1932

Abstract

How do the morphologies of organisms affect their physical interactions with the environment and other organisms? My research in marine systems couples field studies of the physical habitats, life history strategies, and ecological interactions of organisms with laboratory analyses of their biomechanics. Here, I review how we pursued answers to three questions about marine organisms: () how benthic organisms withstand and utilize the water moving around them, () how the interaction between swimming and turbulent ambient water flow affects where small organisms go, and () how hairy appendages catch food and odors. I also discuss the importance of different types of mentors, the roadblocks for women in science when I started my career, the challenges and delights of interdisciplinary research, and my quest to understand how I see the world as a dyslexic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032223-014227
2024-01-17
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-032223-014227.html?itemId=/content/journals/10.1146/annurev-marine-032223-014227&mimeType=html&fmt=ahah

Literature Cited

  1. Bauer U, Poppinga S, Müller UK. 2020. Mechanical ecology: taking biomechanics to the field. Integr. Comp. Biol. 60:82028
    [Google Scholar]
  2. Bonabeau E. 2002. Agent-based modeling: methods and techniques for simulating human systems. PNAS 99:Suppl. 3728087
    [Google Scholar]
  3. Burnett NP, Koehl MAR. 2019. Mechanical properties of the wave-swept kelp Egregiamenziesii change with season, growth rate and herbivore wounds. J. Exp. Biol. 222:jeb190595
    [Google Scholar]
  4. Burnett NP, Koehl MAR 2021. Age affects the strain-rate dependence of mechanical properties of kelp tissues. Am. J. Bot. 108:76976
    [Google Scholar]
  5. Cheer AYL, Koehl MAR. 1987. Paddles and rakes: fluid flow through bristled appendages of small organisms. J. Theor. Biol. 129:1739
    [Google Scholar]
  6. Childress S, Koehl MAR, Miksis M. 1987. Scanning currents in Stokes flow and the efficient feeding of small organisms. J. Fluid Mech. 177:40736
    [Google Scholar]
  7. Daniell E 2006. Every Other Thursday: Stories and Strategies from Successful Women Scientists New Haven, CT: Yale Univ. Press
    [Google Scholar]
  8. Denny MW. 1988. Biology and the Mechanics of the Wave-Swept Environment Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  9. Denny MW. 2016. Ecological Mechanics: Principles of Life's Physical Interactions Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  10. Denny MW, Daniel T, Koehl MAR. 1985. Mechanical limits to the size of wave-swept organisms. Ecol. Monogr. 55:69102
    [Google Scholar]
  11. Denny MW, Gaylord B. 2010. Marine ecomechanics. Annu. Rev. Mar. Sci. 2:89114
    [Google Scholar]
  12. Denny MW, Gaylord B, Helmuth B, Daniel T 1998. The menace of momentum: dynamic forces on flexible organisms. Limnol. Oceanogr. 43:95568
    [Google Scholar]
  13. Full RJ, Dudley R, Koehl MAR, Libby T, Schwab C. 2015. Interdisciplinary laboratory course facilitating the integration of knowledge, mutualistic teaming, and original discovery. Integr. Comp. Biology 55:77191
    [Google Scholar]
  14. Gaylord B, Denny MW. 1997. Flow and flexibility I. Effects of size, shape and stiffness in determining wave forces on the stipitate kelps Eiseniaarborea and Pterygophoracalifornica. J. Exp. Biol. 200:314164
    [Google Scholar]
  15. Goldman JA, Koehl MAR. 2001. Fluid dynamic design of lobster olfactory organs: high-speed kinematic analysis of antennule flicking by Panulirusargus. Chem. Senses 26:38598
    [Google Scholar]
  16. Hadfield MG, Faucci A, Koehl MAR 2006. Measuring recruitment of minute larvae in a complex field environment: the corallivorous nudibranch Phestillasibogae (Bergh). . J. Exp. Mar. Biol. Ecol. 338:5772
    [Google Scholar]
  17. Hadfield MG, Koehl MAR. 2004. Rapid behavioral responses of an invertebrate larva to dissolved settlement cue. Biol. Bull. 207:2843
    [Google Scholar]
  18. Hadfield MG, Paul VJ. 2001. Natural chemical cues for settlement and metamorphosis of marine invertebrate larvae. Marine Chemical Ecology JB McClintock, W Baker 43161. Boca Raton, FL: CRC
    [Google Scholar]
  19. Holbrook NM, Denny M, Koehl MAR. 1991. Intertidal “trees”: consequences of aggregation on the mechanical and photosynthetic characteristics of sea palms. J. Exp. Mar. Biol. Ecol. 146:3967
    [Google Scholar]
  20. Johnson AJ, Koehl MAR. 1994. Maintenance of dynamic strain similarity and environmental stress factor in different flow habitats: thallus allometry and material properties of a giant kelp. J. Exp. Biol. 195:381410
    [Google Scholar]
  21. Jumars PA, Nowell AR. 1984. Fluid and sediment dynamic effects on marine benthic community structure. Am. Zool. 24:4555
    [Google Scholar]
  22. Kempes CP, Koehl MAR, West GB. 2019. The scales that limit: the physical boundaries of evolution. Front. Ecol. Evol. 7:242
    [Google Scholar]
  23. Koehl MAR. 1977a. Effects of sea anemones on the flow forces they encounter. J. Exp. Biol. 69:87105
    [Google Scholar]
  24. Koehl MAR. 1977b. Mechanical diversity of the connective tissue of the body wall of sea anemones. J. Exp. Biol. 69:10725
    [Google Scholar]
  25. Koehl MAR. 1977c. Mechanical organization of cantilever-like sessile organisms: sea anemones. J. Exp. Biol. 69:12742
    [Google Scholar]
  26. Koehl MAR. 1981. Feeding at low Reynolds number by copepods. Some Mathematical Questions in Biology S Childress 89117. Lect. Math. Life Sci. 14 Providence, RI: Am. Math. Soc.
    [Google Scholar]
  27. Koehl MAR. 1982. The interaction of moving water and sessile organisms. Sci. Am. 247:12432
    [Google Scholar]
  28. Koehl MAR. 1984a. How do benthic organisms withstand moving water?. Am. Zool. 24:5770
    [Google Scholar]
  29. Koehl MAR 1984b. Mechanisms of particle capture by copepods at low Reynolds number: possible modes of selective feeding. Trophic Interactions Within Aquatic Ecosystems DL Meyers, JR Strickler 13560. AAAS Sel. Symp. 85 Boulder, CO: Westview
    [Google Scholar]
  30. Koehl MAR. 1986. Seaweeds in moving water: form and mechanical function. On the Economy of Plant Form and Function TJ Givnish 60334. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  31. Koehl MAR 1989. From individuals to populations. Perspectives in Ecological Theory RM May, J Roughgarden, SA Levin 3953. Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  32. Koehl MAR. 1992. Hairy little legs: feeding, smelling, and swimming at low Reynolds number. Contemp. Math. 141:3364
    [Google Scholar]
  33. Koehl MAR 1995. Fluid flow through hair-bearing appendages: feeding, smelling, and swimming at low and intermediate Reynolds number. Biological Fluid Dynamics CP Ellington, TJ Pedley 15782. Soc. Exp. Biol. Symp. 49 Colchester, UK: Portland
    [Google Scholar]
  34. Koehl MAR. 1996a. Small-scale fluid dynamics of olfactory antennae. Mar. Freshw. Behav. Physiol. 27:12741
    [Google Scholar]
  35. Koehl MAR. 1996b. When does morphology matter?. Annu. Rev. Ecol. Syst. 27:50142
    [Google Scholar]
  36. Koehl MAR. 1998. Small-scale hydrodynamics of feeding appendages of marine animals. Oceanography 11:21012
    [Google Scholar]
  37. Koehl MAR. 1999. Ecological biomechanics: life history, mechanical design, and temporal patterns of mechanical stress. J. Exp. Biol. 202:346976
    [Google Scholar]
  38. Koehl MAR 2000. Consequences of size change. Scaling in Biology JH Brown, GB West 6786. New York: Oxford Univ. Press
    [Google Scholar]
  39. Koehl MAR. 2001. Transitions in function at low Reynolds number: hair-bearing animal appendages. Math. Methods Appl. Sci. 24:152332
    [Google Scholar]
  40. Koehl MAR. 2003. Physical modelling in biomechanics. Philos. Trans. R. Soc. Lond. B 35:158996
    [Google Scholar]
  41. Koehl MAR. 2004. Biomechanics of microscopic appendages: functional shifts caused by changes in speed. J. Biomech. 37:78995
    [Google Scholar]
  42. Koehl MAR. 2006. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31:93105
    [Google Scholar]
  43. Koehl MAR. 2011. Hydrodynamics of sniffing by crustaceans. Chemical Communication in Crustaceans T Breithaupt, M Theil 85102. New York: Springer
    [Google Scholar]
  44. Koehl MAR. 2022. Ecological biomechanics of marine macrophytes. J. Exp. Bot. 73:110421
    [Google Scholar]
  45. Koehl MAR. 2023. Of corpses, ghosts, and mirages: biomechanical consequences of morphology depend on the environment. J. Exp. Biol. 226:jeb245442
    [Google Scholar]
  46. Koehl MAR, Alberte RS. 1988. Flow, flapping, and photosynthesis of macroalgae: functional consequences of undulate blade morphology. Mar. Biol. 99:43544
    [Google Scholar]
  47. Koehl MAR, Cooper T. 2015. Swimming in an unsteady world. Integr. Comp. Biol. 55:68397
    [Google Scholar]
  48. Koehl MAR, Crimaldi JP, Dombroski DE. 2013. Wind chop and ship wakes determine hydrodynamic stresses on larvae settling on different microhabitats in fouling communities. Mar. Ecol. Prog. Ser. 479:4762
    [Google Scholar]
  49. Koehl MAR, Daniel TL. 2022. Hydrodynamic interactions between macroalgae and their epibionts. Front. . Mar. Sci. 9:872960
    [Google Scholar]
  50. Koehl MAR, Hadfield MG. 2004. Soluble settlement cue in slowly-moving water within coral reefs induces larval adhesion to surfaces. J. Mar. Syst. 49:7588
    [Google Scholar]
  51. Koehl MAR, Koseff JR, Crimaldi JP, McCay MG, Cooper T et al. 2001. Lobster sniffing: antennule design and hydrodynamic filtering of information in an odor plume. Science 294:194852
    [Google Scholar]
  52. Koehl MAR, Powell TM 1994. Turbulent transport of larvae near wave-swept shores: Does water motion overwhelm larval sinking?. Reproduction and Development of Marine Invertebrates H Wilson, G Shinn, S Stricker 26174. Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  53. Koehl MAR, Powell TM, Dairiki G 1993. Measuring the fate of patches in the water: larval dispersal. Patch Dynamics in Terrestrial, Marine, and Freshwater Ecosystems J Steele, TM Powell, SA Levin 5060. Berlin: Springer
    [Google Scholar]
  54. Koehl MAR, Powell TM, Dobbins EL 1997. Effects of algal turf on mass transport and flow microhabitat of ascidians in a coral reef lagoon. Proceedings of the 8th International Coral Reef Symposium, Vol. 2 HA Lessios, IG Macintyre 108792. Panama: Smithson. Trop. Res. Inst.
    [Google Scholar]
  55. Koehl MAR, Reidenbach MA. 2008. Swimming by microscopic organisms in ambient water flow. Exp. Fluids 43:75568
    [Google Scholar]
  56. Koehl MAR, Rosenfeld AW. 2006. Wave-Swept Shore: The Rigors of Life on a Rocky Coast Berkeley: Univ. Calif. Press
    [Google Scholar]
  57. Koehl MAR, Silk WK. 2021. How kelp in drag lose their ruffles: environmental cues, growth kinematics, and mechanical constraints govern curvature. J. Exp. Bot. 72:367787
    [Google Scholar]
  58. Koehl MAR, Silk WK, Liang H, Mahadevan L. 2008. How kelp produce blade shapes suited to different flow regimes: a new wrinkle. Integr. Comp. Biol. 48:31830
    [Google Scholar]
  59. Koehl MAR, Strickler JR. 1981. Copepod feeding currents: food capture at low Reynolds number. Limnol. Oceanogr. 26:106173
    [Google Scholar]
  60. Koehl MAR, Strother JA, Reidenbach MA, Koseff JR, Hadfield MG. 2007. Individual-based model of larval transport to coral reefs in turbulent, wave-driven flow: effects of behavioral responses to dissolved settlement cues. Mar. Ecol. Prog. Ser. 335:118
    [Google Scholar]
  61. Koehl MAR, Wainwright SA. 1977. Mechanical design of a giant kelp. Limnol. Oceanogr. 22:106771
    [Google Scholar]
  62. Koehl MAR, Wainwright SA. 1984. Biomechanics. Handbook of Phycological Methods. Ecological Field Methods: Macroalgae ML Littler, DS Littler 29213. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  63. Lighthill SJ. 1975. Mathematical Biofluiddynamics Philadelphia, PA: Soc. Ind. Appl. Math.
    [Google Scholar]
  64. Loudon C, Best BA, Koehl MAR. 1994. When does motion relative to neighboring surfaces alter the flow through an array of hairs?. J. Exp. Biol. 193:23354
    [Google Scholar]
  65. Mead KS, Koehl MAR. 2000. Stomatopod antennule design: the asymmetry, sampling efficiency, and ontogeny of olfactory flicking. J. Exp. Biol. 203:3795808
    [Google Scholar]
  66. Mead KS, Koehl MAR, O'Donnell MJ 1999. Stomatopod sniffing: the scaling of chemosensory sensillae and flicking behavior with body size. J. Exp. Mar. Biol. Ecol. 241:23561
    [Google Scholar]
  67. Mead KS, Wiley MB, Koehl MAR, Koseff JR. 2003. Fine-scale patterns of odor encounter by the antennules of mantis shrimp tracking turbulent plumes in wave-affected and unidirectional flow. J. Exp. Biol. 206:18193
    [Google Scholar]
  68. Monthiller R, Loisy A, Koehl MAR, Favier B, Eloy C. 2022. Surfing on turbulence. Phys. Rev. Lett. 129:064502
    [Google Scholar]
  69. Niklas KJ. 1992. Plant Biomechanics: An Engineering Approach to Plant Form and Function Chicago: Univ. Chicago Press
    [Google Scholar]
  70. Parks D. 2005. Nature's Machines: The Story of Biomechanist Mimi Koehl Washington, DC: Joseph Henry
    [Google Scholar]
  71. Pepper R, Jaffe JS, Variano E, Koehl MAR. 2015. Zooplankton in flowing water near benthic communities encounter rapidly fluctuating velocity gradients and accelerations. Mar. Biol. 162:193954
    [Google Scholar]
  72. Reidenbach MA, George N, Koehl MAR. 2008. Antennule morphology and flicking kinematics facilitate odor sampling in the spiny lobster, Panulirusargus. J. Exp. Biol. 211:284958
    [Google Scholar]
  73. Reidenbach MA, Koehl MAR. 2011. The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume. J. Exp. Biol. 214:313853
    [Google Scholar]
  74. Reidenbach MA, Koseff JR, Koehl MAR. 2009. Hydrodynamic forces on larvae affect their settlement on coral reefs in turbulent, wave-driven flow. Limnol. Oceanogr. 54:31830
    [Google Scholar]
  75. Reidenbach MA, Koseff JR, Monismith SG. 2007. Laboratory experiments of fine-scale mixing and mass transport within a coral canopy. Phys. Fluids 19:075107
    [Google Scholar]
  76. Rubenstein DI, Koehl MAR. 1977. The mechanisms of filter feeding: some theoretical considerations. Am. Nat. 111:98194
    [Google Scholar]
  77. Schuech R, Stacey MT, Barad MF, Koehl MAR 2011. Numerical simulations of odorant detection by biologically inspired sensory arrays. Bioinspir. Biomim. 7:016001
    [Google Scholar]
  78. Spencer H. 1859. What knowledge is of most worth?. Westminster Rev 72:123
    [Google Scholar]
  79. Stacey M, Mead KS, Koehl MAR. 2002. Molecule capture by olfactory antennules: mantis shrimp. J. Math. Biol. 44:130
    [Google Scholar]
  80. Stewart HL. 2006. Ontogenetic changes in buoyancy, breaking strength, extensibility, and reproductive investment in a drifting macroalga Turbinaria ornata (Phaeophyta). J. Phycol. 42:4350
    [Google Scholar]
  81. Taylor H, Vestergaard MD. 2022. Developmental dyslexia: disorder or specialization in exploration?. Front. Psychol. 13:889245
    [Google Scholar]
  82. Vincent J. 2012. Structural Biomaterials Princeton NJ: Princeton Univ. Press. , 3rd ed..
    [Google Scholar]
  83. Vogel S. 1994. Life in Moving Fluids: The Physical Biology of Flow Princeton, NJ: Princeton Univ. Press. , 2nd ed..
    [Google Scholar]
  84. Vogel S. 2013. Comparative Biomechanics: Life's Physical World Princeton, NJ: Princeton Univ. Press. , 2nd ed..
    [Google Scholar]
  85. Wainwright SA, Biggs WD, Currey JD, Gosline JM. 1976. Mechanical Design in Organisms New York: Wiley & Sons
    [Google Scholar]
  86. Waldrop LD, Hann M, Henry A, Kim A, Punjabi A, Koehl MAR. 2015a. Ontogenetic changes in the olfactory antennules of the shore crab, Hemigrapsusoregonensis, maintain sniffing function during growth. J. R. Soc. Interface 12:20141077
    [Google Scholar]
  87. Waldrop LD, Koehl MAR. 2016. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules. J. R. Soc. Interface 13:20150850
    [Google Scholar]
  88. Waldrop LD, Reidenbach MA, Koehl MAR. 2015b. Flexibility of crab chemosensory sensilla enables flicking antennules to sniff. Biol. Bull. 229:18598
    [Google Scholar]
  89. Wolcott BD. 2007. Mechanical size limitation and life-history strategy of an intertidal seaweed. Mar. Ecol. Prog. Ser. 338:110
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032223-014227
Loading
/content/journals/10.1146/annurev-marine-032223-014227
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error