1932

Abstract

Over the past several decades, there has developed a community-wide appreciation for the importance of mixing at the smallest scales to geophysical fluid dynamics on all scales. This appreciation has spawned greater participation in the investigation of ocean mixing and new ways to measure it. These are welcome developments given the tremendous separation in scales between the basins, ) m, and the turbulence, ) m, and the fact that turbulence that leads to thermodynamically irreversible mixing in high-Reynolds-number geophysical flows varies by at least eight orders of magnitude in both space and time. In many cases, it is difficult to separate the dependencies because measurements are sparse, also in both space and time. Comprehensive shipboard turbulence profiling experiments supplemented by Doppler sonar current measurements provide detailed observations of the evolution of the vertical structure of upper-ocean turbulence on timescales of minutes to weeks. Recent technical developments now permit measurements of turbulence in the ocean, at least at a few locations, for extended periods. This review summarizes recent and classic results in the context of our expanding knowledge of the temporal variability of ocean mixing, beginning with a discussion of the timescales of the turbulence itself (seconds to minutes) and how turbulence-enhanced mixing varies over hours, days, tidal cycles, monsoons, seasons, and El Niño–Southern Oscillation timescales (years).

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Variations in Ocean Mixing from Seconds to Years
Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-031920-122846
2021-01-03
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-031920-122846.html?itemId=/content/journals/10.1146/annurev-marine-031920-122846&mimeType=html&fmt=ahah

Literature Cited

  1. Alford MH, Gregg MC 2001. Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J. Geophys. Res. 106:16947–68
    [Google Scholar]
  2. Alford MH, MacKinnon JA, Simmons HL, Nash JD 2016. Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci. 8:95–123
    [Google Scholar]
  3. Anis A, Moum JN 1992. The superadiabatic surface layer of the ocean during convection. J. Phys. Oceanogr. 22:1221–27
    [Google Scholar]
  4. Anis A, Moum JN 1994. Prescriptions for heat flux and entrainment rates in the upper ocean during convection. J. Phys. Oceanogr. 24:2142–55
    [Google Scholar]
  5. Beaird N, Fer I, Rhines P, Eriksen C 2012. Dissipation of turbulent kinetic energy inferred from Seagliders: an application to the eastern Nordic Seas overflows. J. Phys. Oceanogr. 42:2268–82
    [Google Scholar]
  6. Becherer J, Moum JN 2017. An efficient scheme for onboard reduction of moored χpod data. J. Atmos. Ocean. Technol. 34:2533–46
    [Google Scholar]
  7. Bird RB, Stewart WE, Lightfoot EN 2007. Transport Phenomena New York: Wiley. 2nd ed.
    [Google Scholar]
  8. Bister M, Emanuel KA 1998. Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys. 65:233–40
    [Google Scholar]
  9. Brainerd KE, Gregg MC 1993. Diurnal restratification and turbulence in the oceanic surface mixed layer: 2. Modeling. J. Geophys. Res. 98:22657–64
    [Google Scholar]
  10. Brubaker JM 1987. Similarity structure in the convective boundary layer of a lake. Nature 330:742–45
    [Google Scholar]
  11. Bunker AF 1955. Turbulence and shearing stresses measured over the North Atlantic Ocean by an airplane acceleration technique. J. Meteorol. 12:445–55
    [Google Scholar]
  12. Chang M-H, Jheng S-Y, Lien R-C 2016. Trains of large Kelvin-Helmholtz billows observed in the Kuroshio above a seamount. Geophys. Res. Lett. 43:8654–61
    [Google Scholar]
  13. Cherian DA, Shroyer EL, Wijesekera H, Moum JN 2020. The seasonal cycle of upper-ocean mixing at 8°N in the Bay of Bengal. J. Phys. Oceanogr. 50:323–42
    [Google Scholar]
  14. Colosi JA, Kumar N, Suanda SH, Freismuth TM, MacMahan JH 2018. Statistics of internal tide bores and internal solitary waves observed on the inner continental shelf off Point Sal, California. J. Phys. Oceanogr. 48:123–43
    [Google Scholar]
  15. D'Asaro EA, Lien R-C 2007. Lagrangian measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr. 30:641–55
    [Google Scholar]
  16. D'Asaro EA, Sanford TB, Niiler PP, Terrill EJ 2000. Cold wake of Hurricane Frances. Geophys. Res. Lett. 34:L15609
    [Google Scholar]
  17. Delorme BL, Thomas LN 2019. Abyssal mixing through critical reflection of equatorially trapped waves off smooth topography. J. Phys. Oceanogr. 49:519–42
    [Google Scholar]
  18. DeSzoeke SP, Edson JB, Marion JR, Fairall CW, Bariteau L 2015. The MJO and air–sea interaction in TOGA COARE and DYNAMO. J. Clim. 28:597–622
    [Google Scholar]
  19. Dillon TM, Caldwell DR 1980. The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res. 85:1910–16
    [Google Scholar]
  20. Emanuel K 2003. Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31:75–104
    [Google Scholar]
  21. Evans DG, Lucas NS, Hemsley VS, Frajka-Williams E, Naveira Garabato AC et al. 2018. Annual cycle of turbulent dissipation estimated from Seagliders. Geophys. Res. Lett. 45:10560–69
    [Google Scholar]
  22. Fairall CW, Bradley EF, Godfrey JS, Wick GA, Edson JB, Young GS 1996. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res. 101:1295–308
    [Google Scholar]
  23. Fer I, Muller M, Peterson AK 2015. Tidal forcing, energetics, and mixing near the Yermak Plateau. Ocean Sci. 11:287–304
    [Google Scholar]
  24. Fer I, Muller M, Peterson AK 2016. Observations of energetic turbulence on the Weddell Sea continental slope. Geophys. Res. Lett. 43:760–66
    [Google Scholar]
  25. Ferrari R, Wunsch C 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41:253–82
    [Google Scholar]
  26. Gargett AE 1994. Observing turbulence with a modified acoustic Doppler current profiler. J. Ocean. Atmos. Technol. 11:1592–610
    [Google Scholar]
  27. Gargett AE, Osborn TR, Nasmyth PW 1984. Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech. 144:231–80
    [Google Scholar]
  28. Garrett C, Kunze E 2007. Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39:57–87
    [Google Scholar]
  29. Geyer WR, Lavery A, Scully ME, Trowbridge JH 2010. Mixing by shear instability at high Reynolds number. Geophys. Res. Lett. 37:L22607
    [Google Scholar]
  30. Goswami BN, Rao SA, Sengupta D, Chakravorty S 2016. Monsoons to mixing in the Bay of Bengal: multiscale air-sea interactions and monsoon predictability. Oceanography 29(2):18–27
    [Google Scholar]
  31. Grant HL, Stewart RW, Moilliet A 1962. Turbulence spectra from a tidal channel. J. Fluid Mech. 12:241–68
    [Google Scholar]
  32. Gregg MC 1977. Variations in the intensity of small-scale mixing in the main thermocline. J. Phys. Oceanogr. 7:436–54
    [Google Scholar]
  33. Gregg MC 1991. The study of mixing in the ocean: a brief history. Oceanography 4(1):39–45
    [Google Scholar]
  34. Gregg MC, D'Asaro EA, Riley JJ, Kunze E 2018. Mixing efficiency in the ocean. Annu. Rev. Mar. Sci. 10:443–73
    [Google Scholar]
  35. Gregg MC, D'Asaro EA, Shay TJ, Larson N 1986. Observations of persistent mixing and near-inertial internal waves. J. Phys. Oceanogr. 16:856–85
    [Google Scholar]
  36. Hebert D, Moum JN 1994. Decay of a near-inertial wave. J. Phys. Oceanogr. 24:2334–51
    [Google Scholar]
  37. Held I 2013. The cause of the pause. Nature 501:318–19
    [Google Scholar]
  38. Holmes RN, Moum JN, Thomas LN 2016. Evidence for seafloor-intensified mixing by surface-generated equatorial waves. Geophys. Res. Lett. 43:1202–10
    [Google Scholar]
  39. Holmes RN, Zika JD, England MH 2019. Diathermal heat transport in a global ocean model. J. Phys. Oceanogr. 49:141–61
    [Google Scholar]
  40. Hughes KG, Moum JN, Shroyer EL 2020. Evolution of the velocity structure in the diurnal warm layer. J. Phys. Oceanogr. 50:615–31
    [Google Scholar]
  41. Imberger J 1985. The diurnal mixed layer. Limnol. Oceanogr. 30:737–70
    [Google Scholar]
  42. IPCC (Intergov. Panel Clim. Change) 2019. Special report on the ocean and cryosphere in a changing climate. Rep., IPCC, Geneva. https://www.ipcc.ch/srocc
    [Google Scholar]
  43. Iwasaki S, Isobe A, Miyao Y 2015. Fortnightly atmospheric tides forced by spring and neap tides in coastal waters. Sci. Rep. 5:10167
    [Google Scholar]
  44. Jochum M, Briegleb BP, Danabasoglu G, Large WG, Jayne SR et al. 2013. On the impact of oceanic near-inertial waves on climate. J. Clim. 26:2833–44
    [Google Scholar]
  45. Johnston TMS, Rudnick DL, Brizuela N, Moum JN 2020. Advection by the North Equatorial Current of a cold wake due to multiple typhoons in the western Pacific: measurements from a profiling float array. J. Geophys. Res. 125:e2019JC015534
    [Google Scholar]
  46. Klymak JM, Gregg MC 2004. Tidally generated turbulence over the Knight Inlet sill. J. Phys. Oceanogr. 34:1135–51
    [Google Scholar]
  47. Kolmogorov AN 1941. Local structure of turbulence in an incompressible viscous fluid at very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30:299–301
    [Google Scholar]
  48. Kosaka Y, Xie SP 2013. Recent global warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–7
    [Google Scholar]
  49. Kunze E 2019. A unified model spectrum for anisotropic stratified and isotropic turbulence in the ocean and atmosphere. J. Phys. Oceanogr. 49:385–407
    [Google Scholar]
  50. Ledwell J, Duda T, Sundermeyer M, Seim H 2004. Mixing in a coastal environment: 1. A view from dye dispersion. J. Geophys. Res. 109:C10013
    [Google Scholar]
  51. Ledwell J, St. Laurent LC, Girton J, Toole J 2011. Diapycnal mixing in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 41:241–46
    [Google Scholar]
  52. Ledwell J, Montgomery E, Polzin K, St. Laurent LC, Schmitt R, Toole J 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:17–82
    [Google Scholar]
  53. Ledwell J, Watson A, Law C 1998. Mixing of a tracer in the pycnocline. J. Geophys. Res. 103:2149–529
    [Google Scholar]
  54. Lindborg E 2006. The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550:207–42
    [Google Scholar]
  55. Lueck RG, Wolk F, Yamazaki H 2002. Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr. 58:153–74
    [Google Scholar]
  56. MacCready PB 1962. Turbulence measurements by sailplane. J. Geophys. Res. 67:1041–50
    [Google Scholar]
  57. MacKinnon JA, Zhao Z, Whalen CB, Waterhouse AF, Trossman DS et al. 2017. Climate process team on internal wave-driven ocean mixing. Bull. Am. Meteorol. Soc. 98:2429–54
    [Google Scholar]
  58. Mashayek A, Ferrari R, Merrifield S, Ledwell JR, St. Laurent L, Naveira Garabato A 2017. Topographic enhancement of vertical turbulent mixing in the Southern Ocean. Nat. Commun. 8:14197
    [Google Scholar]
  59. Moulin AJ, Moum JN, Shroyer EL 2018. Evolution of turbulence in the diurnal warm layer. J. Phys. Oceanogr. 48:383–96
    [Google Scholar]
  60. Moum JN 1996. Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res. 101:14095–109
    [Google Scholar]
  61. Moum JN 2015. Ocean speed and turbulence measurements using pitot-static tubes on moorings. J. Atmos. Ocean. Technol. 32:1400–13
    [Google Scholar]
  62. Moum JN, Caldwell DR, Nash JD, Gunderson GD 2002. Observations of boundary mixing over the continental slope. J. Phys. Oceanogr. 32:2113–30
    [Google Scholar]
  63. Moum JN, Farmer DM, Smyth WD, Armi L, Vagle S 2003. Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr. 33:2093–112
    [Google Scholar]
  64. Moum JN, Gregg MC, Lien RC, Carr ME 1995. Comparison of turbulent kinetic energy dissipation rates from two ocean microstructure profilers. J. Atmos. Ocean. Technol. 12:346–66
    [Google Scholar]
  65. Moum JN, Lien RC, Perlin A, Nash JD, Gregg MC, Wiles PJ 2009. Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci. 2:761–65
    [Google Scholar]
  66. Moum JN, Nash JD 2009. Mixing measurements on an equatorial ocean mooring. J. Atmos. Ocean. Technol. 26:317–36
    [Google Scholar]
  67. Moum JN, Nash JD, Smyth WD 2011. Narrowband high-frequency oscillations at the equator. Part I: interpretation as shear instabilities. J. Phys. Oceanogr. 41:397–411
    [Google Scholar]
  68. Moum JN, Osborn TR 1986. Mixing in the main thermocline. J. Phys. Oceanogr. 16:1250–59
    [Google Scholar]
  69. Moum JN, Perlin A, Nash JD, McPhaden MJ 2013. Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature 500:64–67
    [Google Scholar]
  70. Moum JN, Pujiana K, Lien RC, Smyth WD 2016. Ocean feedback to pulses of the Madden–Julian Oscillation in the equatorial Indian Ocean. Nat. Commun. 7:13203
    [Google Scholar]
  71. Moum JN, Rippeth TP 2009. Do observations adequately resolve the natural variability of oceanic turbulence?. J. Mar. Syst 77:40917
    [Google Scholar]
  72. Munk W, Wunsch C 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45:1977–2010
    [Google Scholar]
  73. Nash JD, Kelly SM, Shroyer EL, Moum JN, Duda TF 2012. The unpredictable nature of internal tides on the continental shelf. J. Phys. Oceanogr. 41:1981–2000
    [Google Scholar]
  74. Nash JD, Moum JN 2001. Internal hydraulic flows on the continental shelf: high drag states over a small bank. J. Geophys. Res. 106:4593–612
    [Google Scholar]
  75. Osborn TR 1974. Vertical profiling of velocity microstructure. J. Phys. Oceanogr. 4:109–15
    [Google Scholar]
  76. Osborn TR 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10:83–89
    [Google Scholar]
  77. Osborn TR, Cox CS 1972. Oceanic fine structure. Geophys. Fluid Dyn. 3:321–45
    [Google Scholar]
  78. Perlin A, Moum JN 2012. Comparison of thermal variance dissipation rates from moored and profiling instruments at the equator. J. Atmos. Ocean. Technol. 29:1347–62
    [Google Scholar]
  79. Perlin A, Moum JN, Klymak JM, Levine MD, Boyd T, Kosro PM 2005. A modified law of the wall applied to oceanic bottom boundary layers. J. Geophys. Res. 110:C10S10
    [Google Scholar]
  80. Peters H, Gregg MC, Sanford TB 1995. Details and scaling of turbulent overturns in the Pacific Equatorial Undercurrent. J. Geophys. Res. 100:805–45
    [Google Scholar]
  81. Polzin KL, Speer KG, Toole JM, Schmitt RW 1996. Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature 380:54–57
    [Google Scholar]
  82. Polzin KL, Toole JM, Ledwell J, Schmitt RW 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93–96
    [Google Scholar]
  83. Pomeau Y 2016. The long and winding road. Nat. Phys. 12:198–99
    [Google Scholar]
  84. Pope SB 2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  85. Price JF, Weller RA, Pinkel R 1986. Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. 91:8411–27
    [Google Scholar]
  86. Pujiana K, Moum JN, Smyth WD 2018. The role of turbulence in redistributing upper-ocean heat, freshwater, and momentum in response to the MJO in the equatorial Indian Ocean. J. Phys. Oceanogr. 48:197–220
    [Google Scholar]
  87. Rainville L, Gobat J, Lee CM, Shilling GB 2017. Multi-month dissipation estimates using microstructure from autonomous underwater gliders. Oceanography 30(2):49–50
    [Google Scholar]
  88. Ray RD, Susanto RD 2019. A fortnightly atmospheric tide at Bali caused by oceanic tidal mixing in Lombok Strait. Geosci. Lett. 6:6
    [Google Scholar]
  89. Rippeth TP, Vlasenko V, Stashchuk N, Scannell BD, Green JAM et al. 2017. Tidal conversion and mixing poleward of the critical latitude (an Arctic case study). Geophys. Res. Lett. 44:12349–57
    [Google Scholar]
  90. Roemmich D, Alford MH, Claustre H, Johnson K, King B et al. 2019. On the future of Argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6:439
    [Google Scholar]
  91. Ruppert JH, Johnson RH 2016. On the cumulus diurnal cycle over the tropical warm pool. J. Adv. Model. Earth Syst. 8:669–90
    [Google Scholar]
  92. Sanford TB, Price JF, Girton JB 2011. Upper ocean response to Hurricane Francis (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr. 41:1041–56
    [Google Scholar]
  93. Schultze LKP, Merckelbach L, Carpenter JR 2017. Turbulence and mixing in a shallow stratified shelf sea from underwater gliders. J. Geophys. Res. 122:9092–109
    [Google Scholar]
  94. Shay TJ, Gregg MC 1986. Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr. 16:1777–98
    [Google Scholar]
  95. Shroyer EL, Moum JN, Nash JD 2010. Vertical heat flux and lateral mass transport in nonlinear internal waves. Geophys. Res. Lett. 37:L08601
    [Google Scholar]
  96. Shroyer EL, Rudnick DL, Farrar JT, Lim B, Venayagamoorthy SK et al. 2016. Modification of upper-ocean temperature structure by subsurface mixing in the presence of strong salinity stratification. Oceanography 29(2):62–71
    [Google Scholar]
  97. Sinhuber M, Bodenschatz E, Bewley GP 2015. Decay of turbulence at high Reynolds numbers. Phys. Rev. Lett. 114:034501
    [Google Scholar]
  98. Sinnet G, Feddersen F 2018. The competing effects of breaking waves on surfzone heat fluxes: albedo versus wave heating. J. Geophys. Res. 123:7172–84
    [Google Scholar]
  99. Smyth WD, Carpenter JR 2019. Instability in Geophysical Flows Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  100. Smyth WD, Moum JN 2012. Ocean mixing by Kelvin-Helmholtz instability. Oceanography 25(2):140–49
    [Google Scholar]
  101. Smyth WD, Moum JN 2013. Marginal instability and deep cycle mixing in the eastern equatorial Pacific Ocean. Geophys. Res. Lett. 40:6181–85
    [Google Scholar]
  102. Smyth WD, Moum JN, Caldwell DR 2001. The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr. 31:1969–92
    [Google Scholar]
  103. Smyth WD, Moum JN, Li L, Thorpe SA 2013. Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial turbulence. J. Phys. Oceanogr. 43:2432–55
    [Google Scholar]
  104. Smyth WD, Moum JN, Nash JD 2011. Narrowband, high-frequency oscillations at the equator. Part II: properties of shear instabilities. J. Phys. Oceanogr. 41:412–28
    [Google Scholar]
  105. Smyth WD, Zavialov P, Moum JN 1997. Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oceanogr. 27:810–22
    [Google Scholar]
  106. Sreenivasan KR 1991. Fractals and multifractals in turbulence. Annu. Rev. Fluid Mech. 23:539–600
    [Google Scholar]
  107. St. Laurent L, Merrifield S 2017. Measurements of near-surface turbulence and mixing from autonomous ocean gliders. Oceanography 30(2):116–25
    [Google Scholar]
  108. Sutherland GL, Marie L, Reverdin G, Christensen KH, Brostrom G, Ward B 2016. Enhanced turbulence associated with the diurnal jet in the ocean surface boundary layer. J. Phys. Oceanogr. 46:3051–67
    [Google Scholar]
  109. Sutherland P, Melville WK 2015. Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. 45:943–65
    [Google Scholar]
  110. Taylor JR, Marie L, de Bruyn Kops SM, Caulfield CP, Linden PF 2019. Testing the assumptions underlying ocean mixing methodologies using direct numerical simulations. J. Phys. Oceanogr. 49:2761–79
    [Google Scholar]
  111. ten Doeschate A, Sutherland G, Esters L, Wain D, Walesby K, Ward B 2017. ASIP: profiling the upper ocean. Oceanography 30(2):33–35
    [Google Scholar]
  112. Thakur R, Shroyer EL, Govindarajan R, Farrar JT, Weller RA, Moum JN 2019. Seasonality and buoyancy suppression of turbulence in the Bay of Bengal. Geophys. Res. Lett. 46:4346–55
    [Google Scholar]
  113. Thompson EJ, Moum JN, Rutledge SA, Fairall CW 2019. Wind limits on rain layers and diurnal warm layers. J. Geophys. Res. 124:897–924
    [Google Scholar]
  114. Thorpe SA 1971. Experiments on the instability of stratified shear flows: miscible fluids. J. Fluid Mech. 46:299–319
    [Google Scholar]
  115. Toole JM, Polzin KL, Schmitt RW 1994. Estimates of diapycnal mixing in the abyssal ocean. Science 264:1120–23
    [Google Scholar]
  116. Trowbridge JH, Lentz SJ 2018. The bottom boundary layer. Annu. Rev. Mar. Sci. 10:397–420
    [Google Scholar]
  117. van Haren H, Gostiaux L 2010. A deep-ocean Kelvin-Helmholtz billow train. Geophys. Res. Lett. 37:L03605
    [Google Scholar]
  118. Venkatesan R, Ramesh K, Muthiah MA, Thirumurugan K, Atmanand MA 2019. Analysis of drift characteristic in conductivity and temperature sensors used in moored buoy system. Ocean Eng. 171:151–56
    [Google Scholar]
  119. Vic C, Naveira Garabato AC, Green JAM, Waterhouse AF, Zhao Z et al. 2019. Deep-ocean mixing driven by small-scale internal tides. Nat. Commun. 10:2099
    [Google Scholar]
  120. Warner SJ, Becherer J, Pujiana K, Shroyer EL, Ravichandran M et al. 2016. Monsoon mixing cycles in the Bay of Bengal: a year-long subsurface mixing record. Oceanography 29(2):158–69
    [Google Scholar]
  121. Warner SJ, Moum JN 2019. Feedback of mixing to ENSO phase change. Geophys. Res. Lett. 46:13920–27
    [Google Scholar]
  122. Wesson JC, Gregg MC 1994. Mixing at Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res. 99:9847–78
    [Google Scholar]
  123. Whalen CB, Talley LD, MacKinnon JA 2012. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett. 39:L18612
    [Google Scholar]
  124. Woods JD 1968. Wave-induced shear instability in the summer thermocline. J. Fluid Mech. 32:791–800
    [Google Scholar]
  125. Wyngaard JC, Cote OR, Izumi Y 1971. Local free convection, similarity and the budgets of shear stress and heat flux. J. Atmos. Sci. 28:1171–82
    [Google Scholar]
  126. Xie SP 2013. Unequal equinoxes. Nature 500:33–34
    [Google Scholar]
  127. Zhang Y, Moum JN 2010. Inertial-convective subrange estimates of thermal variance dissipation rate from moored temperature measurements. J. Atmos. Ocean. Technol. 27:1950–59
    [Google Scholar]
/content/journals/10.1146/annurev-marine-031920-122846
Loading
/content/journals/10.1146/annurev-marine-031920-122846
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error