1932

Abstract

The genus is globally distributed, with blooms commonly occurring on continental shelves. This unusual phytoplankter has two major morphologies: solitary cells and cells embedded in a gelatinous matrix. Only colonies form blooms. Their large size (commonly 2 mm but up to 3 cm) and mucilaginous envelope allow the colonies to escape predation, but data are inconsistent as to whether colonies are grazed. Cultured can also inhibit the growth of co-occurring phytoplankton or the feeding of potential grazers. Colonies and solitary cells use nitrate as a nitrogen source, although solitary cells can also grow on ammonium. colonies might be a major contributor to carbon flux to depth, but in most cases, colonies are rapidly remineralized in the upper 300 m. The occurrence of large blooms is often associated with environments with low and highly variable light and high nitrate levels, with blooms being linked additionally to high iron availability. Emerging results indicate that different clones of have substantial genetic plasticity, which may explain its appearance in a variety of environments. Given the evidence of appearing in new systems, this trend will likely continue in the near future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-022223-025031
2024-01-17
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-022223-025031.html?itemId=/content/journals/10.1146/annurev-marine-022223-025031&mimeType=html&fmt=ahah

Literature Cited

  1. Alcolombri U, Ben-Dor S, Feldmesser E, Levin Y, Tawfik DS et al. 2015. Identification of the algal dimethyl sulfide–releasing enzyme: a missing link in the marine sulfur cycle. Science 348:146669
    [Google Scholar]
  2. Alderkamp A-C, van Dijken GL, Lowry KE, Lewis KM, Joy-Warren HL et al. 2019. Effects of iron and light availability on phytoplankton photosynthetic properties in the Ross Sea. Mar. Ecol. Prog. Ser. 621:3350
    [Google Scholar]
  3. Andrew SM, Strzepek RF, Branson O, Ellwood MJ. 2022. Ocean acidification reduces the growth of two Southern Ocean phytoplankton. Mar. Ecol. Prog. Ser. 682:5164
    [Google Scholar]
  4. Arrigo KR, Dunbar RB, Lizotte MP, Robinson DH. 2002. Taxon-specific differences in C/P and N/P drawdown for phytoplankton in the Ross Sea, Antarctica. Geophys. Res. Lett. 29:1938
    [Google Scholar]
  5. Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR et al. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:36567
    [Google Scholar]
  6. Assmy P, Fernández-Méndez M, Duarte P, Meyer A, Randelhoff A et al. 2017. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7:40850
    [Google Scholar]
  7. Balaguer J, Koch F, Hassler C, Trimborn S. 2022. Iron and manganese co-limit the growth of two phytoplankton groups dominant at two locations of the Drake Passage. Commun. Biol. 5:207
    [Google Scholar]
  8. Balaguer J, Thoms S, Trimborn S. 2023. The physiological response of an Antarctic key phytoplankton species to low iron and manganese concentrations. Limnol. Oceanogr. 68(9):215366
    [Google Scholar]
  9. Bender SJ, Moran DM, McIlvin R, Zheng H, McCrow JP et al. 2017. Colony formation in Phaeocystis antarctica: connecting molecular mechanisms with iron biogeochemistry. Biogeosciences 15:492342
    [Google Scholar]
  10. Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC et al. 2007. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol. Oceanogr. 52:107993
    [Google Scholar]
  11. Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA et al. 2019. Changing ocean, marine ecosystems, and dependent communities. The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al. 44787. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  12. Brussaard CPD, Bratbak G, Baudoux A-C, Ruardij P. 2007. Phaeocystis and its interaction with viruses. Biogeochemistry 83:20115
    [Google Scholar]
  13. Brussaard CPD, Short SM, Frederickson CM, Suttle CA. 2004. Isolation and phylogenetic analysis of novel viruses infecting the phytoplankter Phaeocystis globosa (Prymnesiophyceae). Appl. Environ. Microbiol. 70:37005
    [Google Scholar]
  14. Cadée GC. 1996. Accumulation and sedimentation of Phaeocystis globosa in the Dutch Wadden Sea. J. Sea Res. 36:32127
    [Google Scholar]
  15. Caron DA, Dennett MR, Lonsdale DJ, Moran DM, Shalapyonok L. 2000. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep-Sea Res. II 47:324972
    [Google Scholar]
  16. Charlson RJ, Lovelock JE, Andreae MO, Warren SG. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:65561
    [Google Scholar]
  17. Cheng H-M, Zhang S-F, Ning X-L, Li D-X, Zhang H et al. 2023. Molecular insights into colony bloom formation of the prymnesiophyte Phaeocystis globosa. Sci. Tot. Environ. 869:161846
    [Google Scholar]
  18. Cochlan WP, Bronk DA. 2001. Nitrogen kinetics in the Ross Sea, Antarctica. . Deep-Sea Res. II 48:412753
    [Google Scholar]
  19. Cota GF, Smith WO Jr., Mitchell BG. 1994. Photosynthesis of Phaeocystis in the Greenland Sea. Limnol. Oceanogr. 39:94853
    [Google Scholar]
  20. Dall'Olmo G, Dingle J, Polimene L, Brewin RJW, Claustre H. 2016. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9:82023
    [Google Scholar]
  21. DiTullio GR, Geesey ME, Leventer A, Lizotte MP 2003. Algal pigment ratios in the Ross Sea: implications for CHEMTAX analyses of Southern Ocean data. Biogeochemistry of the Ross Sea GR DiTullio, RB Dunbar 3552. Washington, DC: Am. Geophys. Union
    [Google Scholar]
  22. DiTullio GR, Grebmeier JM, Arrigo KR, Lizotte MP, Robinson DH et al. 2000. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404:59598
    [Google Scholar]
  23. DiTullio GR, Smith WO Jr. 1996. Spatial patterns in phytoplankton biomass and pigment distributions in the Ross Sea. J. Geophys. Res. Oceans 101:1846778
    [Google Scholar]
  24. Doan NH, Nguyen NL, Dippner JW. 2010. Development of Phaeocystis globosa blooms in the upwelling waters of the South Central coast of Viet Nam. J. Mar. Syst. 83:25361
    [Google Scholar]
  25. Eikrem W, Medlin LK, Henderiks J, Rokittas RB, Rost B et al. 2016. Haptophyta. Handbook of the Protists JM Archibald, AGB Simpson, CH Slamovits, L Margolis, M Markonian, et al. 161. Cham, Switz: Springer
    [Google Scholar]
  26. Estep KW, Nejstgaard JC, Skjoldal HR, Rey F. 1990. Predation by copepods upon natural populations of Phaeocystis pouchetii as a function of the physiological state of the prey. Mar. Ecol. Prog. Ser. 67:23549
    [Google Scholar]
  27. Falk-Petersen S, Haug T, Hop H, Nilssen KT, Wold A. 2009. Transfer of lipids from plankton to blubber of harp and hooded seals off East Greenland. Deep-Sea Res. II 56:208086
    [Google Scholar]
  28. Feng Y, Hare CE, Rose JM, Handy SM, DiTullio GR et al. 2010. Interactive effects of CO2, irradiance and iron on Ross Sea phytoplankton. Deep-Sea Res. I 57:36883
    [Google Scholar]
  29. Flynn JF, Blackford JC, Baird ME, Raven J, Clark DR et al. 2012. Changes in pH at the exterior surface of plankton with ocean acidification. Nat. Clim. Change 2:51013
    [Google Scholar]
  30. Gäbler S, Hayes PK, Medlin LK. 2007. Methods used to reveal genetic diversity in the colony forming prymnesiophytes Phaeocystis antarctica, P. globosa and P. pouchetii—preliminary results. Biogeochemistry 83:1927
    [Google Scholar]
  31. Gäbler-Schwarz S, Davidson A, Assmy P, Henjes J, Medlin LK. 2010. A new cell stage in the haploid-diploid life cycle of the colony-forming haptophyte Phaeocystis antarctica and its ecological implications. J. Phycol. 46:100616
    [Google Scholar]
  32. Gäbler-Schwarz S, Medlin LK, Leese F 2017. A puzzle with many pieces: the genetic structure and diversity of Phaeocystis antarctica Karsten (Prymnesiophyta). Eur. J. Phycol. 50:11224
    [Google Scholar]
  33. Gao K, Campbell DA. 2014. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review. Funct. Plant Biol. 41:44959
    [Google Scholar]
  34. Geider RJ, Macintyre HL, Kana TM. 1998. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43:67994
    [Google Scholar]
  35. Gieskes WWV, Leterme SC, Peletier H, Edwards M, Reid PC. 2007. Phaeocystis colony distribution in the North Atlantic Ocean since 1948, and interpretation of long-term changes in the Phaeocystis hotspot in the North Sea. Biogeochemistry 83:4960
    [Google Scholar]
  36. Green TK, Hatton AD 2020. The CLAW hypothesis: a new perspective on the role of biogenic sulphur in the regulation of global climate. Oceanography and Marine Biology: An Annual Review, Vol. 52 RN Hughes, DJ Hughes, IP Smith 31536. Boca Raton, FL: CRC
    [Google Scholar]
  37. Gypens N, Lacroiz G, Lancelot C. 2007. Causes of variability in diatom and Phaeocystis blooms in Belgian coastal waters between 1989 and 2003: a model study. J. Sea Res. 57:1935
    [Google Scholar]
  38. Haberman KL, Quetin LB, Ross RM. 2002. Diet of the Antarctic krill (Euphausia superba Dana): I. Comparisons of grazing on Phaeocystis antarctica (Karsten) and Thalassiosira antarctica (Comber). J. Exp. Mar. Biol. Ecol. 283:7995
    [Google Scholar]
  39. Hamm CE, Simson DA, Merkel R, Smetacek V. 1999. Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar. Ecol. Prog. Ser. 187:10111
    [Google Scholar]
  40. Hansen B, Verity P, Falkenhaug T, Tande KS, Norrbin F. 1994. On the trophic fate of Phaeocystis pouchetii (Harriot). V. Trophic relationships between Phaeocystis and zooplankton: an assessment of methods and size dependence. J. Plankton Res. 16:487511
    [Google Scholar]
  41. Hansen E, Eilertsen HC. 2007. Do the polyunsaturated aldehydes produced by Phaeocystis pouchetii (Hariot) Lagerheim influence diatom growth during the spring bloom in northern Norway?. J. Plankton Res. 29:8796
    [Google Scholar]
  42. Hansen FC. 1995. Trophic interactions between zooplankton and Phaeocystis globosa. Helgol. Meeresunters. 49:28393
    [Google Scholar]
  43. Hassler CS, Schoemann V, Boye M, Tagliabue A, Rozmarynowycz M, McKay RML 2012. Iron bioavailability in the Southern Ocean. Oceanography and Marine Biology: An Annual Review, Vol. 50 RN Gibson, RJA Atkinson, JDM Gordon, RN Hughes 164. Boca Raton, FL: CRC
    [Google Scholar]
  44. Hayward AG, Pinkerton MH, Gutierrez-Rodriguez AG. 2023. phytoclass: a pigment-based chemotaxonomic method to determine the biomass of phytoplankton classes. Limnol. Oceanogr. Methods 21:22041
    [Google Scholar]
  45. Heiden JP, Völkner C, Jones E, van de Poll WH, Buma AGJ et al. 2019. Impact of ocean acidification and high solar radiation on productivity and species composition of a late summer phytoplankton community of the coastal Western Antarctic Peninsula. Limnol. Oceanogr. 64:171636
    [Google Scholar]
  46. Hong Y, Smith WO Jr., White A-M. 1998. Studies on transparent exopolymer particles (TEP) produced in the Ross Sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae). J. Phycol. 33:36876
    [Google Scholar]
  47. Hu XK, Zhang QC, Chen ZF, Kong FZ, Wang JX et al. 2019. Genetic diversity of Phaeocystis globosa strains isolated from the Beibu Gulf, the South China Sea. J. Oceanol. Limnol. 50:60110 ( In Chinese with English abstract )
    [Google Scholar]
  48. Jacobsen A, Larsen A, Martínez-Martínez J, Verity PG, Frischer ME. 2007. Susceptibility of colonies and colonial cells of Phaeocystis pouchetii (Haptophyta) to viral infection. Aquat. Microb. Ecol. 48:10512
    [Google Scholar]
  49. Jakobsen HH, Tang KW. 2002. Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits. Aquat. Microb. Ecol. 27:26127
    [Google Scholar]
  50. Jones RM, Smith WO Jr. 2017. The influence of short-term events on the hydrographic and biological structure of the southwestern Ross Sea. J. Mar. Syst. 166:18495
    [Google Scholar]
  51. Kameyama S, Otomaru M, McMinn A, Suzuki K. 2020. Ice melting can change DMSP production and photosynthetic activity of the haptophyte Phaeocystis antarctica. J. Phycol. 56:76174
    [Google Scholar]
  52. Kaufman DE, Friedrichs MAM, Smith WO Jr., Hofmann EE, Dinniman ME et al. 2017. Climate change impacts on Ross Sea biogeochemistry: results from 1D modeling experiments. J. Geophys. Res. Oceans 122:233959
    [Google Scholar]
  53. Keys M, Tilstone G, Findlay HS, Widdicombe CE, Lawson T. 2017. Effects of elevated CO2 on phytoplankton community biomass and species composition during a spring Phaeocystis spp. bloom in the western English Channel. Harmful Algae 67:92106
    [Google Scholar]
  54. Kiene RP, Slezak D. 2006. Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnol. Oceanogr. Methods 4:8095
    [Google Scholar]
  55. Koch F, Beszteri S, Harms L, Trimborn S. 2019. The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology and transcriptome of Phaeocystis antarctica. Limnol. Oceanogr. 64:35775
    [Google Scholar]
  56. Koppelle S, López-Escardó D, Brussaard CPD, Huisman J, Philippart CJM et al. 2022. Mixotrophy in the bloom-forming genus Phaeocystis and other haptophytes. Harmful Algae 117:102292
    [Google Scholar]
  57. Krogstad PK. 1989. Produksjon av planteplankton til bruk som fór i intensivt oppdrett av torskelarver (Gadhus morhua L.) med referanse i ekstensivt oppdrettsystem (poll) Rep. Inst. Fish., Univ. Tromsø Tromsø, Nor.:
    [Google Scholar]
  58. Kropuenske LR, Mills MM, van Dijken GL, Bailey S, Welschmeyer NA et al. 2009. Photophysiology in two major Southern Ocean phytoplankton taxa: photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus. Limnol. Oceanogr. 54:117696
    [Google Scholar]
  59. Lalande C, Bauerfeind E, Nöthig E-M. 2011. Downward particulate organic carbon export at high temporal resolution in the eastern Fram Strait: influence of Atlantic Water on flux composition. Mar. Ecol. Prog. Ser. 440:12736
    [Google Scholar]
  60. Lancelot C, Keller MD, Rousseau V, Smith WO Jr., Mathot S 1998. Autecology of the marine haptophyte Phaeocystis sp. Physiological Ecology of Harmful Algal Blooms DM Anderson, AD Cembella, GM Hallagraeff 20924, Berlin: Springer
    [Google Scholar]
  61. Landry MR, Selph KE, Brown SL, Abbott MR, Measures CI et al. 2002. Seasonal dynamics of phytoplankton in the Antarctic Polar Front region at 170°W. Deep-Sea Res. II 49:184365
    [Google Scholar]
  62. Le Moigne FAC, Poulton AJ, Henson SA, Daniels CJ, Fragoso GM et al. 2015. Carbon export efficiency and phytoplankton community composition in the Atlantic sector of the Arctic Ocean. J. Geophys. Res. Oceans 120:3896912
    [Google Scholar]
  63. Liss PS, Malin G, Turner SM, Holligan PM. 1994. Dimethyl sulphide and Phaeocystis: a review. J. Mar. Syst. 5:4153
    [Google Scholar]
  64. Liu X, Smith WO Jr. 2012. A statistical analysis of the controls on phytoplankton distribution in the Ross Sea, Antarctica. J. Mar. Syst. 94:13544
    [Google Scholar]
  65. Long JD, Smalley GW, Barsby TA, Anderson JT, Hay ME. 2007. Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. PNAS 104:1051217
    [Google Scholar]
  66. Luxem KE, Ellwood MJ, Strzepek RF. 2017. Intraspecific variability in Phaeocystis antarctica’s response to iron and light stress. PLOS ONE 12:e0179751
    [Google Scholar]
  67. Lv X, Wu Z, Song X, Yuan Y, Cao X et al. 2019. Nutritional strategy for the preferential uptake of NO3-N by Phaeocystis globosa. Hydrobiology 846:10922
    [Google Scholar]
  68. Madhupratap M, Sawant S, Gauns M. 1999. A first report on a bloom of the marine prymesiophycean, Phaeocystis globosa, from the Arabian Sea. Oceanol. Acta 23:8390
    [Google Scholar]
  69. Mangoni O, Saggiomo M, Bolinesi F, Castellano M, Povero P et al. 2019. Phaeocystis antarctica unusual summer bloom in stratified Antarctic coastal waters (Terra Nova Bay, Ross Sea). Mar. Environ. Res. 151:104733
    [Google Scholar]
  70. Marra J, Langdon C, Knudsen CA. 1994. Primary production, water column changes, and the demise of a Phaeocystis bloom at the Marine Light-Mixed Layers site (59°N, 21°W) in the northeast Atlantic Ocean. J. Geophys. Res. Oceans 100:663343
    [Google Scholar]
  71. Mars Brisbin M, Mitarai S. 2019. Differential gene expression supports a resource-intensive, defensive role for colony production in the bloom-forming haptophyte, Phaeocystis globosa. J. Eukaryot. Microbiol. 66:788801
    [Google Scholar]
  72. Mathot S, Smith WO Jr., Carlson CA, Garrison DL. 2000. Estimate of Phaeocystis sp. carbon biomass: methodological problems related to the mucilaginous nature of the colonial matrix. J. Phycol. 36:104956
    [Google Scholar]
  73. Meyer MG, Gong W, Kafrissen SM, Torano O, Varela DE et al. 2022a. Phytoplankton size-class contributions to new and regenerated production during the EXPORTS Northeast Pacific Ocean field deployment. Elem. Sci. Anthr. 10:00068
    [Google Scholar]
  74. Meyer MG, Jones RM, Smith WO Jr. 2022b. Quantifying particulate organic carbon concentrations and flux in the southwestern Ross Sea using autonomous glider data. J. Geophys. Res. Oceans 127:e2022JC018798
    [Google Scholar]
  75. Mohapatra BR, Rellinger AN, Kieber DJ, Kiene RP. 2013. Comparative functional characteristics of DMSP lyases extracted from polar and temperate Phaeocystis species. Aquat. Biol. 18:18595
    [Google Scholar]
  76. Moisan TA, Mitchell BG. 1998. Photophysiological acclimation of Phaeocystis antarctica Karsten under light limitation. Limnol. Oceanogr. 44:24758
    [Google Scholar]
  77. Nejstgaard JC, Tang KW, Steinke M, Dutz J, Koski M et al. 2007. Zooplankton grazing on Phaeocystis: a quantitative review and future challenges. Biogeochemistry 83:14772
    [Google Scholar]
  78. Nissen C, Vogt M. 2021. Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes. Biogeosciences 18:25183
    [Google Scholar]
  79. Noordkamp DJB, Gieskes WWC, Gottschal JC, Forney LJ, Van Rijssel M. 2000. Acrylate in Phaeocystis colonies does not affect the surrounding bacteria. J. Sea Res. 43:28796
    [Google Scholar]
  80. Orkney A, Platt T, Narayanaswamy BE, Kostakis I, Bouman HA. 2020. Bio-optical evidence for increasing Phaeocystis dominance in the Barents Sea. Philos. Trans. R. Soc. A 378:20190357
    [Google Scholar]
  81. Passow U. 2002. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55:28733
    [Google Scholar]
  82. Pausch F, Koch F, Hassler C, Bracher A, Bischof K, Trimborn S. 2022. Responses of a natural phytoplankton community from the Drake Passage to two predicted climate change scenarios. Front. Mar. Sci. 9:75950
    [Google Scholar]
  83. Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG et al. 2019. Acidification diminishes diatom silica production in the Southern Ocean. Nat. Clim. Change 9:78186
    [Google Scholar]
  84. Probyn TA, Painting SJ. 1985. Nitrogen uptake by size-fractionated phytoplankton populations in Antarctic surface waters. Limnol. Oceanogr. 30:132732
    [Google Scholar]
  85. Qi Y, Chen J, Wang Z, Xu N, Wang Y et al. 2004. Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998. Hydrobiology 512:20914
    [Google Scholar]
  86. Ray JL, Skaar KS, Simonelli P, Larsen A, Sazhin A et al. 2016. Molecular gut content analysis demonstrates that Calanus grazing on Phaeocystis pouchetii and Skeletonema marinoi is sensitive to bloom phase but not prey density. Mar. Ecol. Prog. Ser. 542:6377
    [Google Scholar]
  87. Redfield AC. 1958. The biological control of chemical factors in the environment. Am. Sci. 46:22541
    [Google Scholar]
  88. Reigstad M, Wassmann P. 2007. Does Phaeocystis spp. contribute significantly to vertical export of organic carbon?. Biogeochemistry 83:21734
    [Google Scholar]
  89. Riegman R, von Boekel W. 1996. The ecophysiology of Phaeocystis globosa: a review. J. Sea Res. 35:23542
    [Google Scholar]
  90. Rizkallah MR, Frickenhaus S, Trimborn S, Harms L, Moustafa A et al. 2020. Deciphering patterns of adaptation and acclimation in the transcriptome of Phaeocystis antarctica to changing iron conditions. J. Phycol. 56:74760
    [Google Scholar]
  91. Ryderheim F, Hansen PJ, Kiørboe T. 2022. Predator field and colony morphology determine the defensive benefit of colony formation in marine phytoplankton. Front. Mar. Sci. 9:829419
    [Google Scholar]
  92. Saiz E, Calbet A, Isari S, Antó M, Velasco EM et al. 2013. Zooplankton distribution and feeding in the Arctic Ocean during a Phaeocystis pouchetii bloom. Deep-Sea Res. I 72:1733
    [Google Scholar]
  93. Sampaio E, Gallo F, Schulz KG, Azevedo EB, Barcelos e Ramos J. 2017. Phytoplankton interactions can alter species response to present and future CO2 concentrations. Mar. Ecol. Prog. Ser. 575:3142
    [Google Scholar]
  94. Sanderson MP, Bronk DA, Nejstgaard JC, Verity PG, Sazhin AF et al. 2008. Phytoplankton and bacterial uptake of inorganic and organic nitrogen during an induced bloom of Phaeocystis pouchetii. . Aquat. Microb. Ecol. 51:15368
    [Google Scholar]
  95. Schnack SB. 1983. On the feeding of copepods on Thalassiosira partheneia from the Northwest African upwelling area. Mar. Ecol. Prog. Ser. 11:4953
    [Google Scholar]
  96. Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C. 2005. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J. Sea Res. 53:4360
    [Google Scholar]
  97. Schoemann V, Wollast R, Chou L, Lancelot C. 2001. Effects of photosynthesis on the accumulation of Mn and Fe by Phaeocystis colonies. Limnol. Oceanogr. 46:106576
    [Google Scholar]
  98. Schofield O, Miles T, Alderkamp AC, Lee S, Haskins C et al. 2015. In situ phytoplankton distributions in the Amundsen Sea Polynya measured by autonomous gliders. Elem. Sci Anthr. 3:000073
    [Google Scholar]
  99. Sedwick PN, Marsay CM, Sohst BM, Aguilar-Islas AM, Lohan MC et al. 2011. Early season depletion of dissolved iron in the Ross Sea polynya: implications for iron dynamics on the Antarctic continental shelf. J. Geophys. Res. Oceans 116:C12019
    [Google Scholar]
  100. Shields AR, Smith WO Jr. 2008. An examination of the role of colonial Phaeocystis antarctica in the microbial food web of the Ross Sea. Polar Biol. 31:109199
    [Google Scholar]
  101. Smayda TJ. 1998. Patterns of variability characterizing marine phytoplankton, with examples from Narragansett Bay. ICES J. Mar. Sci. 55:56273
    [Google Scholar]
  102. Smith WO Jr., Ainley DG, Arrigo KR, Dinniman MS. 2014a. The oceanography and ecology of the Ross Sea. . Annu. Rev. Mar. Sci. 6:46987
    [Google Scholar]
  103. Smith WO Jr., Carlson CA, Ducklow HW, Hansell DA. 1998. Growth dynamics of Phaeocystis antarctica-dominated plankton assemblages from the Ross Sea. Mar. Ecol. Prog. Ser. 168:22944
    [Google Scholar]
  104. Smith WO Jr., Codispoti LA, Nelson DM, Manley T, Buskey EJ et al. 1991. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352:514516
    [Google Scholar]
  105. Smith WO Jr., Dennett MR, Mathot S, Caron DA. 2003a. The temporal dynamics of the flagellated and colonial stages of Phaeocystis antarctica in the Ross Sea. Deep-Sea Res. II 50:60518
    [Google Scholar]
  106. Smith WO Jr., Dinniman MS, Klinck JM, Hofmann E. 2003b. Biogeochemical climatologies in the Ross Sea, Antarctica: seasonal patterns of nutrients and biomass. Deep-Sea Res. II 50:3083101
    [Google Scholar]
  107. Smith WO Jr., Donaldson K. 2015. Photosynthesis-irradiance responses in the Ross Sea, Antarctica: a meta-analysis. Biogeosciences 12:356777
    [Google Scholar]
  108. Smith WO Jr., Jones RM. 2015. Vertical mixing, critical depths, and phytoplankton growth in the Ross Sea. ICES J. Mar. Sci. 72:195260
    [Google Scholar]
  109. Smith WO Jr., Kaufman DE. 2018. Particulate organic carbon climatologies in the Ross Sea: evidence for seasonal acclimations within phytoplankton. Prog. Oceanogr. 168:18295
    [Google Scholar]
  110. Smith WO Jr., Liu X, Tang KW, Delizo LM, Doan NH et al. 2014b. Giantism and its role in the harmful algal bloom species Phaeocystis globosa. Deep-Sea Res. II 60:95106
    [Google Scholar]
  111. Smith WO Jr., Marra J, Hiscock MR, Barber RT. 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Res. II 47:311940
    [Google Scholar]
  112. Smith WO Jr., McGillicuddy DJ Jr., Olson EB, Kosnyrev V, Peacock EE et al. 2017. Mesoscale variability in intact and ghost colonies of Phaeocystis antarctica in the Ross Sea: distribution and abundance. J. Mar. Syst. 166:97107
    [Google Scholar]
  113. Smith WO Jr., Zhang WF, Hirzel A, Stanley RM, Meyer MG et al. 2021. A regional, early spring bloom of Phaeocystis pouchetii on the New England continental shelf. J. Geophys. Res. Oceans 126:e2020JC016856
    [Google Scholar]
  114. Solomon CM, Lessard EJ, Keil RG, Foy MS. 2003. Characterization of extracellular polymers of Phaeocystis globosa and P. antarctica. Mar. Ecol. Prog. Ser. 250:8189
    [Google Scholar]
  115. Song H, Liu F, Li Z, Xu Q, Chen Y et al. 2020. Development of a high-resolution molecular marker for tracking Phaeocystis globosa genetic diversity through comparative analysis of chloroplast genomes. Harmful Algae 99:101911
    [Google Scholar]
  116. Stefels J, van Boekel WHM. 1993. Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar. Ecol. Prog. Ser. 97:1118
    [Google Scholar]
  117. Tande KS, Båmstedt U. 1987. On the trophic fate of Phaeocystis pouchetii. I. Copepod feeding rates on solitary cells and colonies of P. pouchetii. Sarsia 72:34
    [Google Scholar]
  118. Tang DL, Kawamura H, Doan-Nhu H, Takahashi W. 2004. Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam. J. Geophys. Res. Oceans 109:C03014
    [Google Scholar]
  119. Tang KW. 2003. Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of a chemical signal. J. Plankton Res. 25:83142
    [Google Scholar]
  120. Tang KW, Jakobsen HH, Visser AW. 2001. Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: feeding, growth, and trophic interactions among grazers. Limnol. Oceanogr. 46:186070
    [Google Scholar]
  121. Taucher J, Arístegui J, Bach LT, Guan W, Montero MF et al. 2018. Response of subtropical phytoplankton communities to ocean acidification under oligotrophic conditions and during nutrient fertilization. Front. Mar. Sci. 5:330
    [Google Scholar]
  122. Thoisen C, Riisgaard K, Lundholm N, Nielsen TG, Hansen PJ. 2015. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland. Mar. Ecol. Prog. Ser. 520:2134
    [Google Scholar]
  123. Trimborn S, Brenneis T, Hoppe CJM, Norman L, Santos J et al. 2017a. Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification. Mar. Ecol. Prog. Ser. 578:3550
    [Google Scholar]
  124. Trimborn S, Brenneis T, Sweet E, Rost B. 2013. Sensitivity of Antarctic phytoplankton species to ocean acidification: growth, carbon acquisition and species interaction. Limnol. Oceanogr. 58:9971007
    [Google Scholar]
  125. Trimborn S, Hoppe CJM, Taylor B, Bracher A, Hassler C. 2015. Physiological characteristics of phytoplankton communities of Western Antarctic Peninsula and Drake Passage waters. Deep-Sea Res. I 98:11524
    [Google Scholar]
  126. Trimborn S, Thoms S, Bischof K, Beszteri S. 2019. Susceptibility of two Southern Ocean phytoplankton key species to iron limitation and high light. Front. Mar. Sci. 6:167
    [Google Scholar]
  127. Trimborn S, Thoms S, Brenneis T, Heiden JP, Beszteri S et al. 2017b. Two Southern Ocean diatoms are more sensitive to ocean acidification and changes in irradiance than the prymnesiophyte Phaeocystis antarctica. Physiol. Plant. 160:15570
    [Google Scholar]
  128. Tungaraza C, Rousseau V, Brion N, Lancelot C, Gichuki J et al. 2003. Contrasting nitrogen uptake by diatom and Phaeocystis-dominated phytoplankton assemblages in the North Sea. J. Exp. Mar. Biol. Ecol. 292:1941
    [Google Scholar]
  129. van der Zee C, Chou L. 2005. Seasonal cycling of phosphorus in the Southern Bight of the North Sea. Biogeosciences 2:2742
    [Google Scholar]
  130. van Leeuwe MA, Visser RJW, Stefels J. 2014. The pigment composition of Phaeocystis antarctica (Haptophyceae) under various conditions of light, temperature, salinity, and iron. J. Phycol. 50:107080
    [Google Scholar]
  131. van Rijssel M, Alderkamp AC, Nejstgaard JC, Sazhin AF, Verity PG. 2007. Haemolytic activity of living Phaeocystis pouchetii during mesocosm blooms. Biogeochemistry 83:189200
    [Google Scholar]
  132. Vance TR, Davidson AT, Thomson PG, Levasseur M, Lizotte M et al. 2013. Rapid DMSP production by an Antarctic phytoplankton community exposed to natural surface irradiances in late spring. Aquat. Microb. Ecol. 71:11729
    [Google Scholar]
  133. Veldhuis MJW, Admiraal W. 1987. Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii. Mar. Biol. 95:4754
    [Google Scholar]
  134. Veldhuis MJW, Brussaard CPD, Noordeloos AAM. 2005. Living in a Phaeocystis colony: a way to be a successful algal species. Harmful Algae 4:84158
    [Google Scholar]
  135. Verity PG, Smayda TJ, Sakshaug E. 1991. Photosynthesis, excretion, and growth rates of Phaeocystis colonies and solitary cells. Polar Res. 10:11728
    [Google Scholar]
  136. Verity PG, Whipple SJ, Nejstgaard JC, Alderkamp A-C. 2007. Colony size, cell number, carbon and nitrogen contents of Phaeocystis pouchetii from western Norway. J. Plankton Res. 29:35967
    [Google Scholar]
  137. Wang JX, Kong F, Chen Z, Zhang Q, Yu R et al. 2019. Characterization of pigment composition of six strains of Phaeocystis globosa. Oceanol. Limnol. Sin. 50:61120 ( In Chinese with English abstract )
    [Google Scholar]
  138. Wang JX, Kong FZ, Geng HX, Zhao Y, Guan WB et al. 2022. Pigment characterization of the giant-colony-forming haptophyte Phaeocystis globosa in the Beibu Gulf reveals blooms of different origins. . Appl. Environ. Microbiol. 88:e0165421
    [Google Scholar]
  139. Wang S, Moore JK. 2011. Incorporating Phaeocystis into a Southern Ocean ecosystem model. J. Geophys. Res. Oceans 116:C01019
    [Google Scholar]
  140. Wang X, Tang K, Wang Y, Smith WO Jr. 2010. Temperature effects on growth, colony development and carbon partitioning of three Phaeocystis species. Aquat. Biol. 9:23949
    [Google Scholar]
  141. Wang X, Wang Y, Ou L, Chen D. 2015. Allocation costs associated with induced defense in Phaeocystis globosa (Prymnesiophyceae): the effects of nutrient availability. Sci. Rep. 5:10850
    [Google Scholar]
  142. Wang X, Wang Y, Smith WO Jr. 2011. The role of nitrogen on the growth and colony development of Phaeocystis globosa (Prymnesiophyceae). Eur. J. Phycol. 46:30514
    [Google Scholar]
  143. Wassmann P, Ratkova T, Reigstad M. 2005. The contribution of single and colonial cells of Phaeocystis pouchetii to spring and summer blooms in the north-eastern North Atlantic. Harmful Algae 4:82340
    [Google Scholar]
  144. Wassmann P, Vernet M, Mitchell BG, Rey F. 1990. Mass sedimentation of Phaeocystis pouchetii in the Barents Sea. Mar. Ecol. Prog. Ser. 66:18395
    [Google Scholar]
  145. Wolf C, Iversen M, Klaas C, Metfies K. 2016. Limited sinking of Phaeocystis during a 12 day sediment trap study. Mol. Ecol. 25:342835
    [Google Scholar]
  146. Wollenburg JE, Katlein C, Nehrke G, Nöthig E-M, Matthiessen J et al. 2018. Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom. Sci. Rep. 8:7703
    [Google Scholar]
  147. Woodhouse MT, Carslaw KS, Mann GW, Vallina SM, Vogt M et al. 2010. Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethylsulphide. Atmos. Chem. Phys. 10:754559
    [Google Scholar]
  148. Xu K, Fu F-X, Hutchins DA. 2014. Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availability. Limnol. Oceanogr. 59:191931
    [Google Scholar]
  149. Zapata M, Jeffrey S, Wright SW, Rodríguez F, Garrido JL et al. 2004. Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar. Ecol. Prog. Ser. 270:83102
    [Google Scholar]
  150. Zhang S-F, Zhang K, Cheng H-M, Lin L, Wang D-Z. 2021. Comparative transcriptomics reveals colony formation mechanism of a harmful algal bloom species Phaeocystis globosa. Sci. Total Environ. 719:137454
    [Google Scholar]
/content/journals/10.1146/annurev-marine-022223-025031
Loading
/content/journals/10.1146/annurev-marine-022223-025031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error