1932

Abstract

Human civilization relies on estuaries, and many estuarine ecosystem services are provided by microbial communities. These services include high rates of primary production that nourish harvests of commercially valuable species through fisheries and aquaculture, the transformation of terrestrial and anthropogenic materials to help ensure the water quality necessary to support recreation and tourism, and mutualisms that maintain blue carbon accumulation and storage. Research on the ecology that underlies microbial ecosystem services in estuaries has expanded greatly across a range of estuarine environments, including water, sediment, biofilms, biological reefs, and stands of seagrasses, marshes, and mangroves. Moreover, the application of new molecular tools has improved our understanding of the diversity and genomic functions of estuarine microbes. This review synthesizes recent research on microbial habitats in estuaries and the contributions of microbes to estuarine food webs, elemental cycling, and interactions with plants and animals, and highlights novel insights provided by recent advances in genomics.

Keyword(s): archaeabacteriaestuarymicrobeprotistvirus
Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-022123-101845
2024-01-17
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-022123-101845.html?itemId=/content/journals/10.1146/annurev-marine-022123-101845&mimeType=html&fmt=ahah

Literature Cited

  1. Abril G, Etcheber H, Le Hir P, Bassoullet P, Boutier B, Frankignoulle M 1999. Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France). Limnol. Oceanogr. 44:130415
    [Google Scholar]
  2. Algar CK, Vallino JJ. 2014. Predicting microbial nitrate reduction pathways in coastal sediments. Aquat. Microb. Ecol. 71:22338
    [Google Scholar]
  3. Alongi DM. 2020. Carbon balance in salt marsh and mangrove ecosystems: a global synthesis. J. Mar. Sci. Eng. 8:767
    [Google Scholar]
  4. Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A et al. 2018. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 12:171528
    [Google Scholar]
  5. Apprill A. 2017. Marine animal microbiomes: toward understanding host-microbiome interactions in a changing ocean. Front. Mar. Sci. 4:222
    [Google Scholar]
  6. Armitage DW, Gallagher KL, Youngblut ND, Buckley DH, Zinder SH. 2012. Millimeter-scale patterns of phylogenetic and trait diversity in a salt marsh microbial mat. Front. Microbiol. 3:293
    [Google Scholar]
  7. Arun S, Ramasamy S, Pakshirajan K. 2021. Mechanistic insights into nitrification by microalgae-bacterial consortia in a photo-sequencing batch reactor under different light intensities. J. Clean. Prod. 321:128752
    [Google Scholar]
  8. Asmala E, Bowers DG, Autio R, Kaartokallio H, Thomas DN. 2014. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation: riverine DOM flocculation. J. Geophys. Res. Biogeosci. 119:191933
    [Google Scholar]
  9. Ayvazian S, Mulvaney K, Zarnoch C, Palta M, Reichert-Nguyen J et al. 2021. Beyond bioextraction: the role of oyster-mediated denitrification in nutrient management. Environ. Sci. Technol. 55:1445765
    [Google Scholar]
  10. Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:25763
    [Google Scholar]
  11. Baker BJ, Lazar CS, Teske AP, Dick GJ. 2015. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3:14
    [Google Scholar]
  12. Bakken LR, Bergaust L, Liu B, Frostegård Å. 2012. Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos. Trans. R. Soc. B 367:122634
    [Google Scholar]
  13. Baltar F, Herndl GJ. 2019. Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates?. Biogeosciences 16:379399
    [Google Scholar]
  14. Bergtold M, Gunter V, Traunspurger W. 2005. Is there competition among ciliates and nematodes?. Freshw. Biol. 50:135159
    [Google Scholar]
  15. Bernhard AE, Landry ZC, Blevins A, De La Torre JR, Giblin AE, Stahl DA. 2010. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl. Environ. Microbiol. 76:128589
    [Google Scholar]
  16. Bianchi TS, Cui X, Blair NE, Burdige DJ, Eglinton TI, Galy V. 2018. Centers of organic carbon burial and oxidation at the land-ocean interface. Org. Geochem. 115:13855
    [Google Scholar]
  17. Bolhuis H, Stal LJ. 2011. Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J. 5:170112
    [Google Scholar]
  18. Boschker HTS, Vasquez-Cardenas D, Bolhuis H, Moerdijk-Poortvliet TWC, Moodley L. 2014. Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments. PLOS ONE 9:e101443
    [Google Scholar]
  19. Bowen JL, Giblin AE, Murphy AE, Bulseco AN, Deegan LA et al. 2020. Not all nitrogen is created equal: differential effects of nitrate and ammonium enrichment in coastal wetlands. BioScience 70:110819
    [Google Scholar]
  20. Bowen JL, Weisman D, Yasuda M, Jayakumar A, Morrison HG, Ward BB. 2015. Marine oxygen-deficient zones harbor depauperate denitrifying communities compared to novel genetic diversity in coastal sediments. Microb. Ecol. 70:31121
    [Google Scholar]
  21. Bräuer SL, Kranzler K, Goodson N, Murphy D, Simon HM et al. 2013. Dark carbon fixation in the Columbia River's estuarine turbidity maxima: molecular characterization of red-type cbbL genes and measurement of DIC uptake rates in response to added electron donors. Estuaries Coasts 36:107383
    [Google Scholar]
  22. Braun A, Spona-Friedl M, Avramov M, Elsner M, Baltar F et al. 2021. Reviews and syntheses: heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling. Biogeosciences 18:3689700
    [Google Scholar]
  23. Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP et al. 2018. Declining oxygen in the global ocean and coastal waters. Science 359:eaam7240
    [Google Scholar]
  24. Brussaard C, Gast G, van Duyl F, Riegman R. 1996. Impact of phytoplankton bloom magnitude on a pelagic microbial food web. Mar. Ecol. Prog. Ser. 144:21121
    [Google Scholar]
  25. Buchan A, Newell SY, Butler M, Biers EJ, Hollibaugh JT, Moran MA. 2003. Dynamics of bacterial and fungal communities on decaying salt marsh grass. Appl. Environ. Microbiol. 69:667687
    [Google Scholar]
  26. Bulseco AN, Giblin AE, Tucker J, Murphy AE, Sanderman J et al. 2019. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments. Glob. Change Biol. 25:322441
    [Google Scholar]
  27. Bulseco AN, Vineis JH, Murphy AE, Spivak AC, Giblin AE et al. 2020. Metagenomics coupled with biogeochemical rates measurements provide evidence that nitrate addition stimulates respiration in salt marsh sediments. Limnol. Oceanogr. 65:S1S32139
    [Google Scholar]
  28. Burgin AJ, Hamilton SK. 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5:8996
    [Google Scholar]
  29. Caffrey JM. 2004. Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries 27:90101
    [Google Scholar]
  30. Caffrey JM, Bano N, Kalanetra K, Hollibaugh JT. 2007. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME J. 1:66062
    [Google Scholar]
  31. Canfield DE, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. PNAS 106:812327
    [Google Scholar]
  32. Canfield DE, Rosing MT, Bjerrum C. 2006. Early anaerobic metabolisms. Philos. Trans. R. Soc. B 361:181936
    [Google Scholar]
  33. Chambers LG, Osborne TZ, Reddy KR. 2013. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry 115:36383
    [Google Scholar]
  34. Chen J, Erler DV, Wells NS, Huang J, Welsh DT, Eyre BD. 2021. Denitrification, anammox, and dissimilatory nitrate reduction to ammonium across a mosaic of estuarine benthic habitats. Limnol. Oceanogr. 66:128197
    [Google Scholar]
  35. Chernyh NA, Neukirchen S, Frolov EN, Sousa FL, Miroshnichenko ML et al. 2020. Dissimilatory sulfate reduction in the archaeon ‘Candidatus Vulcanisaeta moutnovskia’ sheds light on the evolution of sulfur metabolism. Nat. Microbiol. 5:142838
    [Google Scholar]
  36. Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC. 2003. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17:1111
    [Google Scholar]
  37. Chmura GL, Hung GA. 2004. Controls on salt marsh accretion: a test in salt marshes of Eastern Canada. Estuaries 27:7081
    [Google Scholar]
  38. Comer-Warner SA, Nguyen ATQ, Nguyen MN, Wang M, Turner A et al. 2022. Restoration impacts on rates of denitrification and greenhouse gas fluxes from tropical coastal wetlands. Sci. Total Environ. 803:149577
    [Google Scholar]
  39. Crump BC, Fine LM, Fortunato CS, Herfort L, Needoba JA et al. 2017. Quantity and quality of particulate organic matter controls bacterial production in the Columbia River estuary. Limnol. Oceanogr. 62:271331
    [Google Scholar]
  40. Crump BC, Peranteau C, Beckingham B, Cornwell JC. 2007. Respiratory succession and community succession of bacterioplankton in seasonally anoxic estuarine waters. Appl. Environ. Microbiol. 73:680210
    [Google Scholar]
  41. Crump BC, Wojahn JM, Tomas F, Mueller RS. 2018. Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes. Front. Microbiol. 9:388
    [Google Scholar]
  42. Cuadrado DG, Carmona NB, Bournod C. 2011. Biostabilization of sediments by microbial mats in a temperate siliciclastic tidal flat, Bahia Blanca estuary (Argentina). Sediment. Geol. 237:95101
    [Google Scholar]
  43. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C et al. 2015. Complete nitrification by Nitrospira bacteria. Nature 528:5049
    [Google Scholar]
  44. Damashek J, Casciotti KL, Francis CA. 2016. Variable nitrification rates across environmental gradients in turbid, nutrient-rich estuary waters of San Francisco Bay. Estuaries Coasts 39:105071
    [Google Scholar]
  45. Damashek J, Francis CA. 2018. Microbial nitrogen cycling in estuaries: from genes to ecosystem processes. Estuaries Coasts 41:62660
    [Google Scholar]
  46. Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW et al. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490:38892
    [Google Scholar]
  47. Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST et al. 2018. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3:80413
    [Google Scholar]
  48. DeLorenzo S, Bräuer SL, Edgmont CA, Herfort L, Tebo BM, Zuber P. 2012. Ubiquitous dissolved inorganic carbon assimilation by marine bacteria in the Pacific Northwest coastal ocean as determined by stable isotope probing. PLOS ONE 7:e46695
    [Google Scholar]
  49. Dietrich D, Arndt H. 2000. Biomass partitioning of benthic microbes in a Baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliates. Mar. Biol. 136:30922
    [Google Scholar]
  50. Domangue RJ, Mortazavi B. 2018. Nitrate reduction pathways in the presence of excess nitrogen in a shallow eutrophic estuary. Environ. Pollut. 238:599606
    [Google Scholar]
  51. Du Y, Xu K, Warren A, Lei Y, Dai R. 2012. Benthic ciliate and meiofaunal communities in two contrasting habitats of an intertidal estuarine wetland. J. Sea Res. 70:5063
    [Google Scholar]
  52. Duarte CM, Middelburg JJ, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:18
    [Google Scholar]
  53. Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D et al. 2016. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 10:193953
    [Google Scholar]
  54. Eggleston EM, Lee DY, Owens MS, Cornwell JC, Crump BC, Hewson I. 2015. Key respiratory genes elucidate bacterial community respiration in a seasonally anoxic estuary. Environ. Microbiol. 17:230618
    [Google Scholar]
  55. Eppley RW, Peterson BJ. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:67780
    [Google Scholar]
  56. Epstein SS. 1997. Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microb. Ecol. 34:18898
    [Google Scholar]
  57. Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH et al. 2019. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17:21932
    [Google Scholar]
  58. Feinman S, Unzueta Martínez A, Bowen J, Tlusty M 2017. Fine-scale transition to lower bacterial diversity and altered community composition precedes shell disease in laboratory-reared juvenile American lobster. Dis. Aquat. Org. 124:4154
    [Google Scholar]
  59. Fennel K, Testa JM. 2019. Biogeochemical controls on coastal hypoxia. Annu. Rev. Mar. Sci. 11:10530
    [Google Scholar]
  60. Figueroa D, Capo E, Lindh MV, Rowe OF, Paczkowska J et al. 2021. Terrestrial dissolved organic matter inflow drives temporal dynamics of the bacterial community of a subarctic estuary (northern Baltic Sea). Environ. Microbiol. 23:420013
    [Google Scholar]
  61. Fortunato CS, Crump BC. 2015. Microbial gene abundance and expression patterns across a river to ocean salinity gradient. PLOS ONE 10:e0140578
    [Google Scholar]
  62. Gauns M, Mochemadkar S, Patil S, Pratihary A, Naqvi SWA, Madhupratap M. 2015. Seasonal variations in abundance, biomass and grazing rates of microzooplankton in a tropical monsoonal estuary. J. Oceanogr. 71:34559
    [Google Scholar]
  63. Geraldi NR, Ortega A, Serrano O, Macreadie PI, Lovelock CE et al. 2019. Fingerprinting blue carbon: rationale and tools to determine the source of organic carbon in marine depositional environments. Front. Mar. Sci. 6:263
    [Google Scholar]
  64. Giblin A, Tobias C, Song B, Weston N, Banta G, Rivera-Monroy V. 2013. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography 26:312431
    [Google Scholar]
  65. Giovannoni SJ, DeLong EF, Schmidt TM, Pace NR. 1990. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl. Environ. Microbiol. 56:257275
    [Google Scholar]
  66. Glaubitz S, Lueders T, Abraham W-R, Jost G, Jürgens K, Labrenz M. 2009. 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environ. Microbiol. 11:32637
    [Google Scholar]
  67. Gregersen LH, Bryant DA, Frigaard N-U. 2011. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front. Microbiol. 2:116
    [Google Scholar]
  68. Hanley TC, Bowen JL, Kearns PJ, Hughes AR. 2021. Short- and long-term effects of nutrient enrichment on salt marsh plant production and microbial community structure. J. Ecol. 109:377993
    [Google Scholar]
  69. Hetland RD, DiMarco SF. 2008. How does the character of oxygen demand control the structure of hypoxia on the Texas-Louisiana continental shelf?. J. Mar. Syst. 70:4962
    [Google Scholar]
  70. Hewson I, Eggleston EM, Doherty M, Lee DY, Owens M et al. 2014. Metatranscriptomic analyses of plankton communities inhabiting surface and subpycnocline waters of the Chesapeake Bay during oxic-anoxic-oxic transitions. Appl. Environ. Microbiol. 80:32838
    [Google Scholar]
  71. Hoffman DK, McCarthy MJ, Newell SE, Gardner WS, Niewinski DN et al. 2019. Relative contributions of DNRA and denitrification to nitrate reduction in Thalassia testudinum seagrass beds in coastal Florida (USA). Estuaries Coasts 42:100114
    [Google Scholar]
  72. Hopkinson CS, Smith EM. 2005. Estuarine respiration: an overview of benthic, pelagic, and whole system respiration. Respiration in Aquatic Ecosystems P del Giorgio, P Williams 12246. Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  73. Howarth RW. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1:527
    [Google Scholar]
  74. Howarth RW, Marino R, Cole JJ. 1988. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical control. Limnol. Oceanogr. 33:688701
    [Google Scholar]
  75. Husband JD, Kiene RP. 2007. Occurrence of dimethylsulfoxide in leaves, stems, and roots of Spartina alterniflora. Wetlands 27:22429
    [Google Scholar]
  76. Jabir T, Vipindas PV, Jesmi Y, Valliyodan S, Parambath PM et al. 2020. Nutrient stoichiometry (N:P) controls nitrogen fixation and distribution of diazotrophs in a tropical eutrophic estuary. Mar. Pollut. Bull. 151:110799
    [Google Scholar]
  77. Johnson DS. 2015. The savory swimmer swims north: a northern range extension of the blue crab Callinectes sapidus?. J. Crustac. Biol. 35:10510
    [Google Scholar]
  78. Jørgensen BB, Sørensen J. 1985. Seasonal cycles of O2, NO3, and SO42− reduction in estuarine sediments: the significance of an NO3 reduction maximum in spring. Mar. Ecol. Prog. Ser. 24:6574
    [Google Scholar]
  79. Juniper SK, Brinkhurst RO. 1986. Water-column dark CO2 fixation and bacterial-mat growth in intermittently anoxic Saanich Inlet, British Columbia. Mar. Ecol. Prog. Ser. 33:4150
    [Google Scholar]
  80. Kearns PJ, Bulseco-McKim AN, Hoyt H, Angell JH, Bowen JL. 2019. Nutrient enrichment alters salt marsh fungal communities and promotes putative fungal denitrifiers. Microb. Ecol. 77:35869
    [Google Scholar]
  81. Kellogg CTE, McClelland JW, Dunton KH, Crump BC. 2019. Strong seasonality in Arctic estuarine microbial food webs. Front. Microbiol. 10:2628
    [Google Scholar]
  82. Kellogg M, Cornwell J, Owens M, Paynter K. 2013. Denitrification and nutrient assimilation on a restored oyster reef. Mar. Ecol. Prog. Ser. 480:119
    [Google Scholar]
  83. Kevorkian RT, Sipes K, Winstead R, Paul R, Lloyd KG. 2022. Cryptic methane-cycling by methanogens during multi-year incubation of estuarine sediment. Front. Microbiol. 13:847563
    [Google Scholar]
  84. Kiene RP, Service SK. 1991. Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate concentration. Mar. Ecol. Prog. Ser. 76:111
    [Google Scholar]
  85. Kim C, Kang HY, Lee Y-J, Yun S-G, Kang C-K 2020. Isotopic variation of macroinvertebrates and their sources of organic matter along an estuarine gradient. Estuaries Coasts 43:496511
    [Google Scholar]
  86. King WL, Jenkins C, Seymour JR, Labbate M. 2019. Oyster disease in a changing environment: decrypting the link between pathogen, microbiome and environment. Mar. Environ. Res. 143:12440
    [Google Scholar]
  87. Kirchman DL. 2016. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8:285309
    [Google Scholar]
  88. Kolton M, Rolando JL, Kostka JE. 2020. Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a salt marsh on Skidaway Island, Georgia, USA. FEMS Microbiol. Ecol. 96:fiaa026
    [Google Scholar]
  89. Könneke M, Bernhard AE, De La Torre JR, Walker CB, Waterbury JB, Stahl DA. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:54346
    [Google Scholar]
  90. Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S et al. 2014. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. PNAS 111:823944
    [Google Scholar]
  91. Koop-Jakobsen K, Giblin AE. 2009. Anammox in tidal marsh sediments: the role of salinity, nitrogen loading, and marsh vegetation. Estuaries Coasts 32:23845
    [Google Scholar]
  92. Kudo I, Hisatoku T, Yoshimura T, Maita Y. 2015. Primary productivity and nitrogen assimilation with identifying the contribution of urea in Funka Bay, Japan. Estuar. Coast. Shelf Sci. 158:1219
    [Google Scholar]
  93. Kunselman E, Minich JJ, Horwith M, Gilbert JA, Allen EE. 2022. Variation in survival and gut microbiome composition of hatchery-grown native oysters at various locations within the Puget Sound. Microbiol. Spectr. 10:e01982-21
    [Google Scholar]
  94. Lei Y, Stumm K, Wickham SA, Berninger U. 2014. Distributions and biomass of benthic ciliates, foraminifera and amoeboid protists in marine, brackish, and freshwater sediments. J. Eukaryot. Microbiol. 61:493508
    [Google Scholar]
  95. Li C, Reimers C, Chapman J. 2020a. Microbiome analyses and presence of cable bacteria in the burrow sediment of Upogebia pugettensis. Mar. Ecol. Prog. Ser. 648:7994
    [Google Scholar]
  96. Li D, Jing H, Zhang R, Yang W, Chen M et al. 2020b. Heterotrophic diazotrophs in a eutrophic temperate bay (Jiaozhou Bay) broadens the domain of N2 fixation in China's coastal waters. Estuar. Coast. Shelf Sci. 242:106778
    [Google Scholar]
  97. Liu B, Hou L, Zheng Y, Zhang Z, Tang X et al. 2022. Dark carbon fixation in intertidal sediments: controlling factors and driving microorganisms. Water Res. 216:118381
    [Google Scholar]
  98. Llirós M, Alonso-Sáez L, Gich F, Plasencia A, Auguet O et al. 2011. Active bacteria and archaea cells fixing bicarbonate in the dark along the water column of a stratified eutrophic lagoon: dark C fixation by planktonic bacteria and archaea. FEMS Microbiol. Ecol. 77:37084
    [Google Scholar]
  99. Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. 2019. Modularity and predicted functions of the global sponge-microbiome network. Nat. Commun. 10:992
    [Google Scholar]
  100. Macreadie PI, Anton A, Raven JA, Beaumont N, Connolly RM et al. 2019. The future of Blue Carbon science. Nat. Commun. 10:3998
    [Google Scholar]
  101. Malkin SY, Rao AM, Seitaj D, Vasquez-Cardenas D, Zetsche E-M et al. 2014. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. ISME J. 8:184354
    [Google Scholar]
  102. Malkin SY, Seitaj D, Burdorf LDW, Nieuwhof S, Hidalgo-Martinez S et al. 2017. Electrogenic sulfur oxidation by cable bacteria in bivalve reef sediments. Front. Mar. Sci. 4:28
    [Google Scholar]
  103. Mandal A, Dutta A, Das R, Mukherjee J. 2021. Role of intertidal microbial communities in carbon dioxide sequestration and pollutant removal: a review. Mar. Pollut. Bull. 170:112626
    [Google Scholar]
  104. Marcarelli AM, Fulweiler RW, Scott JT. 2022. Nitrogen fixation: a poorly understood process along the freshwater-marine continuum. Limnol. Oceanogr. Lett. 7:110. Corrigendum 2022. Limnol. Oceanogr. Lett. 7:450
    [Google Scholar]
  105. Margalef R. 1968. Perspectives in Ecological Theory Chicago: Univ. Chicago Press
  106. Martin BC, Alarcon MS, Gleeson D, Middleton JA, Fraser MW et al. 2020. Root microbiomes as indicators of seagrass health. FEMS Microbiol. Ecol. 96:fiz201
    [Google Scholar]
  107. Mason OU, Chanton P, Knobbe LN, Zaugg J, Mortazavi B. 2021. New insights into the influence of plant and microbial diversity on denitrification rates in a salt marsh. Wetlands 41:33
    [Google Scholar]
  108. Meador TB, Schoffelen N, Ferdelman TG, Rebello O, Khachikyan A, Könneke M. 2020. Carbon recycling efficiency and phosphate turnover by marine nitrifying archaea. Sci. Adv. 6:eaba1799
    [Google Scholar]
  109. Medeiros PM, Seidel M, Gifford SM, Ballantyne F, Dittmar T et al. 2017. Microbially-mediated transformations of estuarine dissolved organic matter. Front. Mar. Sci. 4:69
    [Google Scholar]
  110. Messer LF, Brown MV, Van Ruth PD, Doubell M, Seymour JR. 2021. Temperate southern Australian coastal waters are characterised by surprisingly high rates of nitrogen fixation and diversity of diazotrophs. PeerJ 9:e10809
    [Google Scholar]
  111. Middelburg JJ. 2011. Chemoautotrophy in the ocean. Geophys. Res. Lett. 38:L24604
    [Google Scholar]
  112. Middelburg JJ. 2018. Reviews and syntheses: to the bottom of carbon processing at the seafloor. Biogeosciences 15:41327
    [Google Scholar]
  113. Mills MM, Turk-Kubo KA, van Dijken GL, Henke BA, Harding K et al. 2020. Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J. 14:2395406
    [Google Scholar]
  114. Miranda K, Weigel BL, Fogarty EC, Veseli IA, Giblin AE et al. 2022. The diversity and functional capacity of microbes associated with coastal macrophytes. mSystems 7:e00592-22
    [Google Scholar]
  115. Mohr W, Lehnen N, Ahmerkamp S, Marchant HK, Graf JS et al. 2021. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature 600:1059
    [Google Scholar]
  116. Molari M, Manini E, Dell'Anno A 2013. Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems. Glob. Biogeochem. Cycles 27:21221
    [Google Scholar]
  117. Morelle J, Roose-Amsaleg C, Laverman AM. 2022. Microphytobenthos as a source of labile organic matter for denitrifying microbes. Estuar. Coast. Shelf Sci. 275:108006
    [Google Scholar]
  118. Morency C, Jacquemot L, Potvin M, Lovejoy C. 2022. A microbial perspective on the local influence of Arctic rivers and estuaries on Hudson Bay (Canada). Elem. Sci. Anthr. 10:00009
    [Google Scholar]
  119. Mortazavi B, Iverson R, Huang W, Lewis F, Caffrey J. 2000. Nitrogen budget of Apalachicola Bay, a bar-built estuary in the northeastern Gulf of Mexico. Mar. Ecol. Prog. Ser. 195:114
    [Google Scholar]
  120. Moseman-Valtierra SM, Szura K, Eagle M, Thornber CS, Wang F. 2022. CO2 uptake offsets other greenhouse gas emissions from salt marshes with chronic nitrogen loading. Wetlands 42:79
    [Google Scholar]
  121. Mosier AC, Francis CA. 2008. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ. Microbiol. 10:300216
    [Google Scholar]
  122. Moulton OM, Altabet MA, Beman JM, Deegan LA, Lloret J et al. 2016. Microbial associations with macrobiota in coastal ecosystems: patterns and implications for nitrogen cycling. Front. Ecol. Environ. 14:2008
    [Google Scholar]
  123. Murphy AE, Kolkmeyer R, Song B, Anderson IC, Bowen J. 2019. Bioreactivity and microbiome of biodeposits from filter-feeding bivalves. Microb. Ecol. 77:34357
    [Google Scholar]
  124. Murray RH, Erler DV, Eyre BD. 2015. Nitrous oxide fluxes in estuarine environments: response to global change. Glob. Change Biol. 21:321945
    [Google Scholar]
  125. Murrell MC, Lehrter JC. 2011. Sediment and lower water column oxygen consumption in the seasonally hypoxic region of the Louisiana continental shelf. Estuaries Coasts 34:91224
    [Google Scholar]
  126. Oczkowski AJ, Santos EA, Martin RM, Gray AB, Hanson AR et al. 2020. Unexpected nitrogen sources in a tropical urban estuary. J. Geophys. Res. Biogeosci. 125:e2019JG005502
    [Google Scholar]
  127. Oremland RS, Polcin S. 1982. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl. Environ. Microbiol. 44:127076
    [Google Scholar]
  128. Page HM. 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuar. Coast. Shelf Sci. 45:82334
    [Google Scholar]
  129. Palacios MM, Trevathan-Tackett SM, Malerba ME, Macreadie PI. 2021. Effects of a nutrient enrichment pulse on blue carbon ecosystems. Mar. Pollut. Bull. 165:112024
    [Google Scholar]
  130. Pedersen JN, Bombar D, Paerl RW, Riemann L. 2018. Diazotrophs and N2-fixation associated with particles in coastal estuarine waters. Front. Microbiol. 9:2759
    [Google Scholar]
  131. Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F et al. 2012. Filamentous bacteria transport electrons over centimetre distances. Nature 491:21821
    [Google Scholar]
  132. Philippot L, Hallin S, Schloter M. 2007. Ecology of denitrifying prokaryotes in agricultural soil. Adv. Agron. 96:249305
    [Google Scholar]
  133. Pinckney JL. 2018. A mini-review of the contribution of benthic microalgae to the ecology of the continental shelf in the South Atlantic Bight. Estuaries Coasts 41:207078
    [Google Scholar]
  134. Putland J, Iverson R. 2007. Microzooplankton: major herbivores in an estuarine planktonic food web. Mar. Ecol. Prog. Ser. 345:6373
    [Google Scholar]
  135. Riisgård HU, Funch P, Larsen PS. 2015. The mussel filter-pump – present understanding, with a re-examination of gill preparations. Acta Zool. 96:27382
    [Google Scholar]
  136. Risgaard-Petersen N. 2003. Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments: on the influence of benthic microalgae. Limnol. Oceanogr. 48:93105
    [Google Scholar]
  137. Roco CA, Bergaust LL, Bakken LR, Yavitt JB, Shapleigh JP. 2017. Modularity of nitrogen-oxide reducing soil bacteria: linking phenotype to genotype. Environ. Microbiol. 19:250719
    [Google Scholar]
  138. Rolando JL, Kolton M, Song T, Kostka JE. 2022. The core root microbiome of Spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes, USA. Microbiome 10:37
    [Google Scholar]
  139. Sawicka JE, Brüchert V. 2017. Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments. Biogeosciences 14:32539
    [Google Scholar]
  140. Scholz VV, Brodersen KE, Kühl M, Koren K. 2021a. Resolving chemical gradients around seagrass roots—a review of available methods. Front. Mar. Sci. 8:771382
    [Google Scholar]
  141. Scholz VV, Martin BC, Meyer R, Schramm A, Fraser MW et al. 2021b. Cable bacteria at oxygen-releasing roots of aquatic plants: a widespread and diverse plant-microbe association. New Phytol. 232:213851
    [Google Scholar]
  142. Schratzberger M, Ingels J. 2018. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502:1225
    [Google Scholar]
  143. Sedlacek CJ. 2020. It takes a village: discovering and isolating the nitrifiers. Front. Microbiol. 11:1900
    [Google Scholar]
  144. Segarra KEA, Comerford C, Slaughter J, Joye SB. 2013. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim. Cosmochim. Acta 115:1530
    [Google Scholar]
  145. Sela-Adler M, Ronen Z, Herut B, Antler G, Vigderovich H et al. 2017. Co-existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine sediments. Front. Microbiol. 8:766
    [Google Scholar]
  146. Signori CN, Felizardo JPDS, Enrich-Prast A. 2020. Bacterial production prevails over photo- and chemosynthesis in a eutrophic tropical lagoon. Estuar. Coast. Shelf Sci. 243:106889
    [Google Scholar]
  147. Signori CN, Valentin JL, Pollery RCG, Enrich-Prast A. 2018. Temporal variability of dark carbon fixation and bacterial production and their relation with environmental factors in a tropical estuarine system. Estuaries Coasts 41:1089101
    [Google Scholar]
  148. Smith SV, Hollibaugh JT. 1997. Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment. Ecol. Monogr. 67:50933
    [Google Scholar]
  149. Snedden GA, Cable JE, Kjerfve B 2023. Estuarine geomorphology, circulation, and mixing. Estuarine Ecology BC Crump, JM Testa, KH Dunton 1635. Hoboken, NJ: Wiley & Sons. , 3rd ed..
    [Google Scholar]
  150. Soetaert K, Herman PMJ, Middelburg JJ. 1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochim. Cosmochim. Acta 60:101940
    [Google Scholar]
  151. Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN et al. 2017. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2:17081
    [Google Scholar]
  152. Stal LJ, Bolhuis H, Cretoiu MS. 2019. Phototrophic marine benthic microbiomes: the ecophysiology of these biological entities. Environ. Microbiol. 21:152951
    [Google Scholar]
  153. Starr SF, Mortazavi B, Tatariw C, Kuehn KA, Cherry JA et al. 2022. Poor recovery of fungal denitrification limits nitrogen removal capacity in a constructed Gulf Coast marsh. Soil Biol. Biochem. 170:108692
    [Google Scholar]
  154. Stief P. 2013. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10:782946
    [Google Scholar]
  155. Sun D, Tang X, Li J, Liu M, Hou L et al. 2022. Chlorate as a comammox Nitrospira specific inhibitor reveals nitrification and N2O production activity in coastal wetland. Soil Biol. Biochem. 173:108782
    [Google Scholar]
  156. Sun X, Frey C, Garcia-Robledo E, Jayakumar A, Ward BB. 2021. Microbial niche differentiation explains nitrite oxidation in marine oxygen minimum zones. ISME J 15:131729
    [Google Scholar]
  157. Tang H, Liebner S, Reents S, Nolte S, Jensen K et al. 2021. Plant genotype controls wetland soil microbial functioning in response to sea-level rise. Biogeosciences 18:613346
    [Google Scholar]
  158. Tee HS, Waite D, Lear G, Handley KM. 2021. Microbial river-to-sea continuum: gradients in benthic and planktonic diversity, osmoregulation and nutrient cycling. Microbiome 9:190
    [Google Scholar]
  159. Thomas F, Giblin AE, Cardon ZG, Sievert SM. 2014. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front. Microbiol. 5:309
    [Google Scholar]
  160. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N et al. 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:154650
    [Google Scholar]
  161. Tuorto SJ, Taghon GL. 2014. Rates of benthic bacterivory of marine ciliates as a function of prey concentration. J. Exp. Mar. Biol. Ecol. 460:12934
    [Google Scholar]
  162. Unzueta-Martínez A, Scanes E, Parker LM, Ross PM, O'Connor W, Bowen JL 2022. Microbiomes of the Sydney Rock Oyster are acquired through both vertical and horizontal transmission. Anim. Microbiome 4:32
    [Google Scholar]
  163. Van Der Heide T, Govers LL, De Fouw J, Olff H, Van Der Geest M et al. 2012. A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336:143234
    [Google Scholar]
  164. van Oppen MJH, Blackall LL. 2019. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17:55767
    [Google Scholar]
  165. Vasquez-Cardenas D, Meysman FJR, Boschker HTS. 2020. A cross-system comparison of dark carbon fixation in coastal sediments. Glob. Biogeochem. Cycles 34:e2019GB006298
    [Google Scholar]
  166. Vasquez-Cardenas D, Quintana C, Meysman F, Kristensen E, Boschker H. 2016. Species-specific effects of two bioturbating polychaetes on sediment chemoautotrophic bacteria. Mar. Ecol. Prog. Ser. 549:5568
    [Google Scholar]
  167. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:6674
    [Google Scholar]
  168. Vieillard AM, Thrush SF. 2021. Ecogeochemistry and denitrification in non-eutrophic coastal sediments. Estuaries Coasts 44:186682
    [Google Scholar]
  169. Walters K, Moriarty DJW. 1993. The effects of complex trophic interactions on a marine microbenthic community. Ecology 74:147589
    [Google Scholar]
  170. Wang H, Chen F, Zhang C, Wang M, Kan J. 2021. Estuarine gradients dictate spatiotemporal variations of microbiome networks in the Chesapeake Bay. Environ. Microbiome 16:22
    [Google Scholar]
  171. Weigel BL, Miranda KK, Fogarty EC, Watson AR, Pfister CA. 2022. Functional insights into the kelp microbiome from metagenome-assembled genomes. mSystems 7:e01422-21
    [Google Scholar]
  172. Welsh A, Chee-Sanford JC, Connor LM, Löffler FE, Sanford RA. 2014. Refined NrfA phylogeny improves PCR-Based nrfA gene detection. Appl. Environ. Microbiol. 80:211019
    [Google Scholar]
  173. Welsh DT. 2000. Nitrogen fixation in seagrass meadows: regulation, plant-bacteria interactions and significance to primary productivity. Ecol. Lett. 3:5871
    [Google Scholar]
  174. Weston NB, Neubauer SC, Velinsky DJ, Vile MA. 2014. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120:16389
    [Google Scholar]
  175. Wieltschnig C, Fischer UR, Kirschner AKT, Velimirov B. 2003. Benthic bacterial production and protozoan predation in a silty freshwater environment. Microb. Ecol. 46:6272
    [Google Scholar]
  176. Wilkerson FP, Dugdale RC, Hogue VE, Marchi A. 2006. Phytoplankton blooms and nitrogen productivity in San Francisco Bay. Estuaries Coasts 29:40116
    [Google Scholar]
  177. Williams PJLB. 1981. Microbial contribution to overall marine plankton metabolism: direct measurements of respiration. Oceanol. Acta 4:35964
    [Google Scholar]
  178. Winogradsky S. 1890. Recherches sur les organisms de la nitrification. Ann. Inst. Pasteur 4:21331
    [Google Scholar]
  179. Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B et al. 2008. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ. Microbiol. 10:310619
    [Google Scholar]
  180. Wommack KE, Colwell RR. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64:69114
    [Google Scholar]
  181. Wu D-M, Dai Q-P, Liu X-Z, Fan Y-P, Wang J-X. 2019. Comparison of bacterial community structure and potential functions in hypoxic and non-hypoxic zones of the Changjiang Estuary. PLOS ONE 14:e0217431
    [Google Scholar]
  182. Xia Y, C, Hou N, Xin Y, Liu J et al. 2017. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 11:275466
    [Google Scholar]
  183. Yong YL, Lee CW, Bong CW, Chew LL, Chong VC. 2022. The role of microzooplankton grazing in the microbial food web of a tropical mangrove estuary. Estuar. Coast. Shelf Sci. 275:107969
    [Google Scholar]
  184. Zaikova E, Walsh DA, Stilwell CP, Mohn WW, Tortell PD, Hallam SJ. 2010. Microbial community dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Environ. Microbiol. 12:17291
    [Google Scholar]
  185. Zedler JB. 1980. Algal mat productivity: comparisons in a salt marsh. Estuaries 3:122
    [Google Scholar]
  186. Zehr JP, Capone DG. 2020. Changing perspectives in marine nitrogen fixation. Science 368:eaay9514
    [Google Scholar]
  187. Zhou J, Zhu Z-Y, Hu H-T, Zhang G-L, Wang Q-Q. 2021. Clarifying water column respiration and sedimentary oxygen respiration under oxygen depletion off the Changjiang Estuary and adjacent East China Sea. Front. Mar. Sci 7:623581
    [Google Scholar]
  188. Zhuang W, Yu X, Hu R, Luo Z, Liu X et al. 2020. Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale. npj Biofilms Microbiomes 6:52
    [Google Scholar]
  189. Zou D, Wan R, Han L, Xu MN, Liu Y et al. 2020. Genomic characteristics of a novel species of ammonia-oxidizing Archaea from the Jiulong River Estuary. Appl. Environ. Microbiol. 86:e00736-20
    [Google Scholar]
/content/journals/10.1146/annurev-marine-022123-101845
Loading
/content/journals/10.1146/annurev-marine-022123-101845
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error