1932

Abstract

A key Earth system science question is the role of atmospheric deposition in supplying vital nutrients to the phytoplankton that form the base of marine food webs. Industrial and vehicular pollution, wildfires, volcanoes, biogenic debris, and desert dust all carry nutrients within their plumes throughout the globe. In remote ocean ecosystems, aerosol deposition represents an essential new source of nutrients for primary production. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This review brings together existing literature, experimental evidence of impacts, and new atmospheric nutrient observations that can be compared with atmospheric and ocean biogeochemistry modeling. We evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and oceanic impacts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-031921-013612
2022-01-03
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-031921-013612.html?itemId=/content/journals/10.1146/annurev-marine-031921-013612&mimeType=html&fmt=ahah

Literature Cited

  1. Altieri KE, Fawcett SE, Hastings MG. 2021. Reactive nitrogen cycling in the atmosphere and ocean. Annu. Rev. Earth Planet. Sci. 49:513–40 https://doi.org/10.1146/annurev-earth-083120-052147
    [Crossref] [Google Scholar]
  2. Andreae MO. 2019. Emission of trace gases and aerosols from biomass burning – an updated assessment. Atmos. Chem. Phys. 19:8523–46 https://doi.org/10.5194/acp-19-8523-2019
    [Crossref] [Google Scholar]
  3. Atanassova I, Doerr SH. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. Eur. J. Soil Sci. 62:516–32 https://doi.org/10.1111/j.1365-2389.2011.01350.x
    [Crossref] [Google Scholar]
  4. Aumont O, Ethé C, Tagliabue A, Bopp L, Gehlen M. 2015. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8:2465–513 https://doi.org/10.5194/gmd-8-2465-2015
    [Crossref] [Google Scholar]
  5. Baker AR, Adams C, Bell TG, Jickells TD, Ganzeveld L. 2013. Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling: iron and other dust-associated elements. Glob. Biogeochem. Cycles 27:755–67 https://doi.org/10.1002/gbc.20062
    [Crossref] [Google Scholar]
  6. Baker AR, Croot PL. 2010. Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. 120:4–13 https://doi.org/10.1016/j.marchem.2008.09.003
    [Crossref] [Google Scholar]
  7. Baker AR, Jickells TD. 2017. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT). Prog. Oceanogr. 158:41–51 https://doi.org/10.1016/j.pocean.2016.10.002
    [Crossref] [Google Scholar]
  8. Baker AR, Jickells TD, Biswas KF, Weston K, French M. 2006. Nutrients in atmospheric aerosol particles along the Atlantic Meridional Transect. Deep-Sea Res. II 53:1706–19 https://doi.org/10.1016/j.dsr2.2006.05.012
    [Crossref] [Google Scholar]
  9. Baker AR, Virkkula A, Correia AL, Bollhoefer A, Kumar A et al. 2014. Aerosol and rain composition and deposition. SOLAS Project Integration https://www.bodc.ac.uk/solas_integration/implementation_products/group1/aerosol_rain
    [Google Scholar]
  10. Baker AR, Weston K, Kelly SD, Voss M, Streu P, Cape JN. 2007. Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: links to primary productivity and nitrogen fixation. Deep-Sea Res. I 54:1704–20 https://doi.org/10.1016/j.dsr.2007.07.001
    [Crossref] [Google Scholar]
  11. Barkley AE, Prospero JM, Mahowald NM, Hamilton DS, Popendorf KJ et al. 2019. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. PNAS 116:16216–21 https://doi.org/10.1073/pnas.1906091116
    [Crossref] [Google Scholar]
  12. Bhattarai H, Saikawa E, Wan X, Zhu H, Ram K et al. 2019. Levoglucosan as a tracer of biomass burning: recent progress and perspectives. Atmos. Res. 220:20–33 https://doi.org/10.1016/j.atmosres.2019.01.004
    [Crossref] [Google Scholar]
  13. Boer MM, Resco de Dios V, Bradstock RA 2020. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10:171–72 https://doi.org/10.1038/s41558-020-0716-1
    [Crossref] [Google Scholar]
  14. Bowie AR, Lannuzel D, Remenyi TA, Wagener T, Lam PJ et al. 2009. Biogeochemical iron budgets of the Southern Ocean south of Australia: decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply. Glob. Biogeochem. Cycles 23:GB4034 https://doi.org/10.1029/2009GB003500
    [Crossref] [Google Scholar]
  15. Boyd PW, Ellwood MJ 2010. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3:675–82 https://doi.org/10.1038/ngeo964
    [Crossref] [Google Scholar]
  16. Boyd PW, Strzepek R, Chiswell S, Chang H, DeBruyn JM et al. 2012. Microbial control of diatom bloom dynamics in the open ocean. Geophys. Res. Lett. 39:2–7 https://doi.org/10.1029/2012GL053448
    [Crossref] [Google Scholar]
  17. Boyd PW, Strzepek RF, Ellwood MJ, Hutchins DA, Nodder SD et al. 2015. Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?. Glob. Biogeochem. Cycles 29:1028–43 https://doi.org/10.1002/2014GB005014
    [Crossref] [Google Scholar]
  18. Brahney J, Mahowald NM, Ward DS, Ballantyne AP, Neff JC. 2015. Is atmospheric phosphorus pollution altering global alpine lake stoichiometry?. Glob. Biogeochem. Cycles 29:1369–83 https://doi.org/10.1002/2015GB005137
    [Crossref] [Google Scholar]
  19. Bressac M, Guieu C. 2013. Post-depositional processes: What really happens to new atmospheric iron in the ocean's surface?. Glob. Biogeochem. Cycles 27:859–70 https://doi.org/10.1002/gbc.20076
    [Crossref] [Google Scholar]
  20. Cao F, Zhang SC, Kawamura K, Liu X, Yang C et al. 2017. Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of northeast China. Environ. Pollut. 231:654–62 https://doi.org/10.1016/j.envpol.2017.08.045
    [Crossref] [Google Scholar]
  21. Capone D, Zehr J, Paerl H, Bergman B, Carpenter E. 1997. Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–29 https://doi.org/10.1126/science.276.5316.1221
    [Crossref] [Google Scholar]
  22. Cassar N, Bender ML, Barnett BA, Fan S, Moxim WJ et al. 2007. The Southern Ocean biological response to aeolian iron deposition. Science 317:1067–70 https://doi.org/10.1126/science.1144602
    [Crossref] [Google Scholar]
  23. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T. 2006. Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interface Sci. 298:602–8 https://doi.org/10.1016/j.jcis.2005.12.054
    [Crossref] [Google Scholar]
  24. Cong Z, Kawamura K, Kang S, Fu P. 2015. Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Sci. Rep. 5:9580 https://doi.org/10.1038/srep09580
    [Crossref] [Google Scholar]
  25. Conway TM, Hamilton DS, Shelley RU, Aguilar-Islas AM, Landing WM et al. 2019. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nat. Commun. 10:2628 https://doi.org/10.1038/s41467-019-10457-w
    [Crossref] [Google Scholar]
  26. de Baar HJW, Boyd PW, Coale KH, Landry MR, Tsuda A et al. 2005. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res. C 110:C09S16 https://doi.org/10.1029/2004JC002601
    [Crossref] [Google Scholar]
  27. Després VR, Huffman JA, Burrows SM, Hoose C, Safatov AS et al. 2012. Primary biological aerosol particles in the atmosphere: a review. Tellus B 64:15598 https://doi.org/10.3402/tellusb.v64i0.15598
    [Crossref] [Google Scholar]
  28. Di Virgilio G, Evans JP, Blake SAP, Armstrong M, Dowdy AJ et al. 2019. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46:8517–26 https://doi.org/10.1029/2019GL083699
    [Crossref] [Google Scholar]
  29. Doney SC, Lima I, Feely RA, Glover DM, Lindsay K et al. 2009. Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: physical climate and atmospheric dust. Deep-Sea Res. II 56:640–55 https://doi.org/10.1016/j.dsr2.2008.12.006
    [Crossref] [Google Scholar]
  30. Dowdy AJ, Ye H, Pepler A, Thatcher M, Osbrough SL et al. 2019. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 9:10073 https://doi.org/10.1038/s41598-019-46362-x
    [Crossref] [Google Scholar]
  31. Duce RA, Liss PS, Merrill JT, Atlas EL, Buat-Menard P et al. 1991. The atmospheric input of trace species to the world ocean. Glob. Biogeochem. Cycles 5:193–259 https://doi.org/10.1029/91GB01778
    [Crossref] [Google Scholar]
  32. Duggen S, Croot P, Schacht U, Hoffmann L. 2007. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett. 34:L01612 https://doi.org/10.1029/2006GL027522
    [Crossref] [Google Scholar]
  33. Duggen S, Olgun N, Croot P, Hoffmann L, Dietze H et al. 2010. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences 7:827–44 https://doi.org/10.5194/bg-7-827-2010
    [Crossref] [Google Scholar]
  34. Dukes D, Gonzales HB, Ravi S, Grandstaff DE, Van Pelt RS et al. 2018. Quantifying postfire aeolian sediment transport using rare earth element tracers. J. Geophys. Res. Biogeosci. 123:288–99 https://doi.org/10.1002/2017JG004284
    [Crossref] [Google Scholar]
  35. FAO (Food Agric. Organ. UN) 2017. World fertilizer trends and outlook to 2020: summary report Rep. FAO, Rome: http://www.fao.org/3/a-i6895e.pdf
  36. Fishwick MP, Sedwick PN, Lohan MC, Worsfold PJ, Buck KN et al. 2014. The impact of changing surface ocean conditions on the dissolution of aerosol iron. Glob. Biogeochem. Cycles 28:1235–50 https://doi.org/10.1002/2014GB004921
    [Crossref] [Google Scholar]
  37. For. Fire Manag. Vic 2021. Past bushfires: a chronology of major bushfires in Victoria from 2013 back to 1851. Forest Fire Management Victoria https://www.ffm.vic.gov.au/history-and-incidents/past-bushfires
    [Google Scholar]
  38. Fu W, Randerson JT, Moore JK. 2016. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13:5151–70 https://doi.org/10.5194/bg-13-5151-2016
    [Crossref] [Google Scholar]
  39. Fung I, Meyn SK, Tegen I, Doney S, John J, Bishop J 2000. Iron supply and demand in the upper ocean. Glob. Biogeochem. Cycles 14:281–95 https://doi.org/10.1029/1999GB900059
    [Crossref] [Google Scholar]
  40. Gabric AJ, Cropp RA, McTainsh GH, Johnston BM, Butler H et al. 2010. Australian dust storms in 2002–2003 and their impact on Southern Ocean biogeochemistry. Glob. Biogeochem. Cycles 24:GB2005 https://doi.org/10.1029/2009GB003541
    [Crossref] [Google Scholar]
  41. Gaudichet A, Echalar F, Chatenet B, Quisefit JP, Malingre G et al. 1995. Trace elements in tropical African savanna biomass burning aerosols. J. Atmos. Chem. 22:19–39 https://doi.org/10.1007/BF00708179
    [Crossref] [Google Scholar]
  42. Gazeau F, Ridame C, Van Wambeke F, Alliouane S, Stolpe C et al. 2020. Impact of dust enrichment on Mediterranean plankton communities under present and future conditions of pH and temperature: an experimental overview. Biogeosci. Discuss In review. https://doi.org/10.5194/bg-2020-202
    [Crossref] [Google Scholar]
  43. Geng H, Park Y, Hwang H, Kang S, Ro CU. 2009. Elevated nitrogen-containing particles observed in Asian dust aerosol samples collected at the marine boundary layer of the Bohai Sea and the Yellow Sea. Atmos. Chem. Phys. 9:6933–47 https://doi.org/10.5194/acp-9-6933-2009
    [Crossref] [Google Scholar]
  44. Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M. 2012. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50:RG3005 https://doi.org/10.1029/2012RG000388
    [Crossref] [Google Scholar]
  45. Giovagnetti V, Brunet C, Conversano F, Tramontano F, Obernosterer I et al. 2013. Assessing the role of dust deposition on phytoplankton ecophysiology and succession in a low-nutrient low-chlorophyll ecosystem: a mesocosm experiment in the mediterranean sea. Biogeosciences 10:2973–91 https://doi.org/10.5194/bg-10-2973-2013
    [Crossref] [Google Scholar]
  46. Graham B, Guyon P, Maenhaut W, Taylor PE, Ebert M et al. 2003. Composition and diurnal variability of the natural Amazonian aerosol. J. Geophys. Res. Atmos. 108:4765 https://doi.org/10.1029/2003JD004049
    [Crossref] [Google Scholar]
  47. Guieu C, Al Azhar M, Aumont O, Mahowald NM, Levy M et al. 2019. Major impact of dust deposition on the productivity of the Arabian Sea. Geophys. Res. Lett. 46:6736–44 https://doi.org/10.1029/2019GL082770
    [Crossref] [Google Scholar]
  48. Guieu C, Aumont O, Paytan A, Bopp L, Law CS et al. 2014a. The significance of the episodic nature of atmospheric deposition to Low Nutrient Low Chlorophyll regions. Glob. Biogeochem. Cycles 28:1179–98 https://doi.org/10.1002/2014GB004852
    [Crossref] [Google Scholar]
  49. Guieu C, Bonnet S, Wagener T, Loÿe-Pilot MD. 2005. Biomass burning as a source of dissolved iron to the open ocean?. Geophys. Res. Lett. 32:L19608 https://doi.org/10.1029/2005GL022962
    [Crossref] [Google Scholar]
  50. Guieu C, Dulac F, Desboeufs K, Wagener T, Pulido-Villena E et al. 2010. Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs. Biogeosciences 7:2765–84 https://doi.org/10.5194/bg-7-2765-2010
    [Crossref] [Google Scholar]
  51. Guieu C, Ridame C, Pulido-Villena E, Bressac M, Desboeufs K, Dulac F. 2014b. Impact of dust deposition on carbon budget: a tentative assessment from a mesocosm approach. Biogeosciences 11:5621–35 https://doi.org/10.5194/bg-11-5621-2014
    [Crossref] [Google Scholar]
  52. Hamilton DS, Hantson S, Scott CE, Kaplan JO, Pringle KJ et al. 2018. Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nat. Commun. 9:3182 https://doi.org/10.1038/s41467-018-05592-9
    [Crossref] [Google Scholar]
  53. Hamilton DS, Lee LA, Pringle KJ, Reddington CL, Spracklen DV, Carslaw KS 2014. Occurrence of pristine aerosol environments on a polluted planet. PNAS 111:18466–71 https://doi.org/10.1073/pnas.1415440111
    [Crossref] [Google Scholar]
  54. Hamilton DS, Moore JK, Arneth A, Bond TC, Carslaw KS et al. 2020a. Impact of changes to the atmospheric soluble iron deposition flux on ocean biogeochemical cycles in the Anthropocene. Glob. Biogeochem. Cycles 34:e2019GB006448 https://doi.org/10.1029/2019GB006448
    [Crossref] [Google Scholar]
  55. Hamilton DS, Scanza RA, Feng Y, Guinness J, Kok JF et al. 2019. Improved methodologies for Earth system modelling of atmospheric soluble iron and observation comparisons using the Mechanism of Intermediate complexity for Modelling Iron (MIMI v1.0). Geosci. Model Dev. 12:3835–62 https://doi.org/10.5194/gmd-12-3835-2019
    [Crossref] [Google Scholar]
  56. Hamilton DS, Scanza RA, Rathod SD, Bond TC, Kok JF et al. 2020b. Recent (1980 to 2015) trends and variability in daily-to-interannual soluble iron deposition from dust, fire, and anthropogenic sources. Geophys. Res. Lett. 47:e2020GL089688 https://doi.org/10.1029/2020GL089688
    [Crossref] [Google Scholar]
  57. Herbert RJ, Krom MD, Carslaw KS, Stockdale A, Mortimer RJG et al. 2018. The effect of atmospheric acid processing on the global deposition of bioavailable phosphorus from dust. Glob. Biogeochem. Cycles 32:1367–85 https://doi.org/10.1029/2018GB005880
    [Crossref] [Google Scholar]
  58. Hoffmann LJ, Breitbarth E, Ardelan MV, Duggen S, Olgun N et al. 2012. Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi. Mar. Chem.132–33–28–33 https://doi.org/10.1016/j.marchem.2012.02.003
    [Crossref] [Google Scholar]
  59. Ito A. 2015. Atmospheric processing of combustion aerosols as a source of bioavailable iron. Environ. Sci. Technol. Lett. 2:70–75 https://doi.org/10.1021/acs.estlett.5b00007
    [Crossref] [Google Scholar]
  60. Ito A, Adebiyi AA, Huang Y, Kok JF. 2021. Less atmospheric radiative heating due to aspherical dust with coarser size. Atmos. Chem. Phys. Discuss. In review. https://doi.org/10.5194/acp-2021-134
    [Crossref] [Google Scholar]
  61. Ito A, Lin G, Penner JE. 2018. Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides. Sci. Rep. 8:7347 https://doi.org/10.1038/s41598-018-25756-3
    [Crossref] [Google Scholar]
  62. Ito A, Myriokefalitakis S, Kanakidou M, Mahowald NM, Scanza RA et al. 2019. Pyrogenic iron: the missing link to high iron solubility in aerosols. Sci. Adv. 5:eaau7671 https://doi.org/10.1126/sciadv.aau7671
    [Crossref] [Google Scholar]
  63. Ito A, Perron MMG, Proemse BC, Strzelec M, Gault-Ringold M et al. 2020a. Evaluation of aerosol iron solubility over Australian coastal regions based on inverse modeling: implications of bushfires on bioaccessible iron concentrations in the Southern Hemisphere. Prog. Earth Planet. Sci. 7:42 https://doi.org/10.1186/s40645-020-00357-9
    [Crossref] [Google Scholar]
  64. Ito A, Shi Z. 2016. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean. Atmos. Chem. Phys. 16:85–99 https://doi.org/10.5194/acp-16-85-2016
    [Crossref] [Google Scholar]
  65. Ito A, Ye Y, Yamamoto A, Watanabe M, Aita MN. 2020b. Responses of ocean biogeochemistry to atmospheric supply of lithogenic and pyrogenic iron-containing aerosols. Geol. Mag. 157:741–56 https://doi.org/10.1017/S0016756819001080
    [Crossref] [Google Scholar]
  66. Jaenicke R, Matthias-Maser S, Gruber S 2007. Omnipresence of biological material in the atmosphere. Environ. Chem. 4:217–20 https://doi.org/10.1071/EN07021
    [Crossref] [Google Scholar]
  67. Jeanneau AC, Ostendorf B, Herrmann T. 2019. Relative spatial differences in sediment transport in fire-affected agricultural landscapes: a field study. Aeolian Res 39:13–22 https://doi.org/10.1016/j.aeolia.2019.04.002
    [Crossref] [Google Scholar]
  68. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71 https://doi.org/10.1126/science.1105959
    [Crossref] [Google Scholar]
  69. Jickells TD, Buitenhuis E, Altieri K, Baker AR, Capone D et al. 2017. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Glob. Biogeochem. Cycles 31:289–305 https://doi.org/10.1002/2016GB005586
    [Crossref] [Google Scholar]
  70. Johnson MS, Meskhidze N. 2013. Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy. Geosci. Model. Dev. 6:1137–55 https://doi.org/10.5194/gmd-6-1137-2013
    [Crossref] [Google Scholar]
  71. Journet E, Balkanski Y, Harrison SP. 2014. A new data set of soil mineralogy for dust-cycle modeling. Atmos. Chem. Phys. 14:3801–16 https://doi.org/10.5194/acp-14-3801-2014
    [Crossref] [Google Scholar]
  72. Journet E, Desbouefs K, Caqineau S, Colin J-L. 2008. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35:L07805 https://doi.org/10.1029/2007GL031589
    [Crossref] [Google Scholar]
  73. Kanakidou M, Duce RA, Prospero JM, Baker AR, Benitez-Nelson C et al. 2012. Atmospheric fluxes of organic N and P to the global ocean. Glob. Biogeochem. Cycles 26:GB3026 https://doi.org/10.1029/2011GB004277
    [Crossref] [Google Scholar]
  74. Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A et al. 2016. Past, present, and future atmospheric nitrogen deposition. J. Atmos. Sci. 73:2039–47 https://doi.org/10.1175/JAS-D-15-0278.1
    [Crossref] [Google Scholar]
  75. Kanakidou M, Myriokefalitakis S, Tsigaridis K. 2018. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environ. Res. Lett. 13:063004 https://doi.org/10.1088/1748-9326/aabcdb
    [Crossref] [Google Scholar]
  76. Kavouras IG, Nikolich G, Etyemezian V, Dubois DW, King J, Shafer D. 2012. In situ observations of soil minerals and organic matter in the early phases of prescribed fires. J. Geophys. Res. Atmos. 117:D12313 https://doi.org/10.1029/2011JD017420
    [Crossref] [Google Scholar]
  77. Khaykin S, Legras B, Bucci S, Sellitto P, Isaksen L et al. 2020. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1:22 https://doi.org/10.1038/s43247-020-00022-5
    [Crossref] [Google Scholar]
  78. Kok JF, Adebiyi AA, Albani S, Balkanski Y, Checa-Garcia R et al. 2021. Contribution of the world's main dust source regions to the global cycle of desert dust. Atmos. Chem. Phys. 21:8169–93 https://doi.org/10.5194/acp-21-8169-2021
    [Crossref] [Google Scholar]
  79. Krishnamurthy A, Moore JK, Mahowald NM, Luo C, Doney SC et al. 2009. Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry. Glob. Biogeochem. Cycles 23:GB3016 https://doi.org/10.1029/2008GB003440
    [Crossref] [Google Scholar]
  80. Kundu S, Kawamura K, Andreae TW, Hoffer A, Andreae MO. 2010. Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil. J. Aerosol Sci. 41:118–33 https://doi.org/10.1016/j.jaerosci.2009.08.006
    [Crossref] [Google Scholar]
  81. La Roche J, Breitbarth E 2005. Importance of the diazotrophs as a source of new nitrogen in the ocean. J. Sea Res. 53:67–91 https://doi.org/10.1016/j.seares.2004.05.005
    [Crossref] [Google Scholar]
  82. Lamb KD, Matsui H, Katich JM, Perring AE, Spackman JR et al. 2021. Global-scale constraints on light-absorbing anthropogenic iron oxide aerosols. npj Clim. . Atmos. Sci. 4:15 https://doi.org/10.1038/s41612-021-00171-0
    [Crossref] [Google Scholar]
  83. Langmann B. 2013. Volcanic ash versus mineral dust: atmospheric processing and environmental and climate impacts. ISRN Atmos. Sci. 2013:245076 https://doi.org/10.1155/2013/245076
    [Crossref] [Google Scholar]
  84. Lasaga AC, Soler JM, Ganor J, Burch TE, Nagy KL. 1994. Chemical weathering rate laws and global geochemical cycles. Geochim. Cosmochim. Acta 58:2361–86 https://doi.org/10.1016/0016-7037(94)90016-7
    [Crossref] [Google Scholar]
  85. Letelier RM, Björkman KM, Church MJ, Hamilton DS, Mahowald NM et al. 2019. Climate-driven oscillation of phosphorus and iron limitation in the North Pacific Subtropical Gyre. PNAS 116:12720–28 https://doi.org/10.1073/pnas.1900789116
    [Crossref] [Google Scholar]
  86. Li W, Xu L, Liu X, Zhang J, Lin Y et al. 2017. Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems. Sci. Adv. 3:e1601749 https://doi.org/10.1126/sciadv.1601749
    [Crossref] [Google Scholar]
  87. Longo AF, Feng Y, Lai B, Landing WM, Shelley RU et al. 2016. Influence of atmospheric processes on the solubility and composition of iron in Saharan dust. Environ. Sci. Technol. 50:6912–20 https://doi.org/10.1021/acs.est.6b02605
    [Crossref] [Google Scholar]
  88. Louis J, Bressac M, Pedrotti ML, Guieu C. 2015. Dissolved inorganic nitrogen and phosphorus dynamics in seawater following an artificial Saharan dust deposition event. Front. Mar. Sci 2:27 https://doi.org/10.3389/fmars.2015.00027
    [Crossref] [Google Scholar]
  89. Louis J, Gazeau F, Guieu C. 2018. Atmospheric nutrients in seawater under current and high pCO2 conditions after Saharan dust deposition: results from three minicosm experiments. Prog. Oceanogr. 163:40–49 https://doi.org/10.1016/j.pocean.2017.10.011
    [Crossref] [Google Scholar]
  90. Lucas J, Harris RMB. 2021. Changing climate suitability for dominant Eucalyptus species may affect future fuel loads and flammability in Tasmania. Fire 4:1 https://doi.org/10.3390/fire4010001
    [Crossref] [Google Scholar]
  91. Luo C, Mahowald NM, Bond T, Chuang PY, Artaxo P et al. 2008. Combustion iron distribution and deposition. Glob. Biogeochem. Cycles 22:GB1012 https://doi.org/10.1029/2007GB002964
    [Crossref] [Google Scholar]
  92. Mackie DS, Boyd PW, McTainsh GH, Tindale NW, Westberry TK, Hunter KA. 2008. Biogeochemistry of iron in Australian dust: from eolian uplift to marine uptake. Geochem. Geophys. Geosyst. 9:Q03Q08 https://doi.org/10.1029/2007GC001813
    [Crossref] [Google Scholar]
  93. Maenhaut W, Salma I, Cafmeyer J, Annegarn HJ, Andreae MO. 1996. Regional atmospheric aerosol composition and sources in the eastern Transvaal, South Africa, and impact of biomass burning. J. Geophys. Res. Atmos. 101:23631–50 https://doi.org/10.1029/95jd02930
    [Crossref] [Google Scholar]
  94. Mahowald NM, Artaxo P, Baker AR, Jickells TD, Okin GS et al. 2005. Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Glob. Biogeochem. Cycles 19:GB4030 https://doi.org/10.1029/2005GB002541
    [Crossref] [Google Scholar]
  95. Mahowald NM, Engelstaedter S, Luo C, Sealy A, Artaxo P et al. 2009. Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu. Rev. Mar. Sci. 1:245–78 https://doi.org/10.1146/annurev.marine.010908.163727
    [Crossref] [Google Scholar]
  96. Mahowald NM, Hamilton DS, Mackey KRM, Moore JK, Baker AR et al. 2018. Aerosol trace metal leaching and impacts on marine microorganisms. Nat. Commun. 9:2614 https://doi.org/10.1038/s41467-018-04970-7
    [Crossref] [Google Scholar]
  97. Mahowald NM, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR et al. 2008. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycles 22:GB4026 https://doi.org/10.1029/2008GB003240
    [Crossref] [Google Scholar]
  98. Mahowald NM, Kloster S, Engelstaedter S, Moore JK, Mukhopadhyay S et al. 2010. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos. Chem. Phys. 10:10875–93 https://doi.org/10.5194/acp-10-10875-2010
    [Crossref] [Google Scholar]
  99. Marañón E, Fernández A, Mouriño-Carballido B, Martínez-García S, Teira E et al. 2010. Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 55:2339–52 https://doi.org/10.4319/lo.2010.55.6.2339
    [Crossref] [Google Scholar]
  100. Martin H, Gordon RM, Fitzwater SE. 1991. The case for iron. Limnol. Ocean. 36:1793–802 https://doi.org/10.4319/lo.1991.36.8.1793
    [Crossref] [Google Scholar]
  101. Martin J. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13 https://doi.org/10.1029/PA005i001p00001
    [Crossref] [Google Scholar]
  102. Matsui H, Mahowald NM, Moteki N, Hamilton DS, Ohata S et al. 2018. Anthropogenic combustion iron as a complex climate forcer. Nat. Commun. 9:1593 https://doi.org/10.1038/s41467-018-03997-0
    [Crossref] [Google Scholar]
  103. McLennan SM. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2:1021 https://doi.org/10.1029/2000GC000109
    [Crossref] [Google Scholar]
  104. McNabb DH, Swanson FJ 1990. Effects of fire on soil erosion. Natural and Prescribed Fire in Pacific Northwest Forests JD Walstad, DV Sandberg, SR Radosevich 159–176 Corvallis: Or. State Univ. Press
    [Google Scholar]
  105. Meskhidze N, Chameides WL, Nenes A. 2005. Dust and pollution: a recipe for enhanced ocean fertilization?. J. Geophys. Res. Atmos. 110:D03301 https://doi.org/10.1029/2004JD005082
    [Crossref] [Google Scholar]
  106. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6:701–10 https://doi.org/10.1038/ngeo1765
    [Crossref] [Google Scholar]
  107. Myriokefalitakis S, Daskalakis N, Mihalopoulos N, Baker AR, Nenes A, Kanakidou M. 2015. Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study. Biogeosciences 12:3973–92 https://doi.org/10.5194/bg-12-3973-2015
    [Crossref] [Google Scholar]
  108. Myriokefalitakis S, Gröger M, Hieronymus J, Döscher R. 2020. An explicit estimate of the atmospheric nutrient impact on global oceanic productivity. Ocean Sci 16:1183–205 https://doi.org/10.5194/os-16-1183-2020
    [Crossref] [Google Scholar]
  109. Myriokefalitakis S, Ito A, Kanakidou M, Nenes A, Krol MC et al. 2018. Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study. Biogeosciences 15:6659–84 https://doi.org/10.5194/bg-15-6659-2018
    [Crossref] [Google Scholar]
  110. Myriokefalitakis S, Nenes A, Baker AR, Mihalopoulos N, Kanakidou M. 2016. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study. Biogeosciences 13:6519–43 https://doi.org/10.5194/bg-13-6519-2016
    [Crossref] [Google Scholar]
  111. Myriokefalitakis S, Tsigaridis K, Mihalopoulos N, Sciare J, Nenes A et al. 2011. In-cloud oxalate formation in the global troposphere: a 3-D modeling study. Atmos. Chem. Phys. 11:5761–82 https://doi.org/10.5194/acp-11-5761-2011
    [Crossref] [Google Scholar]
  112. Nenes A, Krom MD, Mihalopoulos N, Van Cappellen P, Shi Z et al. 2011. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans. Atmos. Chem. Phys. 11:6265–72 https://doi.org/10.5194/acp-11-6265-2011
    [Crossref] [Google Scholar]
  113. Nisantzi A, Mamouri RE, Ansmann A, Hadjimitsis D. 2014. Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus. Atmos. Chem. Phys. 14:12155–65 https://doi.org/10.5194/acp-14-12155-2014
    [Crossref] [Google Scholar]
  114. Oakes M, Ingall ED, Lai B, Shafer MM, Hays MD et al. 2012. Iron solubility related to particle sulfur content in source emission and ambient fine particles. Environ. Sci. Technol. 46:6637–44 https://doi.org/10.1021/es300701c
    [Crossref] [Google Scholar]
  115. Olgun N, Duggen S, Andronico D, Kutterolf S, Croot PL et al. 2013. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: results from nutrient-release experiments in seawater. Mar. Chem. 152:32–42 https://doi.org/10.1016/j.marchem.2013.04.004
    [Crossref] [Google Scholar]
  116. Olgun N, Duggen S, Croot PL, Delmelle P, Dietze H et al. 2011. Surface ocean iron fertilization: the role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Glob. Biogeochem. Cycles 25:GB4001 https://doi.org/10.1029/2009GB003761
    [Crossref] [Google Scholar]
  117. Parekh P, Follows MJ, Boyle E. 2004. Modeling the global ocean iron cycle. Glob. Biogeochem. Cycles 18:GB1002 https://doi.org/10.1029/2003gb002061
    [Crossref] [Google Scholar]
  118. Paris R, Desboeufs KV, Formenti P, Nava S, Chou C. 2010. Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility. Atmos. Chem. Phys. 10:4273–82 https://doi.org/10.5194/acp-10-4273-2010
    [Crossref] [Google Scholar]
  119. Paytan A, Mackey KRM, Chen Y, Lima ID, Doney SC et al. 2009. Toxicity of atmospheric aerosols on marine phytoplankton. PNAS 106:4601–5 https://doi.org/10.1073/pnas.0811486106
    [Crossref] [Google Scholar]
  120. Pérez-Cabello F, de la Riva Fernández J, Montorio Llovería R, García-Martín A 2006. Mapping erosion-sensitive areas after wildfires using fieldwork, remote sensing, and geographic information systems techniques on a regional scale. J. Geophys. Res. Biogeosci. 111:G04S10 https://doi.org/10.1029/2005JG000148
    [Crossref] [Google Scholar]
  121. Perron MMG, Proemse BC, Strzelec M, Gault-Ringold M, Boyd PW et al. 2020. Origin, transport and deposition of aerosol iron to Australian coastal waters. Atmos. Environ. 228:117432 https://doi.org/10.1016/j.atmosenv.2020.117432
    [Crossref] [Google Scholar]
  122. Ramos ME, Garcia-Palma S, Rozalen M, Johnston CT, Huertas FJ. 2014. Kinetics of montmorillonite dissolution: an experimental study of the effect of oxalate. Chem. Geol. 363:283–92 https://doi.org/10.1016/j.chemgeo.2013.11.014
    [Crossref] [Google Scholar]
  123. Rathod SD, Hamilton DS, Mahowald NM, Klimont Z, Corbett JJ, Bond TC. 2020. A mineralogy-based anthropogenic combustion-iron emission inventory. J. Geophys. Res. Atmos. 125:e2019JD032114 https://doi.org/10.1029/2019jd032114
    [Crossref] [Google Scholar]
  124. Reid JS, Koppmann R, Eck TF, Eleuterio DP. 2005. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5:799–825 https://doi.org/10.5194/acp-5-799-2005
    [Crossref] [Google Scholar]
  125. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP. 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60 https://doi.org/10.1038/nature02127
    [Crossref] [Google Scholar]
  126. Schlosser JS, Braun RA, Bradley T, Dadashazar H, MacDonald AB et al. 2017. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 122:8951–66 https://doi.org/10.1002/2017JD026547
    [Crossref] [Google Scholar]
  127. Schmidl C, Marr IL, Caseiro A, Kotianová P, Berner A et al. 2008. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos. Environ. 42:126–41 https://doi.org/10.1016/j.atmosenv.2007.09.028
    [Crossref] [Google Scholar]
  128. Shi Z, Bonneville S, Krom MD, Carslaw KS, Jickells TD et al. 2011. Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing. Atmos. Chem. Phys. 11:995–1007 https://doi.org/10.5194/acp-11-995-2011
    [Crossref] [Google Scholar]
  129. Shi Z, Krom MD, Bonneville S, Benning LG. 2015. Atmospheric processing outside clouds increases soluble iron in mineral dust. Environ. Sci. Technol. 49:1472–77 https://doi.org/10.1021/es504623x
    [Crossref] [Google Scholar]
  130. Solmon F, Chuang PY, Meskhidze N, Chen Y. 2009. Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean. J. Geophys. Res. 114:D02305 https://doi.org/10.1029/2008JD010417
    [Crossref] [Google Scholar]
  131. Stockdale A, Krom MD, Mortimer RJG, Benning LG, Carslaw KS et al. 2016. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. PNAS 113:14639–44 https://doi.org/10.1073/pnas.1608136113
    [Crossref] [Google Scholar]
  132. Straub SM, Schmincke HU. 1998. Evaluating the tephra input into Pacific Ocean sediments: distribution in space and time. Int. J. Earth Sci. 87:461–76 https://doi.org/10.1007/s005310050222
    [Crossref] [Google Scholar]
  133. Strzelec M, Proemse BC, Gault-Ringold M, Boyd PW, Perron MMG et al. 2020. Atmospheric trace metal deposition near the Great Barrier Reef, Australia. Atmosphere 11:390 https://doi.org/10.3390/ATMOS11040390
    [Crossref] [Google Scholar]
  134. Tagliabue A, Aumont O, Bopp L. 2014. The impact of different external sources of iron on the global carbon cycle. Geophys. Res. Lett. 41:920–26 https://doi.org/10.1002/2013GL059059
    [Crossref] [Google Scholar]
  135. Tagliabue A, Bopp L, Aumont O. 2008. Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition. Biogeosciences 5:11–24 https://doi.org/10.5194/bg-5-11-2008
    [Crossref] [Google Scholar]
  136. Tagliabue A, Bopp L, Roche D, Bouttes N, Dutay J-C et al. 2009. Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum. Clim. Past 5:695–706 https://doi.org/10.5194/cp-5-695-2009
    [Crossref] [Google Scholar]
  137. Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA. 2017. The integral role of iron in ocean biogeochemistry. Nature 543:51–59 https://doi.org/10.1038/nature21058
    [Crossref] [Google Scholar]
  138. Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y et al. 2006. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 6:1777–813 https://doi.org/10.5194/acpd-5-8331-2005
    [Crossref] [Google Scholar]
  139. Tipping E, Benham S, Boyle JF, Crow P, Davies J et al. 2014. Atmospheric deposition of phosphorus to land and freshwater. Environ. Sci. Process. Impacts 16:1608–17 https://doi.org/10.1039/c3em00641g
    [Crossref] [Google Scholar]
  140. Twining BS, Antipova O, Chappell PD, Cohen NR, Jacquot JE et al. 2020. Taxonomic and nutrient controls on phytoplankton iron quotas in the ocean. Limnol. Oceanogr. Lett. 6:96–106 https://doi.org/10.1002/lol2.10179
    [Crossref] [Google Scholar]
  141. Twining BS, Baines SB. 2013. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5:191–215 https://doi.org/10.1146/annurev-marine-121211-172322
    [Crossref] [Google Scholar]
  142. Uetake J, Hill TCJ, Moore KA, DeMott PJ, Protat A, Kreidenweis SM 2020. Airborne bacteria confirm the pristine nature of the Southern Ocean boundary layer. PNAS 117:13275–82 https://doi.org/10.1073/pnas.2000134117
    [Crossref] [Google Scholar]
  143. Wagenbrenner NS, Chung SH, Lamb BK. 2017. A large source of dust missing in particulate matter emission inventories? Wind erosion of post-fire landscapes. Elem. Sci. Anthr. 5:2 https://doi.org/10.1525/elementa.185
    [Crossref] [Google Scholar]
  144. Wagener T, Guieu C, Leblond N. 2010. Effects of dust deposition on iron cycle in the surface Mediterranean Sea: results from a mesocosm seeding experiment. Biogeosciences 7:3769–81 https://doi.org/10.5194/bg-7-3769-2010
    [Crossref] [Google Scholar]
  145. Wagener T, Pulido-Villena E, Guieu C. 2008. Dust iron dissolution in seawater: results from a one-year time-series in the Mediterranean Sea. Geophys. Res. Lett. 35:L16601 https://doi.org/10.1029/2008GL034581
    [Crossref] [Google Scholar]
  146. Wagner R, Jähn M, Schepanski K. 2018. Wildfires as a source of airborne mineral dust – revisiting a conceptual model using large-eddy simulation (LES). Atmos. Chem. Phys. 18:11863–84 https://doi.org/10.5194/acp-18-11863-2018
    [Crossref] [Google Scholar]
  147. Wang R, Balkanski Y, Bopp L, Aumont O, Boucher O et al. 2015. Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming. Geophys. Res. Lett. 42:10745–54 https://doi.org/10.1002/2015GL066753
    [Crossref] [Google Scholar]
  148. Ward DS, Mahowald NM, Kloster S. 2014. Potential climate forcing of land use and land cover change. Atmos. Chem. Phys. 14:12701–24 https://doi.org/10.5194/acp-14-12701-2014
    [Crossref] [Google Scholar]
  149. Whicker JJ, Pinder JE, Breshears DD. 2006. Increased wind erosion from forest wildfire: implications for contaminant-related risks. J. Environ. Qual. 35:468–78 https://doi.org/10.2134/jeq2005.0112
    [Crossref] [Google Scholar]
  150. Winton VHL, Bowie AR, Edwards R, Keywood M, Townsend AT et al. 2015. Fractional iron solubility of atmospheric iron inputs to the Southern Ocean. Mar. Chem. 177:20–32 https://doi.org/10.1016/j.marchem.2015.06.006
    [Crossref] [Google Scholar]
  151. Winton VHL, Edwards R, Bowie AR, Keywood M, Williams AG et al. 2016. Dry season aerosol iron solubility in tropical northern Australia. Atmos. Chem. Phys. 16:12829–48 https://doi.org/10.5194/acp-16-12829-2016
    [Crossref] [Google Scholar]
  152. Wu C, Lin Z, Liu X. 2020. The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project) models. Atmos. Chem. Phys. 20:10401–25 https://doi.org/10.5194/acp-20-10401-2020
    [Crossref] [Google Scholar]
  153. Yamasoe MA, Artaxo P, Miguel AH, Allen AG. 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmos. Environ. 34:1641–53 https://doi.org/10.1016/S1352-2310(99)00329-5
    [Crossref] [Google Scholar]
  154. Ye Y, Völker C. 2017. On the role of dust-deposited lithogenic particles for iron cycling in the tropical and subtropical Atlantic. Glob. Biogeochem. Cycles 31:1543–58 https://doi.org/10.1002/2017GB005663
    [Crossref] [Google Scholar]
  155. Zhang C, Ito A, Shi Z, Aita MN, Yao X et al. 2019. Fertilization of the Northwest Pacific Ocean by East Asia air pollutants. Glob. Biogeochem. Cycles 33:690–702 https://doi.org/10.1029/2018GB006146
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-031921-013612
Loading
/content/journals/10.1146/annurev-marine-031921-013612
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error