1932

Abstract

Submarine turbidity currents form the largest sediment accumulations on Earth, raising the question of their role in global carbon cycles. It was previously inferred that terrestrial organic carbon was primarily incinerated on shelves and that most turbidity current systems are presently inactive. Turbidity currents were thus not considered in global carbon cycles, and the burial efficiency of global terrestrial organic carbon was considered low to moderate (∼10–44%). However, recent work has shown that burial of terrestrial organic carbon by turbidity currents is highly efficient (>60–100%) in a range of settings and that flows occur more frequently than once thought, although they were far more active at sea-level lowstands. This leads to revised global estimates for mass flux (∼62–90 Mt C/year) and burial efficiency (∼31–45%) of terrestrial organic carbon in marine sediments. Greatly increased burial fluxes during sea-level lowstands are also likely underestimated; thus, organic carbon cycling by turbidity currents could play a role in long-term changes in atmospheric CO and climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032223-103626
2024-01-17
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-032223-103626.html?itemId=/content/journals/10.1146/annurev-marine-032223-103626&mimeType=html&fmt=ahah

Literature Cited

  1. Aller RC. 1998. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors. Mar. Chem. 61:14355
    [Google Scholar]
  2. Aller RC, Blair NE. 2006. Carbon remineralization in the Amazon-Guianas mobile mudbelt: a sedimentary incinerator. Cont. Shelf Res. 26:224159
    [Google Scholar]
  3. Aller RC, Madrid V, Chistoserdov A, Aller JY, Heilbrun C. 2010. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record. Geochim. Cosmochim. Acta 74:467192
    [Google Scholar]
  4. Allin JR, Hunt JE, Talling PJ, Clare ME, Pope E, Masson DG. 2016. Different frequencies and triggers of canyon filling and flushing events in Nazaré Canyon, offshore Portugal. Mar. Geol. 371:89105
    [Google Scholar]
  5. Allison MA, Bianchi TS, McKee BA, Sampere TP. 2007. Carbon burial on river-dominated continental shelves: impact of historical changes in sediment loading adjacent to the Mississippi River. Geophys. Res. Lett. 3:L01606
    [Google Scholar]
  6. Amaro T, Huvenne VAI, Allcock AL, Aslam T, Davies JS et al. 2016. The Whittard Canyon – a case study of submarine canyon processes. Prog. Oceanogr. 146:3857
    [Google Scholar]
  7. Aplin AC, Fleet AJ, Macquaker JHS 1999. Muds and mudstones: physical and fluid-flow properties. Muds and Mudstones: Physical and Fluid-Flow Properties AC Aplin, AJ Fleet, JHS Macquaker 18. Geol. Soc. Spec. Publ. 158 London: Geol. Soc.
    [Google Scholar]
  8. Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Pancost RD, Regnier P. 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci. Rev. 123:5386
    [Google Scholar]
  9. Atwood TB, Witt A, Mayorga J, Hammill E, Sala E. 2020. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7:165
    [Google Scholar]
  10. Azpiroz-Zabala M, Cartigny MJB, Talling PJ, Parsons DR, Sumner EJ et al. 2017. Newly recognised turbidity current structure can explain prolonged flushing of submarine canyons. Sci. Adv. 3:e1700200
    [Google Scholar]
  11. Bailey LP, Clare MA, Rosenberger K, Cartigny MJB, Talling PJ et al. 2021. Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth Planet. Sci. Lett. 562:116845
    [Google Scholar]
  12. Bao H, Lee T-Y, Huang J-C, Feng X, Dai M, Kao S-J. 2015. Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon. Sci. Rep. 5:16217
    [Google Scholar]
  13. Bao R, van der Voort TS, Zhao M, Guo X, Montluçon DB et al. 2018. Influence of hydrodynamic processes on the fate of sedimentary organic matter on continental margins. Glob. Biogeochem. Cycles 32:142032
    [Google Scholar]
  14. Baudin F, Rabouille C, Dennielou B. 2020. Routing of terrestrial organic matter from the Congo River to the ultimate sink in the abyss: a mass balance approach. Geol. Belg. 23:4152
    [Google Scholar]
  15. Bauer JE, Cai WJ, Raymond P, Bianchi TS, Hopkinson CS, Regnier P. 2013. The coastal ocean as a key dynamic interface in the global carbon cycle. Nature 504:6170
    [Google Scholar]
  16. Bellwald B, Planke S, Becker LWM, Myklebust R. 2020. Meltwater sediment transport as the dominating process in mid-latitude trough mouth fan formation. Nat. Commun. 11:4645
    [Google Scholar]
  17. Berner RA. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282:45173
    [Google Scholar]
  18. Berner RA. 1989. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 73:97122
    [Google Scholar]
  19. Bernhardt A, Schwanghart W. 2021. Where and why do submarine canyons remain connected to the shore during sea-level rise? Insights from global topographic analysis and Bayesian regression. Geophys. Res. Lett. 48:e2020GL092234
    [Google Scholar]
  20. Bianchi TS. 2011. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. PNAS 49:1947381
    [Google Scholar]
  21. Bianchi TS, Arndt S, Austin WEN, Benn DI, Bertrand S et al. 2020. Fjords as aquatic critical zones (ACZs). Earth-Sci. Rev. 203:10345
    [Google Scholar]
  22. Bianchi TS, Blair N, Burdige D, Eglinton TI, Galy V. 2018. Centers of organic carbon burial at the land-ocean interface. Org. Geochem. 115:13855
    [Google Scholar]
  23. Bianchi TS, Mitra S, McKee B. 2002. Sources of terrestrially-derived carbon in the Lower Mississippi River and Louisiana shelf: implications for differential sedimentation and transport at the coastal margin. Mar. Chem. 77:21123
    [Google Scholar]
  24. Bianchi TS, Sampere T, Allison M, Canuel EA, McKee BA et al. 2006. Rapid export of organic matter to the Mississippi Canyon. Eos Trans. AGU 87:56573
    [Google Scholar]
  25. Bianchi TS, Schreiner KM, Smith RW, Burdige DJ, Woodward S, Conley DJ. 2016. Redox effects on organic matter storage in coastal sediments during the Holocene: a biomarker/proxy. Annu. Rev. Earth Planet. Sci. 44:295319
    [Google Scholar]
  26. Blair NL, Aller RC. 2012. The fate of terrestrial organic carbon in the marine environment. Annu. Rev. Mar. Sci. 4:40123
    [Google Scholar]
  27. Blattmann TM, Liu Z, Zhang Y, Zhao Y, Eglinton TI. 2019. Mineralogical control on the fate of continentally derived organic matter in the ocean. Science 366:74245
    [Google Scholar]
  28. Bonneau L, Jorry SJ, Toucanne S, Silva Jacinto R, Emmanuel L 2014. Millennial-scale response of a Western Mediterranean River to Late Quaternary climate changes: a view from the deep sea. J. Geol. 122:687703
    [Google Scholar]
  29. Burdige DJ. 2005. Burial of terrestrial organic matter in marine sediments: a re-assessment. Glob. Biogeochem. Cycles 19:GB4011
    [Google Scholar]
  30. Burdige DJ. 2007. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?. Chem. Rev. 107:46785
    [Google Scholar]
  31. Cartapanis O, Bianchi D, Jaccard SL, Galbraith ED. 2016. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima. Nat. Commun. 7:10796
    [Google Scholar]
  32. Cartapanis O, Galbraith ED, Bianchi D, Jaccard SL. 2018. Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past 14:181950
    [Google Scholar]
  33. Clare MA, Hughes Clarke JE, Talling PJ, Cartigny MJ, Pratomo DG 2016. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta. Earth Planet. Sci. Lett. 450:20820
    [Google Scholar]
  34. Clare MA, Talling PJ, Challenor P, Malgesini M, Hunt JE. 2014. Distal turbidite records reveal a common distribution for large (>0.1 km3) submarine landslide recurrence. Geology 42:26366
    [Google Scholar]
  35. Covault JA. 2011. Submarine fans and canyon-channel systems: a review of processes, products, and models. Nat. Educ. Knowl. 3:104
    [Google Scholar]
  36. Covault JA, Graham SA. 2010. Submarine fans at all sea-level stands: tectono-morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology 38:93942
    [Google Scholar]
  37. Cui X, Bianchi TS, Savage C, Smith RW. 2016. Organic carbon burial in fjords: terrestrial versus marine inputs. Earth Planet. Sci. Lett. 451:4150
    [Google Scholar]
  38. Cui X, Mucci A, Bianchi TS, He D, Vaughn D et al. 2022. Global fjords as transitory reservoirs of labile organic carbon modulated by organo-mineral interactions. Sci. Adv. 8:eadd06
    [Google Scholar]
  39. Dennielou B, Droz L, Babonneau N, Jacq C, Bonnel C et al. 2017. Morphology, structure, composition and build-up processes of the active channel-mouth lobe complex of the Congo deep-sea fan with inputs from remotely operated underwater vehicle (ROV) multibeam and video surveys. Deep-Sea Res. II 142:2549
    [Google Scholar]
  40. Dethier EN, Renshaw CE, Magilligan FJ. 2022. Rapid changes to global river suspended sediment flux by humans. Science 376:144752
    [Google Scholar]
  41. Duarte J, Taborda R, Ribeiro M. 2019. Evidences of headland sediment bypassing at Nazaré Norte Beach, Portugal. Coast. Sediments 2019:268594
    [Google Scholar]
  42. Dunne JP, Darmiento JL, Gnanadesikan A. 2007. Synthesis of global particle export from the surface ocean and cycling through ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21:GB4006
    [Google Scholar]
  43. Ebelmen J. 1845. Sur les produits de la décomposition des especes minérales de la famille des silicates. Ann. Mines 7:366
    [Google Scholar]
  44. Eglinton TI, Galy VV, Hemingway JD, Feng X, Bao H et al. 2021. Climate control on terrestrial biospheric carbon turnover. PNAS 118:e2011585118
    [Google Scholar]
  45. Gaillardet J, Dupré B, Louvat P, Allègre CJ. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159:330
    [Google Scholar]
  46. Galvez ME, Gaillardet J. 2012. Historical constraints on the origins of the carbon cycle concept. C. R. Geosci. 344:54967
    [Google Scholar]
  47. Galy VV, France-Lanord C, Beyssac O, Faure P, Kudrass H, Palhol F. 2007. Efficient organic carbon burial in the Bengal Fan sustained by the Himalayan erosional system. Nature 450:40710
    [Google Scholar]
  48. Galy VV, Peucker-Ehrenbrink B, Eglinton T. 2015. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 52:204207
    [Google Scholar]
  49. Gavey R, Carter L, Liu JT, Talling PJ, Hsu R et al. 2017. Frequent sediment density flows during 2006 to 2015 triggered by competing seismic and weather cycles: observations from subsea cable breaks off southern Taiwan. Mar. Geol. 384:14758
    [Google Scholar]
  50. Gibbs M, Leduc D, Nodder SD, Kingston A, Swales A et al. 2020. Novel application of a compound-specific stable isotope (CSSI) tracking technique demonstrates connectivity between terrestrial and deep-sea ecosystems via submarine canyons. Front. Mar. Sci. 7:608
    [Google Scholar]
  51. Gruber N, Bakker DCE, DeVries T, Gregor L, Hauck J et al. 2023. Trends and variability in the ocean carbon sink. Nat. Rev. Earth Environ. 4:11934
    [Google Scholar]
  52. Haflidason H, Lien R, Sjerup HP, Forsberg CF, Bryn P. 2005. The dating and morphometry of the Storegga Slide. Mar. Pet. Geol. 22:12336
    [Google Scholar]
  53. Hage S, Cartigny MJB, Sumner EJ, Clare MA, Hughes Clarke JE et al. 2019. Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophys. Res. Lett. 46:1131020
    [Google Scholar]
  54. Hage S, Galy VV, Cartigny MJB, Acikalin S, Clare MA et al. 2020. Efficient preservation of young terrestrial organic carbon in sandy turbidity current deposits. Geology 48:88287
    [Google Scholar]
  55. Hage S, Galy VV, Cartigny MJB, Heerema C, Heijnen MS et al. 2022. Turbidity currents can dictate organic carbon fluxes across river-fed fjords: an example from Bute Inlet (BC, Canada). J. Geophys. Res. 127:e2022JG006824
    [Google Scholar]
  56. Harris PT, Macmillan-Lawler M, Rupp J, Baker EK. 2014. Geomorphology of the oceans. Mar. Geol. 352:424
    [Google Scholar]
  57. Harris PT, Whiteway T. 2011. Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Mar. Geol. 285:6986
    [Google Scholar]
  58. Hartnett HE, Keil RG, Hedges JI, Devol AH. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:57275
    [Google Scholar]
  59. Hasholt B, Nielsen TF, Mankoff KD, Gkinis V, Overeem I. 2022. Sediment concentrations and transport in icebergs, Scoresby Sound, East Greenland. Hydrol. Process. 36:e14668
    [Google Scholar]
  60. Haughton PDW, Barker SP, McCaffrey WD. 2003. ‘Linked’ debrites in sand-rich turbidite systems – origin and significance. Sedimentology 50:459482
    [Google Scholar]
  61. Hayes CT, Costa KM, Anderson RF, Calvo E, Chase Z et al. 2021. Global ocean sediment composition and burial flux in the deep sea. Glob. Biogeochem. Cycles 35:e2020GB006769
    [Google Scholar]
  62. Hedges JI, Keil RG. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49:81115
    [Google Scholar]
  63. Hedges JI, Keil RG, Benner R. 1997. What happens to terrestrial organic matter in the ocean?. Org. Geochem. 27:195212
    [Google Scholar]
  64. Heijnen MS, Clare MA, Cartigny MJB, Talling PJ, Hage S et al. 2020. Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution. Nat. Commun. 11:3129
    [Google Scholar]
  65. Heijnen MS, Clare MA, Cartigny MJB, Talling PJ, Hage S et al. 2022a. Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?. Earth Planet. Sci. Lett. 584:117481
    [Google Scholar]
  66. Heijnen MS, Mienis F, Gates AR, Bett BJ, Hall AR et al. 2022b. Challenging the highstand-dormant paradigm for land-detached submarine canyons. Nat. Commun. 13:3448
    [Google Scholar]
  67. Hemingway JD, Rothman DH, Grant KE, Rosengard SZ, Eglinton TI et al. 2019. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570:22831
    [Google Scholar]
  68. Hill PR, Lintern DG. 2022. Turbidity currents on the open slope of the Fraser Delta. Mar. Geol. 445:106738
    [Google Scholar]
  69. Hilton RG. 2017. Climate regulates the erosional carbon export from the terrestrial biosphere. Geomorphology 277:11832
    [Google Scholar]
  70. Hilton RG, Galy A, Hovius N, Chen M-C, Horng M-J, Chen H. 2008. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nat. Geosci. 1:75962
    [Google Scholar]
  71. Hilton RG, Galy V, Gaillardet J, Dellinger M, Bryant C et al. 2015. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature 524:8487
    [Google Scholar]
  72. Hilton RG, West AJ. 2020. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1:28499
    [Google Scholar]
  73. Hodgson DM, Peakall J, Maier KL. 2022. Submarine channel mouth settings: processes, geomorphology, and deposits. Front. Earth Sci. 10:790320
    [Google Scholar]
  74. Houghton RA. 2007. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35:31347
    [Google Scholar]
  75. Hughes Clarke JE. 2016. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics. Nat. Commun. 7:11896
    [Google Scholar]
  76. Hussein A, Haughton PDW, Shannon PM, Morris EA, Pierce CS, Omma JE. 2021. Mud-forced turbulence dampening facilitates rapid burial and enhanced preservation of terrestrial organic matter in deep-sea environments. Mar. Pet. Geol. 130:105101
    [Google Scholar]
  77. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:6771
    [Google Scholar]
  78. Kane IA, Clare MA. 2019. Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: a review and future directions. Front. Earth Sci. 7:80
    [Google Scholar]
  79. Kao S-J, Dai M, Selvaraj K, Zhai W, Cai P et al. 2010. Cyclone-driven deep sea injection of freshwater and heat by hyperpycnal flow in the subtropics. Geophys. Res. Lett. 37:L21702
    [Google Scholar]
  80. Kao S-J, Hilton RG, Selvaraj K, Dai M, Zehetner H et al. 2014. Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surf. Dyn. 2:12739
    [Google Scholar]
  81. Karine O, Decker C, Pastor L, Caprais J-C, Khripounoff A et al. 2017. Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan. Deep-Sea Res. II 142:18096
    [Google Scholar]
  82. Keil RG, Mayer LM 2014. Mineral matrices and organic matter. Treatise on Geochemistry, Vol. 12: Organic Geochemistry PG Falkowski, KH Freeman 33759. Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  83. Keil RG, Mayer LM, Quay PD, Richey JE, Hedges JI. 1997. Loss of organic matter from riverine particles in deltas. Geochem. Cosmochim. Acta 61:150711
    [Google Scholar]
  84. Khripounoff A, Crassous P, Lo Bue N, Dennielou B, Silva Jacinto R 2012. Different types of sediment gravity flows detected in the Var submarine canyon (northwestern Mediterranean Sea). Prog. Oceanogr. 106:13853
    [Google Scholar]
  85. Kineke GC, Sternberg RW, Trowbridge JH, Geyer WR. 1996. Fluid-mud processes on the Amazon continental shelf. Cont. Shelf Res. 16:66796
    [Google Scholar]
  86. King EL, Haflidason H, Sejrup HP, Lovlie R. 1998. Glacigenic debris flows on the North Sea trough mouth fan during ice stream maxima. Mar. Geol. 152:21746
    [Google Scholar]
  87. Kioka A, Schwestermann TC, Moernaut J, Ikehara K, Kanamatsu T et al. 2019. Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci. Rep. 9:1553
    [Google Scholar]
  88. Kneller B, Buckee C. 2002. The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology 47:6294
    [Google Scholar]
  89. Korup O, Clague JJ, Hermanns RL, Hewit K, Strom A, Weidinger JT. 2007. Giant landslides, topography, and erosion. Earth Planet. Sci. Lett. 261:57889
    [Google Scholar]
  90. Kuehl SA, Alexander CR, Blair NE, Harris CK, Marsaglia KM et al. 2016. A source-to-sink perspective of the Waipaoa River margin. Earth-Sci. Rev. 153:30134
    [Google Scholar]
  91. Kuehl SA, Nittrouer CA, Allison MA, Faria LEC, Dukat DA et al. 1996. Sediment deposition, accumulation, and seabed dynamics in an energetic fine-grained coastal environment. Cont. Shelf Res. 16:787816
    [Google Scholar]
  92. Kuenen PH, Migliorini CI. 1950. Turbidity currents as a cause of graded bedding. J. Geol. 58:91127
    [Google Scholar]
  93. Lalonde K, Mucci A, Ouellet A, Gélinas Y. 2012. Preservation of organic matter in sediments promoted by iron. Nature 483:198200
    [Google Scholar]
  94. Leduc D, Nodder SD, Rowden AA, Gibbs M, Berkenbusch K et al. 2020. Structure of infaunal communities in New Zealand submarine canyons is linked to origins of sediment organic matter. Limnol. Oceanogr. 65:230327
    [Google Scholar]
  95. Lee H, Galy V, Fend X, Ponton C, Galy A et al. 2019. Sustained wood burial in the Bengal Fan over the last 19 My. PNAS 116:2251825
    [Google Scholar]
  96. Li M, Peng C, He N. 2022. Global patterns of particulate organic carbon export from land to the ocean. Ecohydrology 15:e2373
    [Google Scholar]
  97. Li Z, Zhang YG, Torres M, Mills BJW. 2023. Neogene burial of organic carbon in the global ocean. Nature 613:9095
    [Google Scholar]
  98. Liu JT, Yang RJ, Hsu RT, Kao S-J, Lin H-L, Kuo FH. 2012. Cyclone induced hyperpycnal turbidity currents in a submarine canyon. J. Geophys. Res. 117:C04033
    [Google Scholar]
  99. Maher BA, Prospero JM, Mackie M, Gaiero D, Hesse PP, Balkanski Y. 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the Last Glacial Maximum. Earth-Sci. Rev. 99:6197
    [Google Scholar]
  100. Maier KL, Rosenberger K, Paull CK, Gwiazda R, Gales J et al. 2019. Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California. Deep-Sea Res. I 153:103108
    [Google Scholar]
  101. Mariotti A, Blard PH, Charreau J, Toucanne S, Jorry SJ et al. 2021. Nonlinear forcing of climate on mountain denudation during glaciations. Nat. Geosci. 14:1622
    [Google Scholar]
  102. Maslin M, Vilela C, Mikkelsen N, Grootes P. 2005. Causes of catastrophic sediment failures of the Amazon Fan. Quat. Sci. Rev. 24:218093
    [Google Scholar]
  103. Masson DG, Huvenne VAI, de Stigter HC, Wolff GA, Kiriakoulakis K et al. 2010. Efficient burial of carbon in a submarine canyon. Geology 38:83134
    [Google Scholar]
  104. McArthur AD, Gamberi F, Kneller BC, Wakefield MI, Souza PA, Kuchle J. 2017. Palynofacies classification of submarine fan depositional environments: outcrop examples from the Marnoso-Arenacea Formation, Italy. Mar. Pet. Geol. 88:18199
    [Google Scholar]
  105. Middelburg JJ. 2018. Reviews and syntheses: to the bottom of carbon processing at the seafloor. Biogeosciences 15:41327
    [Google Scholar]
  106. Milliman JD, Farnsworth KL. 2011. River Discharge to the Coastal Ocean: A Global Synthesis Cambridge, UK: Cambridge Univ. Press
  107. Mountjoy JJ, Howarth JD, Orpin AR, Barnes PM, Bowden DA et al. 2018. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins. Sci. Adv. 4:eaar3748
    [Google Scholar]
  108. Mulder T, Syvitski JPM, Migneon S, Faugeres JC, Savoye B. 2003. Marine hyperpycnal flows: initiation, behaviour, and related deposits. A review. Mar. Pet. Geol. 20:86182
    [Google Scholar]
  109. Nittrouer CA, DeMaster DJ, Kuehl SA, Figueiredo AG Jr., Sternberg RW et al. 2021. Amazon sediment transport and accumulation along the continuum of mixed fluvial and marine processes. Annu. Rev. Mar. Sci. 13:50136
    [Google Scholar]
  110. Normandeau A, Bourgault D, Neumeier U, Lajeunesse P, St-Onge G et al. 2020. Storm-induced turbidity currents on a sediment-starved shelf: insight from direct monitoring and repeat seabed mapping of upslope migrating bedforms. Sedimentology 67:104568
    [Google Scholar]
  111. Normark WB, Meyer AH, Cremer M, Droz L, O'Connell S et al. 1986. Summary of drilling results for the Mississippi Fan and considerations for applications to other turbidite systems. Initial Reports of the Deep Sea Drilling Project, Vol. 96 AH Bouma, JM Coleman, J Brooks, WR Bryant, R Constans et al.42536. Washington, DC: US Gov. Print. Off.
    [Google Scholar]
  112. Nygård A, Sejrup HP, Haflidason H, Lekens WAH, Clark C, Bigg R. 2007. Extreme sediment and ice discharge from marine-based ice streams; new evidence from the North Sea. Geology 35:39598
    [Google Scholar]
  113. Paradis S, Arjona-Camas M, Goni M, Palanques A, Masque P, Puig P. 2022. Contrasting particle fluxes and composition in a submarine canyon affected by natural sediment transport events and bottom trawling. Front. Mar. Sci. 9:1017052
    [Google Scholar]
  114. Paull CK, Talling PJ, Maier K, Parsons D, Xu J et al. 2018. Powerful turbidity currents driven by dense basal layers. Nat. Commun. 9:4144
    [Google Scholar]
  115. Paull CK, Ussler W, Mitts PJ, Caress DW, West GJ. 2006. Discordant 14C-stratigraphies in upper Monterey Canyon: a signal of anthropogenic disturbance. Mar. Geol. 233:2136
    [Google Scholar]
  116. Payo-Payo M, Silva Jacinto R, Lastras G, Rabineau M, Puig P et al. 2017. Numerical modeling of bottom trawling-induced sediment transport and accumulation in La Fonera submarine canyon, northwestern Mediterranean Sea. Mar. Geol. 386:10725
    [Google Scholar]
  117. Picot M, Droz L, Marsset T, Dennielou B, Bez M. 2015. Controls on turbidite sedimentation: insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan). Mar. Pet. Geol. 72:42346
    [Google Scholar]
  118. Piper DJW, Cochonat P, Morrison ML. 1999. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology 46:7997
    [Google Scholar]
  119. Piper DJW, Flood RD, Cisowski C, Hall F, Manley PL et al. 1997. Synthesis of stratigraphic correlations of the Amazon fan. Proceedings of the Ocean Drilling Program: Scientific Results, Vol. 155 RD Flood, DJW Piper, A Klaus, LC Peterson 595610. College Station, TX: Ocean Drill. Program
  120. Plank T, Manning CE. 2019. Subducting carbon. Nature 574:34352
    [Google Scholar]
  121. Pope EL, Cartigny MJB, Clare MA, Talling PJ, Lintern DG et al. 2022. First source-to-sink monitoring shows dense head determines sediment gravity flow runout. Sci. Adv. 8:eabj3220
    [Google Scholar]
  122. Pope EL, Normandeau A, Ó Cofaigh C, Stokes CR, Talling PJ. 2019. Controls on the formation of turbidity current channels associated with marine-terminating glaciers and ice sheets. Mar. Geol. 45:105951
    [Google Scholar]
  123. Posamentier HW, Kolla V. 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. J. Sediment. Res. 73:36788
    [Google Scholar]
  124. Prahl FG, Ertel JR, Goni MA, Sparrow MA, Eversmeyer B. 1994. Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim. Cosmochim. Acta 58:303548
    [Google Scholar]
  125. Pratson L, Nittrouer C, Wiberg P, Steckler M, Swenson J et al. 2009. Seascape evolution on clastic continental shelves and slopes. Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy CA Nittrouer, JA Austin, ME Field, JH Kravitz, JPM Syvitski, PL Wiberg 33973. Malden, MA: Blackwell
    [Google Scholar]
  126. Puig P, Canals M, Company JB, Martín J, Amblas D et al. 2012. Ploughing the deep sea floor. Nature 489:28689
    [Google Scholar]
  127. Quadfasel D, Kudrass H, Frische A. 1990. Deep-water renewal by turbidity currents in the Sulu Sea. Nature 348:32022
    [Google Scholar]
  128. Rabouille C, Baudin F, Dennielou B, Olu K. 2017. Organic carbon transfer and ecosystem functioning in terminal lobes of Congo deep-sea fan: outcomes of the Conglobe project. Deep-Sea Res. II 142:16
    [Google Scholar]
  129. Rabouille C, Dennielou B, Baudin F, Raimonet M, Droz L et al. 2019. Carbon and silica megasink in deep-sea sediments of the Congo terminal lobes. Quat. Sci. Rev. 222:105854
    [Google Scholar]
  130. Raiswell R, Benning LG, Tranter M, Tulaczyk S. 2008. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem. Trans. 9:118987
    [Google Scholar]
  131. Regard V, Premaillon M, Dewez TJB, Carretier S, Jeandel C et al. 2022. Rock coast erosion: an overlooked source of sediments to the ocean. Europe as an example. Earth Planet. Sci. Lett. 579:117356
    [Google Scholar]
  132. Regnier P, Resplandy L, Najjar RG, Ciais P. 2022. The land-to-ocean loops of the global carbon cycle. Nature 603:40110
    [Google Scholar]
  133. Repasch M, Scheingross JS, Hovius N, Vieth-Hillebrand A, Mueller CW et al. 2022. River organic carbon fluxes modulated by hydrodynamic sorting of particulate organic matter. Geophys. Res. Lett. 49:e2021GL096343
    [Google Scholar]
  134. Rogers KG, Goodbred S. 2010. Mass failures associated with the passage of a large tropical cyclone over the Swatch of No Ground submarine canyon (Bay of Bengal). Geology 38:105154
    [Google Scholar]
  135. Saller A, Lin R, Dunham J. 2006. Leaves in turbidite sands: the main source of oil and gas in the deep-water Kutei Basin, Indonesia. AAPG Bull 90:1585608
    [Google Scholar]
  136. Sampere TP, Bianchi TS, Wakeham SG, Allison MA. 2008. Sources of organic matter in surface sediments of the Louisiana Continental Margin: effects of primary depositional/transport pathways and a hurricane event. Cont. Shelf Res. 28:247287
    [Google Scholar]
  137. Schlünz B, Schneider RR. 2000. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux and burial rates. Int. J. Earth Sci. 88:599606
    [Google Scholar]
  138. Schlünz B, Schneider RR, Müller PJ, Showers J, Wefer G. 1999. Terrestrial organic carbon accumulation on the Amazon deep sea fan during the last glacial sea level low stand. Chem. Geol. 159:26381
    [Google Scholar]
  139. Schwab MS, Hilton RG, Haghipour N, Baronas JJ, Eglinton TI. 2022. Vegetal undercurrents—obscured riverine dynamics of plant debris. J. Geophys. Res. 127:e2021JG006726
    [Google Scholar]
  140. Shang H. 2023. A generic hierarchical model of organic matter degradation and preservation in aquatic systems. Commun. Earth Environ. 4:16
    [Google Scholar]
  141. Sigman D, Boyle E. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:85969
    [Google Scholar]
  142. Simmons SM, Azpiroz-Zabala M, Cartigny MJB, Clare MA, Cooper C et al. 2020. Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents. J. Geophys. Res. 125:e2019JC015904
    [Google Scholar]
  143. Smeaton C, Austin WEN. 2022. Understanding the role of terrestrial and marine carbon in the mid-latitude fjords of Scotland. Glob. Biogeochem. Cycles 36:e2022GB007434
    [Google Scholar]
  144. Smith R, Bianchi T, Allison M, Savage C. 2015. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8:45053
    [Google Scholar]
  145. Sternberg RW, Cacchione DA, Paulson B, Kineke GC, Drake DE. 1996. Observations of sediment transport on the Amazon subaqueous delta. Cont. Shelf Res. 16:697715
    [Google Scholar]
  146. Stetten E, Baudin F, Reyss JL, Martinez P, Charlier K et al. 2015. Organic matter characterization and distribution in sediments of the terminal lobes of the Congo deep-sea fan: evidence for the direct influence of the Congo River. Mar. Geol. 369:18295
    [Google Scholar]
  147. Sundquist ET. 1993. The global carbon dioxide budget. Science 259:93441
    [Google Scholar]
  148. Sundquist ET, Visser K. 2004. The geologic history of the carbon cycle. Treatise on Geochemistry, Vol. 8: Biogeochemistry WH Schlesinger42572. Amsterdam: Elsevier
    [Google Scholar]
  149. Syvitski J, Angel JR, Saito Y, Overeem I, Vörösmarty CJ et al. 2022. Earth's sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 3:17996
    [Google Scholar]
  150. Talling PJ. 2014. On the triggers, resulting flow types and frequency of subaqueous sediment density flows in different settings. Mar. Geol. 352:15582
    [Google Scholar]
  151. Talling PJ, Allin J, Armitage DA, Arnott RWC, Cartigny MJB et al. 2015. Key future directions for research on turbidity currents and their deposits. J. Sediment. Res. 85:15369
    [Google Scholar]
  152. Talling PJ, Amy LA, Wynn RB, Peakall J, Robinson M. 2004. Beds comprising debrite sandwiched within co-genetic turbidite: origin and widespread occurrence in distal depositional environments. Sedimentology 51:16394
    [Google Scholar]
  153. Talling PJ, Baker ML, Pope EL, Ruffell SC, Silva Jacinto R et al. 2022. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea. Nat. Commun. 13:4193
    [Google Scholar]
  154. Talling PJ, Clare M, Urlaub M, Pope E, Hunt JE, Watt SL 2014. Large submarine landslides on continental slopes: geohazards and role in methane release and climate change. Oceanography 27:23245
    [Google Scholar]
  155. Talling PJ, Sumner EJ, Masson DG, Malgesini G. 2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology 59:19372003
    [Google Scholar]
  156. Talling PJ, Wynn RB, Masson DG, Frenz M, Cronin BT et al. 2007. Onset of submarine debris flow deposition far from original giant landslide. Nature 450:54144
    [Google Scholar]
  157. Thomson J, Colley S, Higgs NC, Hydes DJ, Wilson TRS, Sorensen J 1987. Geochemical oxidation fronts in NE Atlantic distal turbidites and their effects in the sedimentary record. Geology and Geochemistry of Abyssal Plains PPE Weaver, J Thomson 16777. Geol. Soc. Spec. Publ. 31 London: Geol. Soc .
    [Google Scholar]
  158. Torres MA, West AJ, Li G. 2014. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature 507:34649
    [Google Scholar]
  159. Vale NF, Braga JC, de Moura RL, Salgado LT, de Moraes FC et al. 2022. Distribution, morphology and composition of mesophotic ‘reefs’ on the Amazon Continental Margin. Mar. Geol. 447:106779
    [Google Scholar]
  160. Wadham JL, Hawkings JR, Tarasov L, Gregoire LJ, Spencer RGM et al. 2019. Ice sheets matter for the global carbon cycle. Nat. Commun. 10:3567
    [Google Scholar]
  161. Walsh JP, Nittrouer CA. 2009. Understanding fine-grained river-sediment dispersal on continental margins. Mar. Geol. 263:3445
    [Google Scholar]
  162. Wright LD, Friedrichs CT. 2006. Gravity-driven sediment transport on continental shelves: a status report. Cont. Shelf Res. 26:2092107
    [Google Scholar]
  163. Xu B, Bianchi TS, Allison MA, Dimova NT, Wang H et al. 2015. Using multi-radiotracer technique to evaluate sedimentary dynamics of reworked muds in the Changjiang River and estuary and East China Sea. Mar. Geol. 370:7886
    [Google Scholar]
  164. Zeng N. 2003. Glacial-interglacial atmospheric CO2 change—the glacial burial hypothesis. Adv. Atmos. Sci. 20:67793
    [Google Scholar]
  165. Zeng N. 2007. Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release. Clim. Past 3:13553
    [Google Scholar]
  166. Zhao B, Yao P, Bianchi TS, Wang X, Shields MR et al. 2023. Dynamics of iron-associated organic carbon in the Changjiang Estuary. Geochim. Cosmochim. Acta 345:3949
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032223-103626
Loading
/content/journals/10.1146/annurev-marine-032223-103626
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error