1932

Abstract

The oceans play a fundamental role in the global carbon cycle, providing a sink for atmospheric carbon. Key to this role is the vertical transport of organic carbon from the surface to the deep ocean. This transport is a product of a diverse range of physical and biogeochemical processes that determine the formation and fate of this material, and in particular how much carbon is sequestered in the deep ocean. Models can be used to both diagnose biogeochemical processes and predict how the various processes will change in the future. Global biogeochemical models use simplified representations of food webs and processes but are converging on values for the export of organic carbon from the surface ocean. Other models concentrate on understanding specific processes and can be used to develop parameterizations for global models. Model development is continuing by adding representations and parameterizations of higher trophic levels and mesopelagic processes, and these are expected to improve model performance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-022123-102516
2024-01-17
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-022123-102516.html?itemId=/content/journals/10.1146/annurev-marine-022123-102516&mimeType=html&fmt=ahah

Literature Cited

  1. Alldredge AL, Gotschalk C. 1988. In situ settling of marine snow. Limnol. Oceanogr. 33:339–51
    [Google Scholar]
  2. Alonso-González IJ, Aristegui J, Lee C, Sanchez-Vidal A, Calafat A et al. 2010. Role of slowly settling particles in the ocean carbon cycle. Geophys. Res. Lett. 31:L13608
    [Google Scholar]
  3. Amaral VJ, Lam PJ, Marchal O, Roca-Martí M, Fox J, Nelson NB. 2022. Particle cycling rates at Station P as estimated from the inversion of POC concentration data. Elem. Sci. Anthr. 10:00018
    [Google Scholar]
  4. Anderson TR. 2005. Plankton functional type modelling: running before we can walk?. J. Plankton Res. 27:1073–81
    [Google Scholar]
  5. Anderson TR, Martin AP, Lampitt RS, Trueman CN, Henson SA, Mayor DJ. 2019. Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model. ICES J. Mar. Sci. 76:690–701
    [Google Scholar]
  6. Anderson TR, Tang KW. 2010. Carbon cycling and POC turnover in the mesopelagic zone of the ocean: insights from a simple model. Deep-Sea Res. II 57:1581–92
    [Google Scholar]
  7. Archer DE, Eshel G, Winguth A, Broecker W, Pierrehumbert R et al. 2000. Atmospheric pCO2 sensitivity to the biological pump in the ocean. Glob. Biogeochem. Cycles 14:1219–30
    [Google Scholar]
  8. Archibald KM, Siegel DA, Doney SC. 2019. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Glob. Biogeochem. Cycles 33:181–99
    [Google Scholar]
  9. Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG. 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II 49:219–36
    [Google Scholar]
  10. Arteaga LA, Pahlow M, Bushinsky SM, Sarmiento JL. 2019. Nutrient controls on export production in the Southern Ocean. Glob. Biogeochem. Cycles 33:942–56
    [Google Scholar]
  11. Aumont O, Ethé E, Tagliabue A, Bopp L, Gehlen M. 2015. PISCES-v2: an ocean biogechemical model for carbon and ecosystem studies. Geosci. Model. Dev. 8:2465–513
    [Google Scholar]
  12. Banse K. 1990. New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea. Deep-Sea Res. A 37:1177–95
    [Google Scholar]
  13. Bianchi D, Stock C, Galbraith ED, Sarmiento JL. 2013. Diel vertical migration: ecological controls and impacts on the biological pump in a one-dimensional ocean model. Glob. Biogeochem. Cycles 27:478–91
    [Google Scholar]
  14. Bisson K, Siegel DA, DeVries T. 2020. Diagnosing mechanisms of ocean carbon export in a satellite-based food web model. Front. Mar. Sci. 7:505
    [Google Scholar]
  15. Boyd PW, Claustre H, Levy M, Siegel DA, Weber T. 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568:327–35
    [Google Scholar]
  16. Boyd PW, Newton PP. 1995. Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep-Sea Res. I 42:619–39
    [Google Scholar]
  17. Boyd PW, Newton PP. 1999. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces. Deep-Sea Res. I 46:63–91
    [Google Scholar]
  18. Briggs N, Dall'Olmo G, Claustre H. 2020. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367:791–93
    [Google Scholar]
  19. Buesseler KO, Antia AA, Chen M, Fowler SW, Gardner WD et al. 2007. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J. Mar. Res. 65:345–416
    [Google Scholar]
  20. Buesseler KO, Bacon MP, Cochran JK, Livingston HD. 1992. Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from 234Th:238U disequilibria. Deep-Sea Res. I 39:1115–37
    [Google Scholar]
  21. Buesseler KO, Benitez-Nelson CR, Moran SB, Burd A, Charette M et al. 2006. An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Mar. Chem. 100:213–33
    [Google Scholar]
  22. Buesseler KO, Boyd PW, Black EE, Siegel DA. 2020. Metrics that matter for assessing the ocean biological carbon pumps. PNAS 117:9679–87
    [Google Scholar]
  23. Burd AB, Hansell DA, Steinberg DK, Anderson TR, Arístegui J et al. 2010. Assessing the apparent imbalance between geochemical and biogeochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets?. Deep-Sea Res. II 57:1557–71
    [Google Scholar]
  24. Burd AB, Jackson GA. 1997. Predicting particle coagulation and sedimentation rates for a pulsed input. J. Geophys. Res. 102:10545–61
    [Google Scholar]
  25. Burd AB, Jackson GA. 2002. Modeling steady-state particle size spectra. Environ. Sci. Technol. 36:323–27
    [Google Scholar]
  26. Burd AB, Jackson GA. 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1:65–90
    [Google Scholar]
  27. Burd AB, Moran SB, Jackson GA. 2000. A coupled adsorption-aggregation model of the POC/234Th ratio of marine particles. Deep-Sea Res. I 47:103–20
    [Google Scholar]
  28. Cael BB, Bisson K. 2018. Particle flux parameterizations: quantitative and mechanistic similarities and differences. Front. Mar. Sci. 5:395
    [Google Scholar]
  29. Cael BB, Bisson K, Conte M, Duret MT, Follett CL et al. 2021a. Open ocean particle flux variability from surface to seafloor. Geophys. Res. Lett. 48:e2021GL092895
    [Google Scholar]
  30. Cael BB, Cavan EL, Britten GL. 2021b. Reconciling the size-dependence of marine particle sinking speed. Geophys. Res. Lett. 48:e2020GL091771
    [Google Scholar]
  31. Caldeira K, Hoffert M, Jain A. 2000. Simple ocean carbon cycle models. The Carbon Cycle TML Wigley, DS Schimel 199–211. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  32. Cavan EL, Laurenceau-Cornec EC, Bressac M, Boyd PW. 2019. Exploring the ecology of the mesopelagic biological pump. Prog. Oceanogr. 176:102125
    [Google Scholar]
  33. Checkley DM Jr., Davis RE, Herman AW, Jackson GA, Beanlands B, Regier LA. 2008. Assessing plankton and other particles in situ with the SOLOPC. Limnol. Oceanogr. 53:2123–36
    [Google Scholar]
  34. Claustre H, Legendre L, Boyd PW, Levy M. 2021. The ocean's biological carbon pumps: framework for a research observational community approach. Front. Mar. Sci. 8:780052
    [Google Scholar]
  35. Cohen NR. 2022. Mixotrophic plankton foraging behaviour linked to carbon export. Nat. Commun. 13:1302
    [Google Scholar]
  36. Collins JR, Edwards BR, Thamatrakoln K, Ossolinski JE, DiTullio GR et al. 2015. The multiple fates of sinking particles in the North Atlantic Ocean. Glob. Biogeochem. Cycles 29:1471–94
    [Google Scholar]
  37. Conte MH, Weber JC, Ralph N. 1998. Episodic particle flux in the deep Sargasso Sea: an organic geochemical assessment. Deep-Sea Res. I 45:1819–941
    [Google Scholar]
  38. Countryman CE, Steinberg DK, Burd AB. 2022. Modeling the effects of copepod diel vertical migration and community structure on ocean carbon flux using an agent-based model. Ecol. Model. 470:110003
    [Google Scholar]
  39. Cram JA, Weber T, Leung SW, McDonnell AMP, Liang JH, Deutsch C. 2018. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32:858–76
    [Google Scholar]
  40. Dall'Olmo G, Dingle J, Polimene L, Brewin RJW, Claustre H. 2016. Substantial energy input into the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9:820–23
    [Google Scholar]
  41. Dall'Olmo G, Mork KA. 2014. Carbon export by small particles in the Norwegian Sea. Geophys. Res. Lett. 41:2921–27
    [Google Scholar]
  42. Darnis G, Fortier L. 2012. Zooplankton respiration and the export of carbon at depth in the Amundsen Gulf (Arctic Ocean). J. Geophys. Res. 117:C04013
    [Google Scholar]
  43. Denny M. 2017. The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen's inequality. J. Exp. Biol. 220:139–46
    [Google Scholar]
  44. Devol AH, Hartnett HE. 2001. Role of the oxygen-deficient zone in transfer of organic carbon to the deep ocean. Limnol. Oceanogr. 46:1684–90
    [Google Scholar]
  45. DeVries T. 2022. The ocean carbon cycle. Annu. Rev. Environ. Resour. 47:317–41
    [Google Scholar]
  46. DeVries T, Liang JH, Deutsch C. 2014. A mechanistic particle flux model applied to the oceanic phosphorus cycle. Biogeosciences 11:5381–98
    [Google Scholar]
  47. DeVries T, Weber T. 2017. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochem. Cycles 31:535–55
    [Google Scholar]
  48. Diercks AR, Asper VL. 1997. In situ settling speeds of marine snow aggregates below the mixed layer: Black Sea and Gulf of Mexico. Deep-Sea Res. I 44:385–98
    [Google Scholar]
  49. Dinauer A, Laufkötter C, Doney SC, Joos F. 2022. What controls the large-scale efficiency of carbon transfer through the ocean's mesopelagic zone? Insights from a new, mechanistic model (MSPACMAM). Glob. Biogeochem. Cycles 36:e2021GB007131
    [Google Scholar]
  50. Dunne JP, Armstrong RA, Gnanadesikan A, Sarmiento JL. 2005. Empirical and mechanistic models for the particle export ratio. Glob. Biogeochem. Cycles 19:GB4026
    [Google Scholar]
  51. Dunne JP, Bociu I, Bronselaer B, Guo H, John JG et al. 2020. Simple global ocean Biogeochemistry with Light, Iron, Nutrients and Gas version 2 (BLINGv2): model description and simulation characteristics in GFDL's CM4.0. J. Adv. Model. Earth Syst. 12:e2019MS002008
    [Google Scholar]
  52. Dunne JP, Sarmiento JL, Gnanadesikan A. 2007. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21:GB4006
    [Google Scholar]
  53. Durkin CA, Buesseler KO, Cetinić I, Estapa ML, Kelly RP, Omand M. 2021. A visual tour of carbon export by sinking particles. Glob. Biogeochem. Cycles 35:e2021GB006985
    [Google Scholar]
  54. Durkin CA, Estapa ML, Buesseler KO. 2015. Observations of carbon export by small sinking particles in the upper mesopelagic. Mar. Chem. 175:72–81
    [Google Scholar]
  55. Durkin CA, Van Mooy BAS, Dyhrman ST, Buesseler KO. 2016. Sinking phytoplankton associated with carbon flux in the Atlantic Ocean. Limnol. Oceanogr. 61:1172–87
    [Google Scholar]
  56. Estapa M, Valdes J, Tradd K, Sugar J, Omand M, Buesseler K. 2020. The neutrally buoyant sediment trap: two decades of progress. J. Atmos. Ocean. Technol. 37:957–73
    [Google Scholar]
  57. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9:1937–58
    [Google Scholar]
  58. Fasham MJR, Ducklow HW, McKelvie SM. 1990. A nitrogen-based model of plankton dynamics in the ocean mixed layer. J. Mar. Res. 48:591–639
    [Google Scholar]
  59. Fennel K, Mattern JP, Doney SC, Bopp L, Moore AM et al. 2022. Ocean biogeochemical modelling. Nat. Rev. Methods Prim. 2:76
    [Google Scholar]
  60. Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Gregor L et al. 2022. Global carbon budget 2022. Earth Syst. Sci. Data 14:4811–900
    [Google Scholar]
  61. Friedrichs MAM, Dusenberry JA, Anderson LA, Armstrong RA, Chai F et al. 2007. Assessment of skill and portability in regional marine biogeochemical models: role of multiple planktonic groups. J. Geophys. Res. 112:C08001
    [Google Scholar]
  62. Gehlen M, Bopp L, Emprin N, Aumont O, Heinze C, Ragueneau O. 2006. Reconciling surface ocean productivity, export fluxes and sediment composition in global biogeochemical ocean models. Biogeoscience 3:521–37
    [Google Scholar]
  63. Giering SLC, Cavan EL, Basedow SL, Briggs N, Burd AB et al. 2020. Sinking organic particles in the ocean—flux estimates from in situ optical devices. Front. Mar. Sci. 6:834
    [Google Scholar]
  64. Giering SLC, Sanders R, Martin AP, Lindemann C, Möller KO et al. 2016. High export via small particles before the onset of the North Atlantic spring bloom. J. Geophys. Res. Oceans 121:6929–45
    [Google Scholar]
  65. Goldthwait S, Yen J, Brown J, Alldredge A 2004. Quantification of marine snow fragmentation by swimming euphausiids. Mar. Ecol. Prog. Ser. 49:940–52
    [Google Scholar]
  66. Gruber N, Doney SC 2019. Modeling of ocean biogeochemistry and ecology. Encyclopedia of Ocean Sciences JK Cochran, HJ Bokuniewicz, PL Yager 547–60. San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  67. Guidi L, Jackson GA, Stemmann L, Miquel JC, Picheral M, Gorsky G. 2008. Relationship between particle size distribution and flux in the mesopelagic zone. Deep-Sea Res. I 55:1364–74
    [Google Scholar]
  68. Guidi L, Legendre L, Reygondeau G, Uitz J, Stemmann L, Henson SA. 2015. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochem. Cycles 29:1044–59
    [Google Scholar]
  69. Guidi L, Stemmann L, Jackson GA, Ibanez F, Claustre H et al. 2009. Effects of phytoplanton community on production, size, and export of large aggregates: a world-ocean analysis. Limnol. Oceanogr. 54:1951–63
    [Google Scholar]
  70. Hajima T, Watanabe M, Yamamoto A, Tatebe H, Noguchi MA et al. 2020. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13:2197–244
    [Google Scholar]
  71. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R. 2009. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22:4202–11
    [Google Scholar]
  72. Henson SA, Laufkötter C, Leung S, Giering SLC, Palevsky HI, Cavan EL. 2022. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15:248–54
    [Google Scholar]
  73. Henson SA, Sanders R, Madsen E. 2012. Global patterns in efficiency of particulate carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26:GB1028
    [Google Scholar]
  74. Henson SA, Sanders R, Madsen E, Morris PJ, Le Moigne F, Quartly GD 2011. A reduced estimate of the strength of the ocean's biological carbon pump. Geophys. Res. Lett. 38:L04606
    [Google Scholar]
  75. Hill PS. 1996. Sectional and discrete representations of floc breakage in agitated suspensions. Deep-Sea Res. I 43:679–702
    [Google Scholar]
  76. Hood RR, Laws EA, Armstrong RA, Bates NR, Brown CW et al. 2006. Pelagic functional group modeling: progress, challenges and prospects. Deep-Sea Res. II 53:459–512
    [Google Scholar]
  77. Hülse D, Arndt S, Wilson JD, Munhoven G, Ridgwell A. 2017. Understanding the causes and consequences of past marine carbon cycling variability through models. Earth-Sci. Rev. 171:349–82
    [Google Scholar]
  78. Ito G, Romanou A, Kiang NY, Faluvegi G, Alienov I et al. 2020. Global carbon cycle and climate feedbacks in the NASA GISS ModelE2.1. J. Adv. Model. Earth Syst. 12:e2019MS002030
    [Google Scholar]
  79. Ito T, Follows MJ. 2005. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63:813–39
    [Google Scholar]
  80. Iversen MH. 2023. Carbon export in the ocean: a biologist's perspective. Annu. Rev. Mar. Sci. 15:357–81
    [Google Scholar]
  81. Iversen MH, Pakhomov EA, Hunt BPV, van der Jagt H, Wolf-Gladrow D, Klaas C. 2017. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean. Deep-Sea Res. II 138:116–25
    [Google Scholar]
  82. Iversen MH, Plough H. 2013. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates—potential implications for deep ocean export processes. Biogeosciences 10:4073–85
    [Google Scholar]
  83. Jackson GA. 1990. A model of the formation of marine algal flocs by physical coagulation processes. Deep-Sea Res. A 37:1197–211
    [Google Scholar]
  84. Jackson GA. 1993. Flux feeding as a mechanism for zooplankton grazing and its implications for vertical particulate flux. Limnol. Oceanogr. 38:1328–31
    [Google Scholar]
  85. Jackson GA. 1995. TEP and coagulation during a mesocosm experiment. Deep-Sea Res. II 42:215–22
    [Google Scholar]
  86. Jackson GA. 2001. Effect of coagulation on a model planktonic food web. Deep-Sea Res. I 48:95–123
    [Google Scholar]
  87. Jackson GA, Burd AB. 2002. A model for the distribution of particle flux in the mid-water column controlled by subsurface biotic interactions. Deep-Sea Res. II 49:193–217
    [Google Scholar]
  88. Jackson GA, Lochmann SE. 1992. Effect of coagulation on nutrient and light limitation of an algal bloom. Limnol. Oceanogr. 37:77–89
    [Google Scholar]
  89. Jokulsdottir T, Archer D. 2016. A stochastic Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity. Geosci. Model Dev. 9:1455–76
    [Google Scholar]
  90. Jónasdóttir SH, Richardson K, Heath MR. 2015. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. PNAS 112:12122–26
    [Google Scholar]
  91. Khatiwala S. 2007. A computational framework for simulation of biogeochemical tracers in the ocean. Glob. Biogeochem. Cycles 21:GB3001
    [Google Scholar]
  92. Klaas C, Archer DE. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Glob. Biogeochem. Cycles 16:1116
    [Google Scholar]
  93. Kriest I, Evans GT. 1999. Representing phytoplankton aggregates in biogeochemical models. Deep-Sea Res. I 46:1841–59
    [Google Scholar]
  94. Kriest I, Evans GT. 2000. A vertically resolved model for phytoplankton aggregation. J. Earth Syst. Sci. 109:453–69
    [Google Scholar]
  95. Kriest I, Khatiwala S, Oschlies A. 2010. Towards an assessment of simple global marine biogeochemical models of different complexity. Prog. Oceanogr. 86:337–60
    [Google Scholar]
  96. Kriest I, Oschlies A. 2008. On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles. Biogeosciences 5:55–72
    [Google Scholar]
  97. Kwon EY, Primeau F, Sarmiento JL. 2009. The impact of remineralization depth on the air-sea carbon balance. Nat. Geosci. 2:630–35
    [Google Scholar]
  98. Lampitt RS, Hillier WR, Challenor PG. 1993. Seasonal and diel variation in the open ocean concentration of marine snow aggregates. Nature 362:737–39
    [Google Scholar]
  99. Laufkötter C, John JG, Stock CA, Dunne JP. 2017. Temperature and oxygen dependence of the remineralization of organic matter. Glob. Biogeochem. Cycles 31:1038–50
    [Google Scholar]
  100. Laufkötter C, Vogt M, Gruber N, Aita-Noguchi M, Aumont O et al. 2015. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12:6955–84
    [Google Scholar]
  101. Laurenceau-Cornec EC, Le Moigne FAC, Gallinari M, Moriceau B, Toullec J et al. 2020. New guidelines for the application of Stokes' models to the sinking velocity of marine aggregates. Limnol. Oceanogr. 65:1264–85
    [Google Scholar]
  102. Laurenceau-Cornec EC, Trull TW, Davies DM, Bray SG, Doran J et al. 2015a. The relative importance of phytoplantkon aggregates and zooplankton fecal pellets to carbon export: insights from free-drifting sediment trap deployments in naturally iron-fertilized waters near the Kerguelen Plateau. Biogeosciences 12:1007–27
    [Google Scholar]
  103. Laurenceau-Cornec EC, Trull TW, Davies DM, De La Rocha CL, Blain S. 2015b. Phytoplankton morphology controls on marine snow sinking velocity. Mar. Ecol. Prog. Ser. 520:35–56
    [Google Scholar]
  104. Laws EA, Falkowski PG, Smith WO, Ducklow H, McCarthy JJ. 2000. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14:1231–46
    [Google Scholar]
  105. Lerner P, Romanou A, Kelley M, Romanski J, Ruedy R, Russell G. 2021. Drivers of air-sea CO2 flux sesasonality and its long term changes in the NASA-GISS model CMIP-6 submission. J. Adv. Model. Earth Syst. 13:e2019MS002028
    [Google Scholar]
  106. Levy M, Bopp L, Karleskind P, Resplandy L, Ethe C, Pinsard F. 2013. Physical pathways for carbon transfers between the surface mixed layer and the ocean interior. Glob. Biogeochem. Cycles 27:1001–12
    [Google Scholar]
  107. Lima ID, Lam PJ, Doney SC. 2014. Dynamics of particulate organic carbon flux in a global ocean model. Biogeosciences 11:1177–98
    [Google Scholar]
  108. Liu G, Bracco A, Passow U. 2018. The influence of mesoscale and submesoscale circulation on sinking particles in the northern Gulf of Mexico. Elementa 6:36
    [Google Scholar]
  109. Luo JY, Condon RH, Stock CA, Duarte CM, Lucas CH et al. 2020. Gelatinous zooplankton-mediated carbon flows in the global ocean: a data-driven modeling study. Glob. Biogeochem. Cycles 34:e2020GB006704
    [Google Scholar]
  110. Lutz M, Dunbar R, Caldeira K. 2002. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochem. Cycles 16:1037
    [Google Scholar]
  111. Madin L. 1982. Production, composition, and sedimentation of salp fecal pellets in oceanic waters. Mar. Biol. 67:39–45
    [Google Scholar]
  112. Maier-Reimer E. 1993. Geochemical cycles in an ocean general circulation model: preindustrial tracer distributions. Glob. Biogeochem. Cycles 7:645–77
    [Google Scholar]
  113. Maier-Reimer E, Hasselmann K. 1987. Transport and storage of CO2 in the ocean—an inorganic ocean circulation carbon model. Clim. Dyn. 2:63–90
    [Google Scholar]
  114. Mari X, Burd A. 1998. Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory. Mar. Ecol. Prog. Ser. 163:63–76
    [Google Scholar]
  115. Mari X, Passow U, Migon C, Burd AB, Legendre L. 2017. Transparent exopolymer particles: effects on carbon cycling in the ocean. Prog. Oceanogr. 151:13–37
    [Google Scholar]
  116. Marsay CM, Sanders RJ, Henson SA, Pabortsaa K, Achterberg EP, Lampitt RS. 2015. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS 112:1089–94
    [Google Scholar]
  117. Martin JH, Knauer GA, Karl DM, Broenkow WM. 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. A 34:267–85
    [Google Scholar]
  118. Mayor DJ, Gentleman WC, Anderson TR. 2020. Ocean carbon sequestration: particle fragmentation by copepods as a significant unrecognized factor?. BioEssays 42:2000149
    [Google Scholar]
  119. McDonnell AMP, Buesseler KO. 2010. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55:2085–96
    [Google Scholar]
  120. McDonnell AMP, Lam PJ, Lamborg CH, Buesseler KO, Sanders R et al. 2015. The oceanographic toolbox for the collection of sinking and suspended marine particles. Prog. Oceanogr. 133:17–31
    [Google Scholar]
  121. Michaels AF, Silver MW. 1988. Primary production, sinking fluxes and the microbial food web. Deep-Sea Res. A 35:473–90
    [Google Scholar]
  122. Miklasz KA, Denny MW. 2010. Diatom sinking speeds: improved predictions and insight from a modified Stokes' law. Limnol. Oceanogr. 55:2513–25
    [Google Scholar]
  123. Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY. 2002. An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res. II 49:403–62
    [Google Scholar]
  124. Moore JK, Lindsay K, Doney SC, Long MC, Misumi K. 2013. Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1(BGC)]: comparison of the 1990s with the 2090s under RCP4.5 and RCP8.5 scenarios. J. Clim. 26:9291–312
    [Google Scholar]
  125. Murnane RJ, Sarmiento JL, Le Quéré C 1999. Spatial distributions of air-sea CO2 fluxes and interhemispheric transport of carbon by the oceans. Glob. Biogeochem. Cycles 13:287–305
    [Google Scholar]
  126. Nowicki M, DeVries T, Siegel DA. 2022. Quantifying the carbon export and sequestration pathways of the ocean's biological carbon pump. Glob. Biogeochem. Cycles 36:e2021GB007083
    [Google Scholar]
  127. Olson RJ, Sosik HM. 2007. A submersible, imaging-in-flow instrument to analyze nano- and microplankton: Imaging FlowCytobot. Limnol. Oceanogr. Methods 5:195–203
    [Google Scholar]
  128. Omand MM, D'Asaro EA, Lee CM, Perry MJ, Briggs N et al. 2015. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348:222–25
    [Google Scholar]
  129. Omand MM, Govindarajan R, He J, Mahadevan A. 2020. Sinking flux of particulate organic matter in the oceans: sensitivity to particle characteristics. Sci. Rep. 10:5582
    [Google Scholar]
  130. Passow U. 2002. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55:287–333
    [Google Scholar]
  131. Paulsen H, Ilyina T, Six KD, Stemmler I. 2017. Incorporating a prognostic representation of marine nitrogen fixers into the global ocean biogeochemical model HAMOCC. J. Adv. Model. Earth Syst. 9:438–64
    [Google Scholar]
  132. Peterson ML, Wakeham SG, Lee C, Askea MA, Miquel JC. 2005. Novel techniques for collection of sinking particles in the ocean and determining their settling rates. Limnol. Oceanogr. Methods 3:520–32
    [Google Scholar]
  133. Picheral M, Catalano C, Brousseau D, Claustre H, Coppola L et al. 2022. The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms. Limnol. Oceanogr. Methods 20:115–29
    [Google Scholar]
  134. Putzeys S, Yebra L, Almeida C, Becognee P, Hernández-León S. 2011. Influence of the late winter bloom on migrant zooplankton metabolism and its implications on export fluxes. J. Mar. Syst. 88:553–62
    [Google Scholar]
  135. Resplandy L, Levy M, McGillicuddy DJ Jr. 2019. Effects of eddy-driven subduction on ocean biological carbon pump. Glob. Biogeochem. Cycles 33:006125
    [Google Scholar]
  136. Richardson TL. 2019. Mechanisms and pathways of small-phytoplankton export from the surface ocean. Annu. Rev. Mar. Sci. 11:57–74
    [Google Scholar]
  137. Riley JS, Sanders R, Marsay C, Le Moigne FAC, Achterberg EP, Poulton AJ 2012. The relative contribution of fast and slow sinking particles to ocean carbon export. Glob. Biogeochem. Cycles 26:GB1026
    [Google Scholar]
  138. Robinson C, Steinberg DK, Anderson TR, Arístegui J, Carlson CA et al. 2010. Mesopelagic zone ecology and biogeochemistry—a synthesis. Deep-Sea Res. II 57:1504–18
    [Google Scholar]
  139. Ruiz J, Prieto L, Ortegón F. 2002. Diatom aggregate formation and fluxes: a modeling analysis under different size-resolution schemes and with empirically determined aggregation kernels. Deep-Sea Res. I 49:495–515
    [Google Scholar]
  140. Saba GK, Burd AB, Dunne JP, Hernández-León S, Martin AH et al. 2021. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66:1639–64
    [Google Scholar]
  141. Saba GK, Steinberg DK. 2012. Abundance, composition, and sinking rates of fish fecal pellets in the Santa Barbara Channel. Sci. Rep. 2:716
    [Google Scholar]
  142. Sanders RJ, Henson SA, Martin AP, Anderson TR, Bernardello R et al. 2016. Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS): fieldwork, synthesis, and modeling efforts. Front. Mar. Sci. 3:136
    [Google Scholar]
  143. Sarmiento JL, Monfray P, Maier-Reimer E, Aumont O, Murnane RJ, Orr JC. 2000. Sea-air CO2 fluxes and carbon transport: a comparison of three ocean general circulation models. Glob. Biogeochem. Cycles 14:1267–81
    [Google Scholar]
  144. Sarmiento JL, Toggweiler JR. 1984. A new model for the role of the oceans in determining atmospheric PCO2. Nature 308:621–24
    [Google Scholar]
  145. Sarmiento JL, Toggweiler JR, Najjar R. 1988. Ocean carbon cycle dynamics and atmospheric pCO2. Philos. Trans. R. Soc. A 325:3–21
    [Google Scholar]
  146. Schlitzer R. 2002. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep-Sea Res. II 49:1623–44
    [Google Scholar]
  147. Séférian R, Berthet S, Yool A, Palmiéri J, Bopp L et al. 2020. Tracking improvement in simulated biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6:95–119
    [Google Scholar]
  148. Serra-Pompei C, Ward BA, Pinti J, Visser AW, Kiørboe T, Anderson KH. 2022. Linking plankton size spectra and community composition to carbon export and its efficiency. Glob. Biogeochem. Cycles 36:e2021GB007275
    [Google Scholar]
  149. Siegel DA, Buesseler KO, Behrenfeld MJ, Benitez-Nelson CR, Boss E et al. 2016. Prediction of the export and fate of global ocean net primary production: the EXPORTS Science Plan. Front. Mar. Sci. 3:22
    [Google Scholar]
  150. Siegel DA, Buesseler KO, Doney SC, Sailley SF, Behrenfeld MJ, Boyd PW. 2014. Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob. Biogeochem. Cycles 28:181–96
    [Google Scholar]
  151. Siegel DA, Deuser WG. 1997. Trajectories of sinking particles in the Sargasso Sea: modeling of statistical funnels about deep-ocean sediment traps. Deep-Sea Res. I 44:1519–41
    [Google Scholar]
  152. Siegel DA, DeVries T, Cetinić I, Bisson KM. 2023. Quantifying the ocean's biological pump and its carbon cycle impacts on global scales. Annu. Rev. Mar. Sci. 15:329–56
    [Google Scholar]
  153. Siegel DA, Fields E, Buesseler KO. 2008. A bottom-up view of the biological pump: modeling source funnels about ocean sediment traps. Deep-Sea Res. I 55:108–27
    [Google Scholar]
  154. Smayda T. 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology: An Annual Review, Vol. 8 H Barnes 353–414. London: Allen & Unwin
    [Google Scholar]
  155. Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF. 2000. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res. I 47:137–58
    [Google Scholar]
  156. Steinberg DK, Landry MR. 2017. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9:413–44
    [Google Scholar]
  157. Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM. 2008. Bacterial versus zooplankton control of sinking particle flux in the ocean's twilight zone. Limnol. Oceanogr. 53:1327–28
    [Google Scholar]
  158. Stemmann L, Boss E. 2012. Plankton and particle size and packaging: from determining optical properties to driving the biological pump. Annu. Rev. Mar. Sci. 4:263–90
    [Google Scholar]
  159. Stemmann L, Jackson GA, Gorsky G. 2004a. A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes—part II: application to a three year survey in the NW Mediterranean Sea. Deep-Sea Res. I 51:885–908
    [Google Scholar]
  160. Stemmann L, Jackson GA, Ianson D. 2004b. A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes—part I: model formulation. Deep-Sea Res. I 51:865–84
    [Google Scholar]
  161. Stock CA, Dunne JP, Fan S, Ginoux P, John J et al. 2020. Ocean biogeochemistry in GFDL's Earth System Model 4.1 and its response to increasing atmospheric CO2. J. Adv. Model. Earth Syst. 12:e2019MS002043
    [Google Scholar]
  162. Stukel MR, Aluwihare LI, Barbeau BA, Checkalyuk AM, Goericke R et al. 2017. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. PNAS 114:1252–57
    [Google Scholar]
  163. Takahashi K, Kuwata A, Sugisaki H, Uchikawa K, Saito H. 2009. Downward carbon transport by diel vertical migration of the copepods Matridia pacifica and Metridia okhotensis in the Oyashio region of the western subarctic Pacific Ocean. Deep-Sea Res. I 56:1777–91
    [Google Scholar]
  164. Taucher J, Bach LT, Riebesell U, Oschlies A. 2014. The viscosity effect on marine particle flux: a climate relevant feedback mechanism. Glob. Biogeochem. Cycles 28:415–22
    [Google Scholar]
  165. Timmermans KR, van der Wagt B, de Baar HJW. 2004. Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability in four, large open-ocean diatoms from the Southern Ocean. Limnol. Oceanogr. 49:2141–51
    [Google Scholar]
  166. Toggweiler JR, Dixon K, Bryan K. 1989. Simulations of radiocarbon in a coarse resolution world ocean model: 1. Steady state prebomb distributions. J. Geophys. Res. 94:8217–42
    [Google Scholar]
  167. Toggweiler JR, Murnane R, Carson S, Gnanadesikan A, Sarmiento JL. 2003. Represention of the carbon cycle in box models and GCMs: 2. Organic pump. Glob. Biogeochem. Cycles 17:1027
    [Google Scholar]
  168. Turner JT. 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol. 27:57–102
    [Google Scholar]
  169. Turner JT. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog. Oceanogr. 130:205–48
    [Google Scholar]
  170. Volk T, Hoffert MI 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. The Carbon Cycle and Atmospheric CO2: Natural Variations Archaen to Present ET Sundquist, WS Broecker 99–110. Washington, DC: Am. Geophys. Union
    [Google Scholar]
  171. Wallace M, Cottier F, Brierley A, Tarling G. 2013. Modelling the influence of copepod behaviour on fecal pellet export at high latitudes. Polar Biol. 36:579–92
    [Google Scholar]
  172. Wanninkhof R, Asher WA, Ho DT, Sweeney C, McGillis WR. 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1:213–44
    [Google Scholar]
  173. Ward BA, Follows MJ. 2016. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. PNAS 113:2958–63
    [Google Scholar]
  174. Wilson CH, Gerber S. 2021. Theoretical insights from upscaling Michaelis-Menton microbial dynamics in biogeochemical models: a dimensionless approach. Biogeosciences 18:5669–79
    [Google Scholar]
  175. Wilson JD, Andrews O, Katavouta A, de Melo Viríssio F, Death RM et al. 2022. The biological carbon pump in CMIP6 models: 21st century trends and uncertainties. PNAS 119:e2204369119
    [Google Scholar]
  176. Wilson SE, Steinberg DK, Buesseler KO. 2008. Changes in fecal pellet characeristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific. Deep-Sea Res. II 55:1636–47
    [Google Scholar]
  177. Yool A, Popva EE, Anderson TR. 2013. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies. Geosci. Model Dev. 6:1767–811
    [Google Scholar]
/content/journals/10.1146/annurev-marine-022123-102516
Loading
/content/journals/10.1146/annurev-marine-022123-102516
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error