan Chesapeake. J. Isl. Coast. Archaeol. 15:3384406
    [Google Scholar]
  66. Jones LA, Mannion PD, Farnsworth A, Valdes PJ, Kelland S-J, Allison PA. 2019. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. R. Soc. Open Sci. 6:4182111
    [Google Scholar]
  67. Kast ER, Griffiths ML, Kim SL, Rao ZC, Shimada K et al. 2022. Cenozoic megatooth sharks occupied extremely high trophic positions. Sci. Adv. 8:25eabl6529
    [Google Scholar]
  68. Kender S, Bogus K, Pedersen GK, Dybkjær K, Mather TA et al. 2021. Paleocene/Eocene carbon feedbacks triggered by volcanic activity. Nat. Commun. 12:15186
    [Google Scholar]
  69. Kidwell SM. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. PNAS 104:45177016
    [Google Scholar]
  70. Kidwell SM. 2008. Ecological fidelity of open marine molluscan death assemblages: effects of post-mortem transportation, shelf health, and taphonomic inertia. Lethaia 41:3199217
    [Google Scholar]
  71. Kidwell SM. 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56:3487522
    [Google Scholar]
  72. Kidwell SM, Holland SM. 2002. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33:56188
    [Google Scholar]
  73. Kiessling W, Kocsis ÁT. 2016. Adding fossil occupancy trajectories to the assessment of modern extinction risk. Biol. Lett. 12:1020150813
    [Google Scholar]
  74. Kiessling W, Simpson C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17:15667
    [Google Scholar]
  75. Kiessling W, Smith JA, Raja NB. 2023. Improving the relevance of paleontology to climate change policy. PNAS 120:e2201926119
    [Google Scholar]
  76. Kocsis ÁT, Reddin CJ, Alroy J, Kiessling W. 2019. The r package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10:573543
    [Google Scholar]
  77. Kokesh BS, Burgess D, Partridge V, Weakland S, Kidwell SM. 2022b. Living and dead bivalves are congruent surrogates for whole benthic macroinvertebrate communities in Puget Sound. Front. Ecol. Evol. 10:980753
    [Google Scholar]
  78. Kokesh BS, Kidwell S, Tomašových A, Walther S. 2022a. Detecting strong spatial and temporal variation in macrobenthic composition on an urban shelf using taxonomic surrogates. Mar. Ecol. Prog. Ser. 682:1330
    [Google Scholar]
  79. Kokesh BS, Stemann TA. 2023. Dead men still tell tales: bivalve death assemblages record dynamics and consequences of recent biological invasions in Kingston Harbour, Jamaica. Geol. Soc. Lond. Spec. Publ. 529:SP529–2022-28
    [Google Scholar]
  80. Kowalewski M, Wittmer JM, Dexter TA, Amorosi A, Scarponi D. 2015. Differential responses of marine communities to natural and anthropogenic changes. Proc. R. Soc. B 282:180320142990
    [Google Scholar]
  81. Kusnerik KM, Lockwood R, Grant AN. 2018. Using the fossil record to establish a baseline and recommendations for oyster mitigation in the Mid-Atlantic U.S.. Marine Conservation Paleobiology CL Tyler, CL Schneider 75103. Cham, Switz.: Springer
    [Google Scholar]
  82. Kwiatkowski L, Aumont O, Bopp L. 2019. Consistent trophic amplification of marine biomass declines under climate change. Glob. Change Biol. 25:121829
    [Google Scholar]
  83. Latulippe N, Klenk N. 2020. Making room and moving over: knowledge co-production, Indigenous knowledge sovereignty and the politics of global environmental change decision-making. Curr. Opin. Environ. Sustain. 42:714
    [Google Scholar]
  84. Leonard-Pingel JS, Kidwell SM, Tomašových A, Alexander CR, Cadien DB. 2019. Gauging benthic recovery from 20th century pollution on the southern California continental shelf using bivalves from sediment cores. Mar. Ecol. Prog. Ser. 615:10119
    [Google Scholar]
  85. Levine J, Muthukrishna M, Chan KMA, Satterfield T. 2017. Sea otters, social justice, and ecosystem-service perceptions in Clayoquot Sound, Canada. Conserv. Biol. 31:234352
    [Google Scholar]
  86. Lloyd GT, Pearson PN, Young JR, Smith AB. 2012. Sampling bias and the fossil record of planktonic foraminifera on land and in the deep sea. Paleobiology 38:456984
    [Google Scholar]
  87. Lockwood R, Chastant LR. 2006. Quantifying taphonomic bias of compositional fidelity, species richness, and rank abundance in molluscan death assemblages from the Upper Chesapeake Bay. Palaios 21:437683
    [Google Scholar]
  88. Lockwood R, Mann R. 2019. A conservation palaeobiological perspective on Chesapeake Bay oysters. Philos. Trans. R. Soc. Lond. B 374:178820190209
    [Google Scholar]
  89. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:578118069
    [Google Scholar]
  90. Lotze HK, McClenachan L 2014. Marine historical ecology: informing the future by learning from the past. Marine Community Ecology and Conservation MD Bertness, JF Bruno, BR Silliman, JJ Stachowicz 165200. Sunderland, MA: Sinauer
    [Google Scholar]
  91. Lotze HK, Mellon S, Coyne J, Betts M, Burchell M et al. 2022. Long-term ocean and resource dynamics in a hotspot of climate change. Facets 7:114284
    [Google Scholar]
  92. Lueders-Dumont JA, Wang XT, Jensen OP, Sigman DM, Ward BB. 2018. Nitrogen isotopic analysis of carbonate-bound organic matter in modern and fossil fish otoliths. Geochim. Cosmochim. Acta 224:20022
    [Google Scholar]
  93. Mach KJ, Lemos MC, Meadow AM, Wyborn C, Klenk N et al. 2020. Actionable knowledge and the art of engagement. Curr. Opin. Environ. Sustain. 42:3037
    [Google Scholar]
  94. Maguire KC, Nieto-Lugilde D, Fitzpatrick MC, Williams JW, Blois JL. 2015. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. Annu. Rev. Ecol. Evol. Syst. 46:34368
    [Google Scholar]
  95. Marshall FE, Bernhardt CE, Wingard GL. 2020. Estimating late 19th century hydrology in the Greater Everglades Ecosystem: an integration of paleoecologic data and models. Front. Environ. Sci. 8:3
    [Google Scholar]
  96. Martindale RC, Aberhan M. 2017. Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeogr. Palaeoclimatol. Palaeoecol. 478:10320
    [Google Scholar]
  97. Martinelli JC, Soto LP, González J, Rivadeneira MM. 2017. Benthic communities under anthropogenic pressure show resilience across the Quaternary. R. Soc. Open Sci. 4:9170796
    [Google Scholar]
  98. Mathes GH, van Dijk J, Kiessling W, Steinbauer MJ. 2021. Extinction risk controlled by interaction of long-term and short-term climate change. Nat. Ecol. Evol. 5:330410
    [Google Scholar]
  99. McClenachan L, Cooper AB, Dulvy NK. 2016. Rethinking trade-driven extinction risk in marine and terrestrial megafauna. Curr. Biol. 26:12164046
    [Google Scholar]
  100. McClenachan L, Ferretti F, Baum JK. 2012. From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5:534959
    [Google Scholar]
  101. Menzies CR. 2015. Revisiting “Dm Sibilhaa'nm da Laxyuubm Gitxaała (Picking Abalone in Gitxaała Territory)”: vindication, appropriation, and archaeology. BC Stud. 187:12953
    [Google Scholar]
  102. Moffitt SE, Hill TM, Roopnarine PD, Kennett JP. 2015. Response of seafloor ecosystems to abrupt global climate change. PNAS 112:15468489
    [Google Scholar]
  103. Muraoka WT, Cramer KL, O'Dea A, Zhao J, Leonard ND, Norris RD 2022. Historical declines in parrotfish on Belizean coral reefs linked to shifts in reef exploitation following European colonization. Front. Ecol. Evol. 10:972172
    [Google Scholar]
  104. Myers CE, Stigall AL, Lieberman BS. 2015. PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41:222644
    [Google Scholar]
  105. NOAA (Natl. Ocean. Atmos. Adm.) Fish 2021. Work continues toward goal to restore oysters to 10 Chesapeake tributaries by 2025. NOAA Fisheries July 16. https://www.fisheries.noaa.gov/feature-story/work-continues-toward-goal-restore-oysters-10-chesapeake-tributaries-2025
    [Google Scholar]
  106. O'Dea A, Lepore M, Altieri AH, Chan M, Morales-Saldaña JM et al. 2020. Defining variation in pre-human ecosystems can guide conservation: an example from a Caribbean coral reef. Sci. Rep. 10:12922
    [Google Scholar]
  107. O'Dea A, Shaffer ML, Doughty DR, Wake TA, Rodriguez FA 2014. Evidence of size-selective evolution in the fighting conch from prehistoric subsistence harvesting. Proc. R. Soc. B 281:178220140159
    [Google Scholar]
  108. Orzechowski EA, Finnegan S. 2021. Controls on range shifts of coastal Californian bivalves during the peak of the last interglacial and baseline predictions for today. Paleobiology 47:341831
    [Google Scholar]
  109. Orzechowski EA, Lockwood R, Byrnes JEK, Anderson SC, Finnegan S et al. 2015. Marine extinction risk shaped by trait-environment interactions over 500 million years. Glob. Change Biol. 21:103595607
    [Google Scholar]
  110. Paillard A, Shimada K, Pimiento C. 2021. The fossil record of extant elasmobranchs. J. Fish Biol. 98:244555
    [Google Scholar]
  111. Palmer KL, Moss DK, Surge D, Turek S. 2021. Life history patterns of modern and fossil Mercenaria spp. from warm vs. cold climates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 566:110227
    [Google Scholar]
  112. Pandolfi JM, Jackson JBC. 2006. Ecological persistence interrupted in Caribbean coral reefs. Ecol. Lett. 9:781826
    [Google Scholar]
  113. Payne JL, Bush AM, Heim NA, Knope ML, McCauley DJ. 2016. Ecological selectivity of the emerging mass extinction in the oceans. Science 353:6305128486
    [Google Scholar]
  114. Payne JL, Finnegan S. 2007. The effect of geographic range on extinction risk during background and mass extinction. PNAS 104:251050611
    [Google Scholar]
  115. Payne JL, Heim NA. 2020. Body size, sampling completeness, and extinction risk in the marine fossil record. Paleobiology 46:12340
    [Google Scholar]
  116. Payne JL, Heim NA, Knope ML, McClain CR. 2014. Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years. Proc. R. Soc. B 281:178320133122
    [Google Scholar]
  117. Peharda M, Schöne BR, Black BA, Corrège T. 2021. Advances of sclerochronology research in the last decade. Palaeogeogr. Palaeoclimatol. Palaeoecol. 570:110371
    [Google Scholar]
  118. Penn JL, Deutsch C, Payne JL, Sperling EA. 2018. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362:6419eaat1327
    [Google Scholar]
  119. Pimiento C, Griffin JN, Clements CF, Silvestro D, Varela S et al. 2017. The Pliocene marine megafauna extinction and its impact on functional diversity. Nat. Ecol. Evol. 1:811006
    [Google Scholar]
  120. Raja NB, Dunne EM, Matiwane A, Khan TM, Nätscher PS et al. 2022. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6:214554
    [Google Scholar]
  121. Raja NB, Lauchstedt A, Pandolfi JM, Kim SW, Budd AF, Kiessling W. 2021. Morphological traits of reef corals predict extinction risk but not conservation status. Glob. Ecol. Biogeogr. 30:81597608
    [Google Scholar]
  122. Raup DM, Sepkoski JJ. 1982. Mass extinctions in the marine fossil record. Science 215:453915013
    [Google Scholar]
  123. Razanatsoa E, Virah-Sawmy M, Woodborne S, Callanan C, Gillson L. 2021. Adaptation of subsistence strategies of the southwestern Malagasy in the face of climate change. Malagasy Nat 15:4155
    [Google Scholar]
  124. Reddin CJ, Kocsis ÁT, Aberhan M, Kiessling W. 2021. Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. Glob. Change Biol. 27:486878
    [Google Scholar]
  125. Reddin CJ, Kocsis ÁT, Kiessling W. 2019. Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology 45:17084
    [Google Scholar]
  126. Reeder-Myers L, Braje TJ, Hofman CA, Elliott Smith EA, Garland CJ et al. 2022. Indigenous oyster fisheries persisted for millennia and should inform future management. Nat. Commun. 13:12383
    [Google Scholar]
  127. Ridgwell A. 2005. A Mid Mesozoic Revolution in the regulation of ocean chemistry. Mar. Geol. 217:333957
    [Google Scholar]
  128. Roopnarine PD, Dineen AA. 2018. Coral reefs in crisis: the reliability of deep-time food web reconstructions as analogs for the present. Marine Conservation Paleobiology CL Tyler, CL Schneider 10541. Cham, Switz.: Springer
    [Google Scholar]
  129. Rosen J, Painter G. 2019. From citizen control to co-production. J. Am. Plann. Assoc. 85:333547
    [Google Scholar]
  130. Rowell K, Flessa KW, Dettman DL, Román M. 2005. The importance of Colorado River flow to nursery habitats of the Gulf corvina (Cynoscion othonopterus). Can. J. Fish Aquat. Sci. 62:12287485
    [Google Scholar]
  131. Sathianandan TV. 2017. New methods of fish stock assessment. Summer School on Advanced Methods for Fish Stock Assessment and Fisheries Management296300. Kochi, India: Cent. Mar. Fish. Res. Inst.
    [Google Scholar]
  132. Saupe EE, Hendricks JR, Portell RW, Dowsett HJ, Haywood A et al. 2014a. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. R. Soc. B 281:179520141995
    [Google Scholar]
  133. Saupe EE, Hendricks JR, Townsend Peterson A, Lieberman BS 2014b. Climate change and marine molluscs of the western North Atlantic: future prospects and perils. J. Biogeogr. 41:7135266
    [Google Scholar]
  134. Schulte DM. 2017. History of the Virginia oyster fishery, Chesapeake Bay, USA.. Front. Mar. Sci. 4:127
    [Google Scholar]
  135. Scotese CR, Song H, Mills BJW, van der Meer DG. 2021. Phanerozoic paleotemperatures: the earth's changing climate during the last 540 million years. Earth-Sci. Rev. 215:103503
    [Google Scholar]
  136. Scotese CR, Wright NM 2018. PALEOMAP Paleodigital Elevation Models (PaleoDEMs) for the Phanerozoic. Zenodo https://doi.org/10.5281/zenodo.5460860
    [Google Scholar]
  137. Scott CB, Cárdenas A, Mah M, Narasimhan VM, Rohland N et al. 2022. Millennia-old coral holobiont DNA provides insight into future adaptive trajectories. Mol. Ecol. 31:497990
    [Google Scholar]
  138. Sea Grant Netw 2018. Traditional and local knowledge: a vision for the Sea Grant Network Rep., Sea Grant Netw. Natl. Ocean. Atmos. Adm. Washington, DC:
  139. Sibert EC, Cramer KL, Hastings PA, Norris RD. 2017. Methods for isolation and quantification of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) from marine sediments. Palaeontol. Electron. 20:120.1.2T
    [Google Scholar]
  140. Slade E, McKechnie I, Salomon AK. 2022. Archaeological and contemporary evidence indicates low sea otter prevalence on the Pacific Northwest coast during the Late Holocene. Ecosystems 25:354866
    [Google Scholar]
  141. Smith NF, Lepofsky D, Toniello G, Holmes K, Wilson L et al. 2019. 3500 years of shellfish mariculture on the Northwest Coast of North America. PLOS ONE 14:2e0211194
    [Google Scholar]
  142. Smits P, Finnegan S. 2019. How predictable is extinction? Forecasting species survival at million-year timescales. Philos. Trans. R. Soc. Lond. B 374:178820190392
    [Google Scholar]
  143. Spalding C, Hull PM. 2021. Towards quantifying the mass extinction debt of the Anthropocene. Proc. R. Soc. B 288:194920202332
    [Google Scholar]
  144. Sperling EA, Frieder CA, Levin LA. 2016. Biodiversity response to natural gradients of multiple stressors on continental margins. Proc. R. Soc. B 283:182920160637
    [Google Scholar]
  145. Steneck R, Arnold S, Mumby P. 2014. Experiment mimics fishing on parrotfish: insights on coral reef recovery and alternative attractors. Mar. Ecol. Prog. Ser. 506:11527
    [Google Scholar]
  146. Tian SY, Yasuhara M, Huang H-HM, Condamine FL, Robinson MM. 2021. Shallow marine ecosystem collapse and recovery during the Paleocene-Eocene Thermal Maximum. Glob. Planet. Change 207:103649
    [Google Scholar]
  147. Tomašových A, Kidwell SM. 2009. Preservation of spatial and environmental gradients by death assemblages. Paleobiology 35:111945
    [Google Scholar]
  148. Tomašových A, Kidwell SM. 2017. Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf. Proc. R. Soc. B 284:185620170328
    [Google Scholar]
  149. Tomašových A, Kidwell SM, Barber RF. 2016. Inferring skeletal production from time-averaged assemblages: skeletal loss pulls the timing of production pulses towards the modern period. Paleobiology 42:15476
    [Google Scholar]
  150. Torti A, Lever MA, Jørgensen BB. 2015. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24:18596
    [Google Scholar]
  151. Turnhout E, Metze T, Wyborn C, Klenk N, Louder E. 2020. The politics of co-production: participation, power, and transformation. Curr. Opin. Environ. Sustain. 42:1521
    [Google Scholar]
  152. Valentine JW. 1989. How good was the fossil record? Clues from the Californian Pleistocene. Paleobiology 15:28394
    [Google Scholar]
  153. Valentine JW, Jablonski D, Kidwell S, Roy K. 2006. Assessing the fidelity of the fossil record by using marine bivalves. PNAS 103:176599604
    [Google Scholar]
  154. Veizer J, Prokoph A. 2015. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 146:92104
    [Google Scholar]
  155. Wang SC, Bush AM. 2008. Adjusting global extinction rates to account for taxonomic susceptibility. Paleobiology 34:443455
    [Google Scholar]
  156. Werbin ZR, Wojciehowski JD, Wang H, Habermeier CE, Heim NA et al. 2018. Comparing the age selectivity of modern extinctions with Phanerozoic background and mass extinctions. GSA Abstr. Programs 50:67310 (Abstr.)
    [Google Scholar]
  157. White House Counc. Environ. Qual 2022. White House releases first-of-a-kind Indigenous Knowledge guidance for federal agencies Press Release White House Counc. Environ. Qual. Washington, DC.: https://www.whitehouse.gov/ceq/news-updates/2022/12/01/white-house-releases-first-of-a-kind-indigenous-knowledge-guidance-for-federal-agencies
  158. Wilson D. 2021. European colonisation, law, and Indigenous marine dispossession: historical perspectives on the construction and entrenchment of unequal marine governance. Marit. Stud. 20:4387407
    [Google Scholar]
  159. Wingard GL, Bernhardt CE, Wachnicka AH. 2017. The role of paleoecology in restoration and resource management—the past as a guide to future decision-making: review and example from the Greater Everglades Ecosystem, U.S.A. Front. Ecol. Evol. 5:11
    [Google Scholar]
  160. SÁNEĆ Leadersh. Counc 2023. The Salish Sea Garden Project continues to restore traditional food sources & knowledge. SÁNEĆ Leadership Council https://wsanec.com/the-salish-sea-garden-project-continues-to-restore-traditional-food-sources-knowledge
    [Google Scholar]
/content/journals/10.1146/annurev-marine-021723-095235
Loading
/content/journals/10.1146/annurev-marine-021723-095235
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error