1932

Abstract

Marine transgression associated with rising sea levels causes coastal erosion, landscape transitions, and displacement of human populations globally. This process takes two general forms. Along open-ocean coasts, active transgression occurs when sediment-delivery rates are unable to keep pace with accommodation creation, leading to wave-driven erosion and/or landward translation of coastal landforms. It is highly visible, rapid, and limited to narrow portions of the coast. In contrast, passive transgression is subtler and slower, and impacts broader areas. It occurs along low-energy, inland marine margins; follows existing upland contours; and is characterized predominantly by the landward translation of coastal ecosystems. The nature and relative rates of transgression along these competing margins lead to expansion and/or contraction of the coastal zone and—particularly under the influence of anthropogenic interventions—will dictate future coastal-ecosystem response to sea-level rise, as well as attendant, often inequitable, impacts on human populations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-022123-103802
2024-01-17
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-022123-103802.html?itemId=/content/journals/10.1146/annurev-marine-022123-103802&mimeType=html&fmt=ahah

Literature Cited

  1. Alves B, Angnuureng DB, Morand P, Almar R. 2020. A review on coastal erosion and flooding risks and best management practices in West Africa: what has been done and should be done. J. Coast. Conserv. 24:38
    [Google Scholar]
  2. Anderson SM, Ury EA, Taillie PJ, Ungberg EA, Moorman CE et al. 2022. Salinity thresholds for understory plants in coastal wetlands. Plant Ecol 223:32337
    [Google Scholar]
  3. Anisfeld SC, Cooper KR, Kemp AC. 2017. Upslope development of a tidal marsh as a function of upland land use. Glob. Change Biol. 23:75566
    [Google Scholar]
  4. Armstrong SB, Lazarus ED. 2019. Masked shoreline erosion at large spatial scales as a collective effect of beach nourishment. Earth's Future 7:7484
    [Google Scholar]
  5. Auerbach LW, Goodbred SL, Mondal DR, Wilson CA, Ahmed KR et al. 2015. Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain. Nat. Clim. Change 5:15357
    [Google Scholar]
  6. Barbier EB. 2015. Climate change impacts on rural poverty in low-elevation coastal zones. Estuar. Coast. Shelf Sci. 165:A113
    [Google Scholar]
  7. Barra MP. 2021. Good sediment: race and restoration in coastal Louisiana. Ann. Am. Assoc. Geogr. 111:26682
    [Google Scholar]
  8. Bhattachan A, Jurjonas MD, Moody AC, Morris PR, Sanchez GM et al. 2018. Sea level rise impacts on rural coastal social-ecological systems and the implications for decision making. Environ. Sci. Policy 90:12234
    [Google Scholar]
  9. Borchert SM, Osland MJ, Enwright NM, Griffith KT. 2018. Coastal wetland adaptation to sea level rise: quantifying potential for landward migration and coastal squeeze. J. Appl. Ecol. 55:287687
    [Google Scholar]
  10. Boyd R, Bowen AJ, Hall RK. 1987. Evolutionary model for transgressive sedimentation on the Eastern Shore of Nova Scotia. Glaciated Coasts DM FitzGerald, PS Rosen 87114. New York: Elsevier
    [Google Scholar]
  11. Brinson MM, Bradshaw HD, Jones MN. 1985. Transitions in forested wetlands along gradients of salinity and hydroperiod. J. Elisha Mitchell Sci. Soc. 101:7694
    [Google Scholar]
  12. Brinson MM, Christian RR, Blum LK. 1995. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18:64859
    [Google Scholar]
  13. Bronen R, Chapin FS III. 2013. Adaptive governance and institutional strategies for climate-induced community relocations in Alaska. PNAS 110:932025
    [Google Scholar]
  14. Buchanan MK, Kulp S, Strauss B. 2022. Resilience of US coastal wetlands to accelerating sea level rise. Environ. Res. Commun. 4:061001
    [Google Scholar]
  15. Cantelon JA, Guimond JA, Robinson CE, Michael HA, Kurylyk BL. 2022. Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: a review. Water Resour. Res. 58:e2022WR032614
    [Google Scholar]
  16. Castelle B, Harley M. 2020. Extreme events: impact and recovery. See Jackson & Short 2020 53356
  17. Castelle B, Masselink G. 2023. Morphodynamics of wave-dominated beaches. Camb. Prisms Coast. Futures 1:E1
    [Google Scholar]
  18. Cattaneo A, Steel RJ. 2003. Transgressive deposits: a review of their variability. Earth-Sci. Rev. 62:18728
    [Google Scholar]
  19. Chambers LG, Davis SE, Troxler TG, Entry JA 2015. Sea level rise in the Everglades: plant-soil-microbial feedbacks in response to changing physical conditions. Microbiology of the Everglades Ecosystem JA Entry, AD Gottlieb, K Jayachandran, A Ogram 89112. Boca Raton, FL: CRC
    [Google Scholar]
  20. Charles SP, Kominoski JS, Troxler TG, Gaiser EE, Servais S et al. 2019. Experimental saltwater intrusion drives rapid soil elevation and carbon loss in freshwater and brackish Everglades marshes. Estuaries Coasts 42:186881
    [Google Scholar]
  21. Chen Y, Kirwan ML. 2022a. Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. Nat. Geosci. 15:91318
    [Google Scholar]
  22. Chen Y, Kirwan ML. 2022b. A phenology-and trend-based approach for accurate mapping of sea-level driven coastal forest retreat. Remote Sens. Environ. 281:113229
    [Google Scholar]
  23. Ciarletta DJ, Lorenzo-Trueba J, Ashton AD. 2019. Mechanism for retreating barriers to autogenically form periodic deposits on continental shelves. Geology 47:23942
    [Google Scholar]
  24. Cooper JAG, Masselink G, Coco G, Short AD, Castelle B et al. 2020. Sandy beaches can survive sea-level rise. Nat. Clim. Change 10:99395
    [Google Scholar]
  25. Cooper JAG, McKenna J. 2008a. Social justice in coastal erosion management: the temporal and spatial dimensions. Geoforum 39:294306
    [Google Scholar]
  26. Cooper JAG, McKenna J. 2008b. Working with natural processes: the challenge for coastal protection strategies. Geogr. J. 174:31531
    [Google Scholar]
  27. Cooper JAG, Meireles RP, Green AN, Klein AH, Toldo EE. 2018. Late Quaternary stratigraphic evolution of the inner continental shelf in response to sea-level change, Santa Catarina, Brazil. Mar. Geol. 397:114
    [Google Scholar]
  28. Cowell PJ, Roy PS, Jones RA. 1995. Simulation of large-scale coastal change using a morphological behaviour model. Mar. Geol. 126:4561
    [Google Scholar]
  29. Curray JR. 1964. Transgressions and regressions. Papers in Marine Geology RL Miller 175203. New York: Macmillan
    [Google Scholar]
  30. Davis KF, Bhattachan A, D'Odorico P, Suweis S 2018. A universal model for predicting human migration under climate change: examining future sea level rise in Bangladesh. Environ. Res. Lett. 13:064030
    [Google Scholar]
  31. Dean RG, Houston JR. 2016. Determining shoreline response to sea level rise. Coast. Eng. 114:18
    [Google Scholar]
  32. Deaton CD, Hein CJ, Kirwan ML 2017. Barrier island migration dominates ecogeomorphic feedbacks and drives salt marsh loss along the Virginia Atlantic Coast, USA. Geology 45:12326
    [Google Scholar]
  33. Dickson ME, Walkden MJ, Hall JW. 2007. Systemic impacts of climate change on an eroding coastal region over the twenty-first century. Clim. Change 84:14166
    [Google Scholar]
  34. Earlie C, Masselink G, Russell P. 2018. The role of beach morphology on coastal cliff erosion under extreme waves. Earth Surf. Process. Landf. 43:121328
    [Google Scholar]
  35. Edmonds DA, Caldwell RL, Brondizio ES, Siani SM. 2020. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11:4741
    [Google Scholar]
  36. Emery AR, Hodgson DM, Barlow NL, Carrivick JL, Cotterill CJ et al. 2019. Topographic and hydrodynamic controls on barrier retreat and preservation: an example from Dogger Bank, North Sea. Mar. Geol. 416:105981
    [Google Scholar]
  37. Ensign SH, Noe GB. 2018. Tidal extension and sea-level rise: recommendations for a research agenda. Front. Ecol. Environ. 16:3743
    [Google Scholar]
  38. Enwright NM, Griffith KT, Osland MJ. 2016. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Front. Ecol. Environ. 14:30716
    [Google Scholar]
  39. Fagherazzi S, Anisfeld SC, Blum LK, Long EV, Feagin RA et al. 2019. Sea level rise and the dynamics of the marsh-upland boundary. Front. Environ. Sci. 7:25
    [Google Scholar]
  40. Fallon AR, Hoagland P, Jin D, Phalen W, Fitzsimons GG, Hein CJ 2017. Adapting without retreating: responses to shoreline change on an inlet-associated coastal beach. Coast. Manag. 45:36083
    [Google Scholar]
  41. Fenster MS, Dominguez R. 2022. Quantifying coastal storm impacts using a new cumulative storm impact index (CSII) model: application along the Virginia coast, USA. J. Geophys. Res. 127:e2022JF006641
    [Google Scholar]
  42. Field CR, Dayer AA, Elphick CS. 2017. Landowner behavior can determine the success of conservation strategies for ecosystem migration under sea-level rise. PNAS 114:913439
    [Google Scholar]
  43. Fischer AG. 1961. Stratigraphic record of transgressing seas in light of sedimentation on Atlantic coast of New Jersey. AAPG Bull. 45:165666
    [Google Scholar]
  44. FitzGerald DM, Buynevich IV, Argow BA. 2006. Model of tidal inlet and barrier island dynamics in a regime of accelerated sea level rise. J. Coast. Res. Spec. Issue 39:78995
    [Google Scholar]
  45. FitzGerald DM, Buynevich IV, Hein CJ 2012. Morphodynamics and facies architecture of tidal inlets and tidal deltas. Principles of Tidal Sedimentology R Davis Jr., R Dalrymple 30133. Dordrecht: Springer
    [Google Scholar]
  46. FitzGerald DM, Fenster MS, Argow BA, Buynevich IV. 2008. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 36:60147
    [Google Scholar]
  47. FitzGerald DM, Hein CJ, Hughes Z, Kulp M, Georgiou I, Miner M. 2018. Runaway barrier island transgression concept: global case studies. See Moore & Murray 2018 356
  48. Flester JA, Blum LK. 2020. Rates of mainland marsh migration into uplands and seaward edge erosion are explained by geomorphic type of salt marsh in Virginia coastal lagoons. Wetlands 40:170315
    [Google Scholar]
  49. Forbes DL, Orford JD, Carter RWG, Shaw J, Jennings SC. 1995. Morphodynamic evolution, self-organisation, and instability of coarse-clastic barriers on paraglacial coasts. Mar. Geol. 126:6385
    [Google Scholar]
  50. Gaiser EE, Zafiris A, Ruiz PL, Tobias FAC, Ross MS. 2006. Tracking rates of ecotone migration due to salt-water encroachment using fossil mollusks in coastal South Florida. Hydrobiologia 569:23757
    [Google Scholar]
  51. Gallop SL, Kennedy DM, Loureiro C, Naylor LA, Muñoz-Pérez JJ et al. 2020. Geologically controlled sandy beaches: their geomorphology, morphodynamics and classification. Sci. Total Environ. 731:139123
    [Google Scholar]
  52. Gedan KB, Epanchin-Niell R, Qi M. 2020. Rapid land cover change in a submerging coastal county. Wetlands 40:171728
    [Google Scholar]
  53. Gedan KB, Fernández-Pascual E. 2019. Salt marsh migration into salinized agricultural fields: a novel assembly of plant communities. J. Veg. Sci. 30:100716
    [Google Scholar]
  54. Gibbs AE, Richmond BM. 2015. National assessment of shoreline change: historical shoreline change along the north coast of Alaska, US-Canadian border to Icy Cape Open-File Rep. 2019-1146 US Geol. Surv. Reston, VA:
  55. Gilman EL, Ellison J, Duke NC, Field C. 2008. Threats to mangroves from climate change and adaptation options: a review. Aquat. Bot. 89:23750
    [Google Scholar]
  56. Griggs G, Patsch K. 2019. The protection/hardening of California's coast: Times are changing. J. Coast. Res. 35:105161
    [Google Scholar]
  57. Guimond JA, Michael HA. 2021. Effects of marsh migration on flooding, saltwater intrusion, and crop yield in coastal agricultural land subject to storm surge inundation. Water Resour. Res. 57:e2020WR028326
    [Google Scholar]
  58. Hall EA, Molino GD, Messerschmidt TC, Kirwan ML. 2022. Hidden levees: small-scale flood defense on rural coasts. Anthropocene 40:100350
    [Google Scholar]
  59. Hamon-Kerivel K, Cooper A, Jackson D, Sedrati M, Pintado EG. 2020. Shoreface mesoscale morphodynamics: a review. Earth-Sci. Rev. 209:103330
    [Google Scholar]
  60. Hapke CJ, Kratzmann MG, Himmelstoss EA. 2013. Geomorphic and human influence on large-scale coastal change. Geomorphology 199:16070
    [Google Scholar]
  61. Hauer ME, Fussell E, Mueller V, Burkett M, Call M et al. 2020. Sea-level rise and human migration. Nat. Rev. Gastroenterol. Hepatol. 1:2839
    [Google Scholar]
  62. Hein CJ, Ashton AD. 2020. Long-term shoreline morphodynamics: processes and preservation of environmental signals. See Jackson & Short 2020 487531
  63. Herreros-Cantis P, Olivotto V, Grabowski ZJ, McPhearson T. 2020. Shifting landscapes of coastal flood risk: environmental (in)justice of urban change, sea level rise, and differential vulnerability in New York City. Urban Transform. 2:9
    [Google Scholar]
  64. Hesp PA. 2013. Conceptual models of the evolution of transgressive dune field systems. Geomorphology 199:13849
    [Google Scholar]
  65. Hesp PA, DaSilva M, Miot da Silva G, Bruce D, Keane R 2022. Review and direct evidence of transgressive aeolian sand sheet and dunefield initiation. Earth Surf. Process. Landf. 47:266075
    [Google Scholar]
  66. Hinkel J, Aerts JC, Brown S, Jiménez JA, Lincke D et al. 2018. The ability of societies to adapt to twenty-first-century sea-level rise. Nat. Clim. Change 8:57078
    [Google Scholar]
  67. Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ et al. 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. PNAS 111:329297
    [Google Scholar]
  68. Jackson DWT, Short AD, eds. 2020. Sandy Beach Morphodynamics. Amsterdam: Elsevier
  69. Jevrejeva S, Jackson LP, Riva RE, Grinsted A, Moore JC. 2016. Coastal sea level rise with warming above 2°C. PNAS 113:1334247
    [Google Scholar]
  70. Jobe JGD IV, Gedan K 2021. Species-specific responses of a marsh-forest ecotone plant community responding to climate change. Ecology 102:e03296
    [Google Scholar]
  71. Jones BM, Arp CD, Jorgenson MT, Hinkel KM, Schmutz JA, Flint PL. 2009. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36:L03503
    [Google Scholar]
  72. Jones MC, Bernhardt CE, Krauss KW, Noe GB. 2017. The impact of late Holocene land use change, climate variability, and sea level rise on carbon storage in tidal freshwater wetlands on the southeastern United States coastal plain. J. Geophys. Res. 122:312641
    [Google Scholar]
  73. Kearney WS, Fernandes A, Fagherazzi S. 2019. Sea-level rise and storm surges structure coastal forests into persistence and regeneration niches. PLOS ONE 14:e0215977
    [Google Scholar]
  74. Khojasteh D, Glamore W, Heimhuber V, Felder S. 2021. Sea level rise impacts on estuarine dynamics: a review. Sci. Total Environ. 780:146470
    [Google Scholar]
  75. Kinsela MA, Morris BD, Daley MJ, Hanslow DJ 2016. A flexible approach to forecasting coastline change on wave-dominated beaches. J. Coast. Res. 75:95256
    [Google Scholar]
  76. Kirwan ML, Gedan KB. 2019. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9:45057
    [Google Scholar]
  77. Kirwan ML, Megonigal JP. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:5360
    [Google Scholar]
  78. Kirwan ML, Walters DC, Reay WG, Carr JA. 2016. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophys. Res. Lett. 43:436673
    [Google Scholar]
  79. Krauss KW, Duberstein JA. 2010. Sapflow and water use of freshwater wetland trees exposed to saltwater incursion in a tidally influenced South Carolina watershed. Can. J. For. Res. 40:52535
    [Google Scholar]
  80. Kulp SA, Strauss BH. 2019. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10:4844
    [Google Scholar]
  81. Langston AK, Kaplan DA, Putz FE. 2017. A casualty of climate change? Loss of freshwater forest islands on Florida's Gulf Coast. Glob. Change Biol. 23:538397
    [Google Scholar]
  82. Lantuit H, Overduin PP, Couture N, Wetterich S, Aré F et al. 2012. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35:383400
    [Google Scholar]
  83. Lazarus ED, Ellis MA, Murray AB, Hall DM. 2016. An evolving research agenda for human-coastal systems. Geomorphology 256:8190
    [Google Scholar]
  84. Lentz EE, Thieler ER, Plant NG, Stippa SR, Horton RM, Gesch DB. 2016. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat. Clim. Change 6:696700
    [Google Scholar]
  85. Liew M, Xiao M, Jones BM, Farquharson LM, Romanovsky VE. 2020. Prevention and control measures for coastal erosion in northern high-latitude communities: a systematic review based on Alaskan case studies. Environ. Res. Lett. 15:093002
    [Google Scholar]
  86. Limber PW, Barnard PL, Vitousek S, Erikson LH. 2018. A model ensemble for projecting multidecadal coastal cliff retreat during the 21st century. J. Geophys. Res. 123:156689
    [Google Scholar]
  87. Lincke D, Hinkel J. 2018. Economically robust protection against 21st century sea-level rise. Glob. Environ. Change 51:6773
    [Google Scholar]
  88. Lorenzo-Trueba J, Mariotti G. 2017. Chasing boundaries and cascade effects in a coupled barrier-marsh-lagoon system. Geomorphology 290:15363
    [Google Scholar]
  89. Loureiro C, Ferreira Ó. 2020. Mechanisms and timescales of beach rotation. See Jackson & Short 2020 593614
  90. Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S. 2018. The state of the world's beaches. Sci. Rep. 8:6641
    [Google Scholar]
  91. Mach KJ, Siders AR. 2021. Reframing strategic, managed retreat for transformative climate adaptation. Science 372:129499
    [Google Scholar]
  92. Manikam SL, Green AN, Cooper A, Deacon G, Flemming B. 2022. Development and preservation of transgressive sandy versus rocky shorelines: observations from the SE African shelf. Geomorphology 419:108485
    [Google Scholar]
  93. Mariotti G, Hein CJ. 2022. Lag in response of coastal barrier-island retreat to sea-level rise. Nat. Geosci. 15:63338
    [Google Scholar]
  94. McBride RA, Anderson JB, Buynevich IV, Byrnes MR, Cleary W et al. 2022. Morphodynamics of modern and ancient barrier systems: an updated and expanded synthesis. Treatise on Geomorphology, Vol. 8 JF Shroder 289417. London: Academic. , 2nd ed..
    [Google Scholar]
  95. McCarroll RJ, Masselink G, Valiente NG, Scott T, Wiggins M et al. 2021. A rules-based shoreface translation and sediment budgeting tool for estimating coastal change: ShoreTrans. Mar. Geol. 435:106466
    [Google Scholar]
  96. McDowell NG, Ball M, Bond-Lamberty B, Kirwan ML, Krauss KW et al. 2022. Processes and mechanisms of coastal woody-plant mortality. Glob. Change Biol. 28:5881900
    [Google Scholar]
  97. Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9:55260
    [Google Scholar]
  98. Mellett CL, Plater AJ. 2018. Drowned barriers as archives of coastal-response to sea-level rise. See Moore & Murray 2018 5789
  99. Mentaschi L, Vousdoukas MI, Pekel JF, Voukouvalas E, Feyen L. 2018. Global long-term observations of coastal erosion and accretion. Sci. Rep. 8:12876
    [Google Scholar]
  100. Messerschmidt TC, Langston AK, Kirwan ML. 2021. Asymmetric root distributions reveal press-pulse responses in retreating coastal forests. Ecology 102:e03468
    [Google Scholar]
  101. Miller CB, Rodriguez AB, Bost MC. 2021. Sea-level rise, localized subsidence, and increased storminess promote saltmarsh transgression across low-gradient upland areas. Quat. Sci. Rev. 265:107000
    [Google Scholar]
  102. Mills WB, Chung CF, Hancock K. 2005. Predictions of relative sea-level change and shoreline erosion over the 21st century on Tangier Island, Virginia. J. Coast. Res. 21:e3651
    [Google Scholar]
  103. Miselis JL, Lorenzo-Trueba J. 2017. Natural and human-induced variability in barrier-island response to sea level rise. Geophys. Res. Lett. 44:1192231
    [Google Scholar]
  104. Molino GD, Defne Z, Aretxabaleta AL, Ganju NK, Carr JA. 2021. Quantifying slopes as a driver of forest to marsh conversion using geospatial techniques: application to Chesapeake Bay coastal-plain, United States. Front. Environ. Sci. 9:149
    [Google Scholar]
  105. Moore LJ, Murray AB, eds. 2018. Barrier Dynamics and Response to Changing Climate Cham, Switz.: Springer
  106. Murray NJ, Worthington TA, Bunting P, Duce S, Hagger V et al. 2022. High-resolution mapping of losses and gains of Earth's tidal wetlands. Science 376:74449
    [Google Scholar]
  107. Muto T, Steel RJ. 1992. Retreat of the front in a prograding delta. Geology 20:96770
    [Google Scholar]
  108. Mycoo M, Wairiu M, Campbell D, Duvat V, Golbuu Y et al. 2022. Small islands. Climate Change 2022: Impacts, Adaptation and Vulnerability; Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change H-O Pörtner, DC Roberts, MMB Tignore, E Poloczanska, K Mintenbeck et al.204321. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  109. Nicholls RJ, Cazenave A. 2010. Sea-level rise and its impact on coastal zones. Science 328:151720
    [Google Scholar]
  110. Nicholls RJ, Marinova N, Lowe JA, Brown S, Vellinga P et al. 2011. Sea-level rise and its possible impacts given a ‘beyond 4°C world’ in the twenty-first century. Philos. Trans. R. Soc. A 369:16181
    [Google Scholar]
  111. Nielsen DM, Pieper P, Barkhordarian A, Overduin P, Ilyina T et al. 2022. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nat. Clim. Change 12:26370
    [Google Scholar]
  112. Nienhuis JH, Kim W, Milne GA, Quock M, Slangen ABA, Törnqvist TE. 2023. River deltas and sea-level rise. Annu. Rev. Earth Planet. Sci. 51:79104
    [Google Scholar]
  113. Nienhuis JH, van de Wal RSW. 2021. Projections of global delta land loss from sea-level rise in the 21st century. Geophys. Res. Lett. 48:e2021GL093368
    [Google Scholar]
  114. Noe GB, Krauss KW, Lockaby BG, Conner WH, Hupp CR. 2013. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry 114:22544
    [Google Scholar]
  115. Nordio G, Fagherazzi S. 2022. Salinity increases with water table elevation at the boundary between salt marsh and forest. J. Hydrol. 608:127576
    [Google Scholar]
  116. Nordstrom KF. 2000. Beaches and Dunes of Developed Coasts Cambridge, UK: Cambridge University Press
  117. Osland MJ, Chivoiu B, Enwright NM, Thorne KM, Guntenspergen GR et al. 2022. Migration and transformation of coastal wetlands in response to rising seas. Sci. Adv. 8:eabo5174
    [Google Scholar]
  118. Penland S, Boyd R, Suter JR. 1988. Transgressive depositional systems of the Mississippi Delta plain; a model for barrier shoreline and shelf sand development. J. Sediment. Res. 58:93249
    [Google Scholar]
  119. Pilkey OH, Neal WJ, Riggs SR, Webb CA, Bush DM et al. 1998. The North Carolina Shore and Its Barrier Islands: Restless Ribbons of Sand Durham, NC: Duke Univ. Press
  120. Rampino MR, Sanders JE. 1981. Evolution of the barrier islands of southern Long Island, New York. Sedimentology 28:3747
    [Google Scholar]
  121. Reeves IRB, Moore LJ, Murray AB, Anarde KA, Goldstein EB. 2021. Dune dynamics drive discontinuous barrier retreat. Geophys. Res. Lett. 48:e2021GL092958
    [Google Scholar]
  122. Riggs SR, Ames DV. 2003. Drowning the North Carolina Coast: Sea-Level Rise and Estuarine Dynamics Raleigh: N.C. Sea Grant
  123. Robbins MG, Shawler JL, Hein CJ. 2022. Contribution of longshore sand exchanges to mesoscale barrier-island behavior: insights from the Virginia Barrier Islands, US East Coast. Geomorphology 403:108163
    [Google Scholar]
  124. Rogers LJ, Moore LJ, Goldstein EB, Hein CJ, Lorenzo-Trueba J, Ashton AD. 2015. Anthropogenic controls on overwash deposition: evidence and consequences. J. Geophys. Res. 120:260924
    [Google Scholar]
  125. Ruz MH, Héquette A, Hill PR. 1992. A model of coastal evolution in a transgressed thermokarst topography, Canadian Beaufort Sea. Mar. Geol. 106:25178
    [Google Scholar]
  126. Schieder NW, Kirwan ML. 2019. Sea-level driven acceleration in coastal forest retreat. Geology 47:115155
    [Google Scholar]
  127. Schieder NW, Walters DC, Kirwan ML. 2018. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries Coasts 41:94051
    [Google Scholar]
  128. Schuerch M, Spencer T, Temmerman S, Kirwan ML, Wolff C et al. 2018. Future response of global coastal wetlands to sea-level rise. Nature 561:23134
    [Google Scholar]
  129. Schulte DM, Dridge KM, Hudgins MH. 2015. Climate change and the evolution and fate of the Tangier Islands of Chesapeake Bay, USA. Sci. Rep. 5:17890
    [Google Scholar]
  130. Shadrick JR, Rood DH, Hurst MD, Piggott MD, Hebditch BG et al. 2022. Sea-level rise will likely accelerate rock coast cliff retreat rates. Nat. Commun. 13:7005
    [Google Scholar]
  131. Siders AR. 2019. Social justice implications of US managed retreat buyout programs. Clim. Change 152:23957
    [Google Scholar]
  132. Siders AR, Hino M, Mach KJ. 2019. The case for strategic and managed climate retreat. Science 365:76163
    [Google Scholar]
  133. Simms JR, Waller HL, Brunet C, Jenkins P. 2021. The long goodbye on a disappearing, ancestral island: a just retreat from Isle de Jean Charles. J. Environ. Stud. Sci. 11:31628
    [Google Scholar]
  134. Smith AJ, Kirwan ML. 2021. Sea level-driven marsh migration results in rapid net loss of carbon. Geophys. Res. Lett. 48:e2021GL092420
    [Google Scholar]
  135. Smith JAM. 2013. The role of Phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PLOS ONE 8:e65091
    [Google Scholar]
  136. Swift E. 2018. Chesapeake Requiem: A Year with the Watermen of Vanishing Tangier Island New York: HarperCollins
  137. Syvitski JP, Saito Y. 2007. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 57:26182
    [Google Scholar]
  138. Temmerman S, Kirwan ML. 2015. Building land with a rising sea. Science 349:58889
    [Google Scholar]
  139. Temmerman S, Meire P, Bouma TJ, Herman MJ, Ysebaert T, de Vriend HJ. 2013. Ecosystem-based coastal defence in the face of global change. Nature 504:7983
    [Google Scholar]
  140. Theuerkauf EJ, Rodriguez AB. 2017. Placing barrier-island transgression in a blue-carbon context. Earth's Future 5:789810
    [Google Scholar]
  141. Tinley KL. 1985. Coastal Dunes of South Africa Pretoria, S. Afr.: Found. Res. Dev., Counc. Sci. Ind. Res.
  142. Titus JG, Hudgens DE, Trescott DL, Craghan M, Nuckols WH et al. 2009. State and local governments plan for development of most land vulnerable to rising sea level along the US Atlantic coast. Environ. Res. Lett. 4:044008
    [Google Scholar]
  143. Törnqvist TE, Cahoon DR, Morris JT, Day JW. 2021. Coastal wetland resilience, accelerated sea-level rise, and the importance of timescale. AGU Adv 2:e2020AV000334
    [Google Scholar]
  144. Trenhaile A. 2016. Rocky coasts—their role as depositional environments. Earth-Sci. Rev. 159:113
    [Google Scholar]
  145. Tully K, Gedan K, Epanchin-Niell R, Strong A, Bernhardt ES et al. 2019. The invisible flood: the chemistry, ecology, and social implications of coastal saltwater intrusion. Bioscience 69:36878
    [Google Scholar]
  146. Ury EA, Yang X, Wright JP, Bernhardt ES. 2021. Rapid deforestation of a coastal landscape driven by sea-level rise and extreme events. Ecol. Appl. 31:e02339
    [Google Scholar]
  147. Valentine K, Herbert ER, Walters DC, Chen Y, Smith AJ, Kirwan ML. 2023. Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink. Nat. Commun. 14:1137
    [Google Scholar]
  148. Van Dolah ER, Miller Hesed CD, Paolisso MJ. 2020. Marsh migration, climate change, and coastal resilience: human dimensions considerations for a fair path forward. Wetlands 40:175164
    [Google Scholar]
  149. Vitousek S, Barnard PL, Limber P. 2017. Can beaches survive climate change?. J. Geophys. Res. 122:106067
    [Google Scholar]
  150. Vonk JE, Sánchez-García L, Van Dongen BE, Alling V, Kosmach D et al. 2012. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489:13740
    [Google Scholar]
  151. Vos K, Harley MD, Turner IL, Splinter KD 2023. Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation. Nat. Geosci. 16:14046
    [Google Scholar]
  152. Vousdoukas MI, Ranasinghe R, Mentaschi L, Plomaritis TA, Athanasiou P et al. 2020. Sandy coastlines under threat of erosion. Nat. Clim. Change 10:26063
    [Google Scholar]
  153. Wang F, Sanders CJ, Santos IR, Tang J, Schuerch M et al. 2021. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl. Sci. Rev. 8:nwaa296
    [Google Scholar]
  154. Wasson K, Woolfolk A, Fresquez C. 2013. Ecotones as indicators of changing environmental conditions: rapid migration of salt marsh-upland boundaries. Estuaries Coasts 36:65464
    [Google Scholar]
  155. Weir T, Dovey L, Orcherton D. 2017. Social and cultural issues raised by climate change in Pacific Island countries: an overview. Reg. Environ. Change 17:101728
    [Google Scholar]
  156. Wernette P, Houser C, Lehner J, Evans A, Weymer B. 2020. Investigating the impact of Hurricane Harvey and driving on beach-dune morphology. Geomorphology 358:107119
    [Google Scholar]
  157. White EE Jr., Ury EA, Bernhardt ES, Yang X. 2021. Climate change driving widespread loss of coastal forested wetlands throughout the North American coastal plain. Ecosystems 25:81227
    [Google Scholar]
  158. Williams AT, Rangel-Buitrago N, Pranzini E, Anfuso G. 2018. The management of coastal erosion. Ocean Coast. Manag. 156:420
    [Google Scholar]
  159. Williams K, Ewel KC, Stumpf RP, Putz FE, Workman TW. 1999. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80:204563
    [Google Scholar]
  160. Woodroffe CD. 2002. Coasts: Form, Process and Evolution Cambridge: Cambridge Univ. Press
  161. Wu Z, Schulte D. 2021. Predictions of the climate change-driven exodus of the town of Tangier, the last offshore island fishing community in Virginia's Chesapeake Bay. Front. Clim. 3:151
    [Google Scholar]
/content/journals/10.1146/annurev-marine-022123-103802
Loading
/content/journals/10.1146/annurev-marine-022123-103802
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error