1932

Abstract

Approximately 45% of the photosynthetically fixed carbon on Earth occurs in the oceans in phytoplankton, which account for less than 1% of the world's photosynthetic biomass. This amazing empirical observation implies a very high photosynthetic energy conversion efficiency, but how efficiently is the solar energy actually used? The photon energy budget of photosynthesis can be divided into three terms: the quantum yields of photochemistry, fluorescence, and heat. Measuring two of these three processes closes the energy budget. The development of ultrasensitive, seagoing chlorophyll variable fluorescence and picosecond fluorescence lifetime instruments has allowed independent closure on the first two terms. With this closure, we can understand how phytoplankton respond to nutrient supplies on timescales of hours to months and, over longer timescales, to changes in climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032621-122346
2022-01-03
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-032621-122346.html?itemId=/content/journals/10.1146/annurev-marine-032621-122346&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott MR, Letelier RM. 1998. Decorrelation scales of chlorophyll as observed from bio-optical drifters in the California Current. Deep-Sea Res. II 45:1639–67
    [Google Scholar]
  2. Abbott MR, Letelier RM. 1999. Algorithm theoretical basis document: chlorophyll fluorescence (MODIS product number 20) Rep., Ocean Biol. Process. Group, Goddard Space Cent., Natl. Aeronaut. Space Adm. Greenbelt, MD:
    [Google Scholar]
  3. Abbott MR, Richerson PJ, Powell TM. 1982. In situ response of phytoplankton fluorescence to rapid variations in light. Limnol. Oceanogr. 27:218–25
    [Google Scholar]
  4. Bailleul B, Cardol P, Breyton C, Finazzi G. 2010. Electrochromism: a useful probe to study algal photosynthesis. Photosynth. Res. 106:179
    [Google Scholar]
  5. Behrenfeld MJ, Bale A, Kolber ZS, Aiken J, Falkowski P. 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific. Nature 383:508–11
    [Google Scholar]
  6. Behrenfeld MJ, Falkowski PG. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42:1–20
    [Google Scholar]
  7. Behrenfeld MJ, Kolber ZS. 1999. Widespread iron limitation of phytoplankton in the South Pacific Ocean. Science 283:840–43
    [Google Scholar]
  8. Behrenfeld MJ, Milligan AJ. 2013. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 5:217–46
    [Google Scholar]
  9. Behrenfeld MJ, Westberry TK, Boss ES, O'Malley RT, Siegel DA et al. 2009. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 6:779–94
    [Google Scholar]
  10. Behrenfeld MJ, Worthington K, Sherrell RM, Chavez FP, Strutton P et al. 2006. Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature 442:1025–28
    [Google Scholar]
  11. Bennoun P. 1982. Evidence for a respiratory chain in the chloroplast. PNAS 79:4352–56
    [Google Scholar]
  12. Bilger W, Bjorkman O. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorption changes, fluorescence and photosynthesis in Hedera canariensis. Photosynth. Res. 25:173–85
    [Google Scholar]
  13. Bonnet S, Guieu C, Bruyant F, Prasil O, Van Wambeke F et al. 2008. Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise). Biogeosciences 5:215–25
    [Google Scholar]
  14. Bowes J, Crofts AR. 1980. Binary oscillations in the rate of reoxidation of the primary acceptor of Photosystem II. Biochim. Biophys. Acta 590:373–84
    [Google Scholar]
  15. Boyd PW, Abraham ER. 2001. Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep-Sea Res. II 48:2529–50
    [Google Scholar]
  16. Boyd PW, Crossley AC, DiTullio GR, Griffiths FB, Hutchins DA et al. 2001. Control of phytoplankton growth by iron supply and irradiance in the subantarctic Southern Ocean: experimental results from the SAZ Project. J. Geophys. Res. 106:31573–83
    [Google Scholar]
  17. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA et al. 2007. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–17
    [Google Scholar]
  18. Boyd PW, Wong CS, Merrill J, Whitney F, Snow J et al. 1998. Atmospheric iron supply and enhanced vertical carbon flux in the NE subarctic Pacific: Is there a connection?. Glob. Biogeochem. Cycles 12:429–41
    [Google Scholar]
  19. Brewster D. 1834. On the colours of natural bodies. Trans. R. Soc. Edinb. 12:538–45
    [Google Scholar]
  20. Brody SS, Rabinowitch E. 1957. Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125:555
    [Google Scholar]
  21. Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP et al. 1999. Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105
    [Google Scholar]
  22. Buck JM, Sherman J, Bártulos CR, Serif M, Halder M et al. 2019. Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum. Nat. Commun. 10:4167
    [Google Scholar]
  23. Butler WL. 1972. On the primary nature of fluorescence yield changes associated with photosynthesis. PNAS 69:3420–22
    [Google Scholar]
  24. Butler WL. 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol. 29:345–78
    [Google Scholar]
  25. Campbell DA, Hurry V, Clarke A, Gustafsson P, Oquist G 1998. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62:667–83
    [Google Scholar]
  26. Campbell DA, Tyystjärvi E. 2012. Parameterization of photosystem II photoinactivation and repair. Biochim. Biophys. Acta 1817:258–65
    [Google Scholar]
  27. Coale KH, Johnson KS, Chavez FP, Buesseler KO, Barber RT et al. 2004. Southern ocean iron enrichment experiment: carbon cycling in high- and low-Si waters. Science 304:408–14
    [Google Scholar]
  28. Crofts AR, Wright CA. 1983. The electrochemical domain of photosynthesis. Biochim. Biophys. Acta 726:149–85
    [Google Scholar]
  29. Cullen JJ, Ciotti AM, Davis RF, Neale PJ 1997. Relationship between near-surface chlorophyll and solar-stimulated fluorescence: biological effects. Ocean Optics XIII SG Ackleson, RJ Frouin 272–77 Proc. SPIE 2963 Bellingham, WA: Soc. Photo-Opt. Instrum. Eng.
    [Google Scholar]
  30. Demers S, Roy S, Gagnon R, Vignault C. 1991. Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism. Mar. Ecol. Prog. Ser. 76:185–93
    [Google Scholar]
  31. Demmig-Adams B, Adams WW III 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26
    [Google Scholar]
  32. Demmig-Adams B, Garab G, Adams WW III, Govindjee 2014. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria Dordrecht, Neth: Springer
    [Google Scholar]
  33. Dugdale RC. 1967. Nutrient limitation in the sea: dynamics, identification, and significance. Limnol. Oceanogr. 12:685–95
    [Google Scholar]
  34. Duysens LNM. 1956. Energy transformations in photosynthesis. Annu. Rev. Plant Physiol. 7:25–50
    [Google Scholar]
  35. Duysens LNM, Amesz J, Kamp BM 1961. Two photochemical systems in photosynthesis. Nature 190:510–11
    [Google Scholar]
  36. Duysens LNM, Sweers HE. 1963. Mechanism of two photochemical reactions in algae as studied by means of fluorescence. Studies on Microalgae and Photosynthetic Bacteria Jpn. Soc. Plant Physiol. 353–72 Tokyo: Univ. Tokyo Press
    [Google Scholar]
  37. El-Bissati K, Delphin E, Murata N, Etienne AL, Kirilovsky D 2000. Photosystem II fluorescence quenching in the cyanobacterium Synechocystis sp. PCC 6803: involvement of two different mechanisms. Biochim. Biophys. Acta 1457:229–42
    [Google Scholar]
  38. Emerson R. 1957. Dependence of yield of photosynthesis in long wave red on wavelength and intensity of supplementary light. Science 125:746–52
    [Google Scholar]
  39. Eppley RW. 1980. Estimating phytoplankton growth rates in the central oligotrophic oceans. Primary Productivity in the Sea PG Falkowski 231–42 New York: Plenum
    [Google Scholar]
  40. Esaias WE, Abbott MR, Barton I, Brown OB, Campbell JW et al. 1998. An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens. 36:1250–65
    [Google Scholar]
  41. Falkowski PG, Dubinsky Z, Wyman K. 1985. Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr. 30:311–21
    [Google Scholar]
  42. Falkowski PG, Koblizek M, Gorbunov MY, Kolber ZS. 2004. Development and application of variable chlorophyll fluorescence techniques in marine ecosystems. See Papageorgiou & Govindjee 2004 757–78
  43. Falkowski PG, Kolber ZS. 1995. Variations in the chlorophyll fluorescence yields in the phytoplankton in the world oceans. Aust. J. Plant Physiol. 22:341–55
    [Google Scholar]
  44. Falkowski PG, Lin H, Gorbunov MY 2017. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Philos. Trans. R. Soc. B 372:20160376
    [Google Scholar]
  45. Falkowski PG, Raven JA. 2007. Aquatic Photosynthesis Princeton, NJ: Princeton Univ. Press. , 2nd ed..
    [Google Scholar]
  46. Falkowski PG, Wyman K, Ley AC, Mauzerall DC. 1986. Relationship of steady state photosynthesis to fluorescence in eukaryotic algae. Biochim. Biophys. Acta 849:183–92
    [Google Scholar]
  47. Geider RJ, LaRoche J, Greene RM, Olaizola M. 1993. Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. J. Phycol. 29:755–66
    [Google Scholar]
  48. Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87–92
    [Google Scholar]
  49. Gervais F, Riebesell U, Gorbunov MY 2002. Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol. Oceanogr. 47:1324–35
    [Google Scholar]
  50. Gorbunov MY, Chekalyuk AM. 1992. Lidar in-situ study of sunlight regulation of phytoplankton photosynthetic activity and chlorophyll fluorescence. Laser Study of Macroscopic Biosystems JE Korppi-Tommola 421–27 Proc. SPIE 1922 Bellingham, WA: Soc. Photo-Opt. Instrum. Eng.
    [Google Scholar]
  51. Gorbunov MY, Falkowski PG 2005. Fluorescence induction and relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. Photosynthesis: Fundamental Aspects to Global Perspectives; Proceedings of the 13th International Congress on Photosynthesis A van der Est, D Bruce 1029–31 Lawrence, KS: Alliance Commun. Group
    [Google Scholar]
  52. Gorbunov MY, Falkowski PG. 2021. Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnol. Oceanogr. 66:1–13
    [Google Scholar]
  53. Gorbunov MY, Falkowski PG, Kolber ZS. 2000. Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer. Limnol. Oceanogr. 45:242–45
    [Google Scholar]
  54. Gorbunov MY, Kolber ZS, Falkowski PG. 1999. Measuring photosynthetic parameters in individual algal cells by Fast Repetition Rate fluorometry. Photosynth. Res. 62:141–53
    [Google Scholar]
  55. Gorbunov MY, Kolber ZS, Lesser MP, Falkowski PG. 2001. Photosynthesis and photoprotection in symbiotic corals. Limnol. Oceanogr. 46:75–85
    [Google Scholar]
  56. Gorbunov MY, Kuzminov FI, Fadeev VV, Kim JD, Falkowski PG 2011. A kinetic model of non-photochemical quenching in cyanobacteria. Biochim. Biophys. Acta 1807:1591–99
    [Google Scholar]
  57. Gorbunov MY, Shirsin E, Nikonova E, Fadeev VV, Falkowski PG. 2020. A multi-spectral fluorescence induction and relaxation (FIRe) technique for physiological and taxonomic analysis of phytoplankton communities. Mar. Ecol. Prog. Ser. 644:1–13
    [Google Scholar]
  58. Gordon HR, Brown OB, Evans RH, Brown JW, Smith RC et al. 1988. A semianalytic radiance model of ocean color. J. Geophys. Res. Atmos. 93:10909–24
    [Google Scholar]
  59. Gordon HR, Morel AY 1983. In-water algorithms. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review24–67 New York: Springer
    [Google Scholar]
  60. Govindjee 1995. Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust. J. Plant Physiol. 22:131–60
    [Google Scholar]
  61. Gower JFR, Doerffer R, Borstad GA. 1999. Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. Int. J. Remote Sens. 20:1771–86
    [Google Scholar]
  62. Greene RM, Geider RJ, Kolber ZS, Falkowski PG. 1992. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100:565–75
    [Google Scholar]
  63. Hendrickson L, Furbank RT, Chow WS. 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth. Res. 82:73
    [Google Scholar]
  64. Herron HA, Mauzerall D. 1971. The development of photosynthesis in a greening mutant of Chlorella and an analysis of the light saturation curve. Plant Physiol 50:141–48
    [Google Scholar]
  65. Holzwarth AR. 1986. Fluorescence lifetimes in photosynthetic systems. Photochem. Photobiol. 43:707–25
    [Google Scholar]
  66. Holzwarth AR, Müller MG, Reus M, Nowaczyk M, Sander J, Rögner M. 2006. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. PNAS 103:6895–900
    [Google Scholar]
  67. Horton P, Ruban AV, Walters R. 1996. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:655–84
    [Google Scholar]
  68. Hughes DJ, Campbell DA, Doblin MA, Kromkamp JC, Lawrenz EC et al. 2018a. Roadmaps and detours: active chlorophyll-a assessments of primary productivity across marine and freshwater systems. Environ. Sci. Technol. 52:12039–54
    [Google Scholar]
  69. Hughes DJ, Varkey D, Doblin MA, Ingleton T, McInnes A et al. 2018b. Impact of nitrogen availability upon the electron requirement for carbon fixation in Australian coastal phytoplankton communities. Limnol. Oceanogr. 63:1891–910
    [Google Scholar]
  70. Huot Y, Brown CA, Cullen JJ. 2005. New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products. Limnol. Oceanogr. Methods 3:108–30
    [Google Scholar]
  71. Huot Y, Franz BA, Fradette M 2013. Estimating variability in the quantum yield of sun-induced chlorophyll fluorescence: a global analysis of oceanic waters. Remote Sens. Environ. 132:238–53
    [Google Scholar]
  72. Joliot P, Joliot A. 2003. Excitation transfer between photosynthetic units: the 1964 experiment. Photosynth Res 76:241–45
    [Google Scholar]
  73. Kautsky H, Hirsch A. 1931. Neue Versuche zur Kohlensauerassimilation. Naturwissenschaften 48:964
    [Google Scholar]
  74. Ke B. 2001. Phycobiliproteins and phycobilisomes. Photosynthesis: Photobiochemistry and Photobiophysics251–69 Dordrecht, Neth: Kluwer Acad.
    [Google Scholar]
  75. Kiefer DA. 1973. Fluorescence properties of natural phytoplankton populations. Mar. Biol. 22:263–69
    [Google Scholar]
  76. Kirilovsky D, Kerfeld C. 2016. Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants 2:16180
    [Google Scholar]
  77. Ko E, Gorbunov MY, Jung J, Joo HM, Lee Y et al. 2020. Effects of nitrogen limitation on phytoplankton physiology in the western Arctic Ocean in summer. J. Geophys. Res. Oceans 125:ee2020JC016501
    [Google Scholar]
  78. Ko E, Park J, Gorbunov MY, Yoo S 2019. Uncertainties in variable fluorescence and 14C methods to estimate primary productivity: a case study in the coastal waters off the Korean peninsula. Mar. Ecol. Prog. Ser. 627:13–31
    [Google Scholar]
  79. Kolber ZS, Barber RT, Coale KH, Fitzwater SE, Greene RM et al. 1994. Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371:145–49
    [Google Scholar]
  80. Kolber ZS, Falkowski PG. 1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38:1646–65
    [Google Scholar]
  81. Kolber ZS, Prasil O, Falkowski PG 1998. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta 1376:88–106
    [Google Scholar]
  82. Kolber ZS, Zehr J, Falkowski PG. 1988. Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:72–79
    [Google Scholar]
  83. Kramer DM, DiMarco G, Loreto F 1995. Contribution of plastoquinone quenching to saturation pulse-induced rise of chlorophyll fluorescence in leaves. Photosynthesis: From Light to the Biosphere, Vol. 1 P Mathis 147–50 Dordrecht, Neth: Kluwer Acad.
    [Google Scholar]
  84. Kramer DM, Johnson G, Kiirats O, Edwards GE 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 79:209–18
    [Google Scholar]
  85. Kromkamp JC, Dijkman NA, Peene J, Simis SGH, Gons HJ. 2008. Estimating phytoplankton primary production in Lake Ijsselmeer (the Netherlands) using variable fluorescence (PAM-FRRF) and C-uptake techniques. Eur. J. Phycol. 43:327–44
    [Google Scholar]
  86. Kulk G, van de Poll WH, Buma AGJ. 2018. Photophysiology of nitrate limited phytoplankton communities in Kongsfjorden, Spitsbergen. Limnol. Oceanogr. 63:2606–17
    [Google Scholar]
  87. Kuzminov FI, Gorbunov MY. 2016. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high light conditions. Photosynth. Res. 127:219–35
    [Google Scholar]
  88. Lakowicz JR. 2006. Principles of Fluorescence Spectroscopy New York: Springer. , 3rd ed..
    [Google Scholar]
  89. Lawrenz E, Silsbe G, Capuzzo E, Ylostalo P, Forster RM et al. 2013. Predicting the electron requirement for carbon fixation in seas and oceans. PLOS ONE 8:e58137
    [Google Scholar]
  90. Laws EA. 1991. Photosynthetic quotients, new production and net community production in the open ocean. Deep-Sea Res. I 38:143–67
    [Google Scholar]
  91. Letelier RM, Abbott MR, Karl DM 1997. Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean. Geophys. Res. Lett. 24:409–12
    [Google Scholar]
  92. Lewis KM, Arntsen AE, Coupel P, Joy-Warren H, Lowry KE et al. 2019. Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation. Limnol. Oceanogr. 64:284–301
    [Google Scholar]
  93. Ley AC, Mauzerall D. 1982. Absolute absorption cross sections for Photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim. Biophys. Acta 680:95–106
    [Google Scholar]
  94. Ley AC, Mauzerall D. 1986. The extent of energy transfer among Photosystem II reaction centers in Chlorella. Biochim. Biophys. Acta 850:234–48
    [Google Scholar]
  95. Lichtenthaler HK. 1992. The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynthetica 27:44–55
    [Google Scholar]
  96. Lin H, Kuzminov FI, Park J, Lee SH, Falkowski PG et al. 2016. The fate of photons absorbed by phytoplankton in the global ocean. Science 351:264–67
    [Google Scholar]
  97. Litchman E, Klausmeier CA. 2008. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39:615–39
    [Google Scholar]
  98. Long SP, Humphries S, Falkowski PG. 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:633–62
    [Google Scholar]
  99. MacColl R. 1998. Cyanobacterial phycobilisomes. J. Struct. Biol. 124:311–34
    [Google Scholar]
  100. Maritorena S, Morel A, Gentili B. 2000. Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat. Appl. Opt. 39:6725–37
    [Google Scholar]
  101. Mauzerall D. 1972. Light-induced changes in Chlorella, and the primary photoreaction for the production of oxygen. PNAS 69:1358–62
    [Google Scholar]
  102. Mauzerall D. 1986. The optical cross section and the absolute size of a photosynthetic unit. Photosynth. Res. 10:163–70
    [Google Scholar]
  103. McClain CR. 2009. A decade of satellite ocean color observations. Annu. Rev. Mar. Sci. 1:19–42
    [Google Scholar]
  104. McElroy MB. 1983. Marine biological controls on atmospheric CO2 and climate. Nature 302:328–29
    [Google Scholar]
  105. Mills MM, Brown ZW, Laney SR, Ortega-Retuerta E, Lowry KE et al. 2018. Nitrogen limitation of the summer phytoplankton and heterotrophic prokaryote communities in the Chukchi Sea. Front. Mar. Sci. 5:362
    [Google Scholar]
  106. Mitchell P. 1977. Vectorial chemiosmotic processes. Annu. Rev. Biochem. 46:996–1005
    [Google Scholar]
  107. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6:701–10
    [Google Scholar]
  108. Morales F, Moise N, Quilez R, Abadia A, Abadia J et al. 2001. Iron deficiency interrupts energy transfer from a disconnected part of the antenna to the rest of Photosystem II. Photosynth. Res. 70:207–20
    [Google Scholar]
  109. Morel A, Prieur L. 1977. Analysis of variations in ocean color. Limnol. Oceanogr. 22:709–22
    [Google Scholar]
  110. Morrison JR. 2003. In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: a simple algorithm, observations, and a model. Limnol. Oceanogr. 48:618–31
    [Google Scholar]
  111. Myers J, Graham JR. 1971. The photosynthetic unit of Chlorella measured by repetitive short flashes. Plant Physiol 48:282–86
    [Google Scholar]
  112. Neville RA, Gower JFR. 1977. Passive remote sensing of phytoplankton via chlorophyll a fluorescence. J. Geophys. Res. 82:3487–93
    [Google Scholar]
  113. Nielsdottir MC, Moore CM, Sanders R, Hinz DJ, Achterberg EP. 2009. Iron limitation of the postbloom phytoplankton communities in the Iceland Basin. Glob. Biogeochem. Cycles 23:GB3001
    [Google Scholar]
  114. Olaizola M, LaRoche J, Kolber ZS, Falkowski PG. 1994. Nonphotochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynth. Res. 41:357–70
    [Google Scholar]
  115. Olson RJ, Sosik HM, Chekalyuk AM, Shalapyonok A. 2000. Effects of iron enrichment on phytoplankton in the Southern Ocean during late summer: active fluorescence and flow cytometric analyses. Deep-Sea Res. II 47:3181–200
    [Google Scholar]
  116. Oxborough K, Moore CM, Suggett DJ, Lawson T, Chan HG et al. 2012. Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Limnol. Oceanogr. Methods 10:142–54
    [Google Scholar]
  117. Paillotin G. 1976. Capture frequency excitation and energy transfer between photosynthetic units in the photosystem II. J. Theor. Biol. 58:219–35
    [Google Scholar]
  118. Papageorgiou GC, Govindjee 2004. Chlorophyll a Fluorescence: A Signature of Photosynthesis Dordrecht, Neth: Springer
    [Google Scholar]
  119. Park J, Kuzminov FI, Bailleul B, Yang EJ, Lee SH et al. 2017. Light availability rather than Fe controls the magnitude of massive phytoplankton blooms in the Amundsen Sea polynyas, Antarctica. Limnol. Oceanogr. 62:2260–76
    [Google Scholar]
  120. Parkhill JP, Maillet G, Cullen JJ. 2001. Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J. Phycol. 37:517–29
    [Google Scholar]
  121. Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM et al. 2007. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:522–75
    [Google Scholar]
  122. Ryan-Keogh TJ, Macey AI, Nielsdóttir MC, Lucas MI, Steigenberger SS et al. 2013. Spatial and temporal development of phytoplankton iron stress in relation to bloom dynamics in the high-latitude North Atlantic Ocean. Limnol. Oceanogr. 58:533–45
    [Google Scholar]
  123. Schallenberg C, Strzepek RF, Schuback N, Clementson LA, Boyd PW et al. 2020. Diel quenching of Southern Ocean phytoplankton fluorescence is related to iron limitation. Biogeosciences 17:793–812
    [Google Scholar]
  124. Schatz GH, Brock H, Holzwarth AR 1988. Kinetic and energetic model for the primary processes in photosystem II. Biophys. J. 54:397–405
    [Google Scholar]
  125. Schrader PS, Milligan AJ, Behrenfeld MJ. 2011. Surplus photosynthetic antennae complexes underlie diagnostics of iron limitation in a cyanobacterium. PLOS ONE 6:e18753
    [Google Scholar]
  126. Schreiber U, Schliwa U, Bilger W. 1986. Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10:51–62
    [Google Scholar]
  127. Schuback N, Hoppe CJ, Tremblay , Maldonado MT, Tortell PD. 2017. Primary productivity and the coupling of photosynthetic electron transport and carbon fixation in the Arctic Ocean. Limnol. Oceanogr. 62:898–21
    [Google Scholar]
  128. Schweitzer RH, Brudvig GW. 1997. Fluorescence quenching by chlorophyll cations in photosystem II. Biochemistry 36:11351–59
    [Google Scholar]
  129. Sherman J, Gorbunov MY, Schofield O, Falkowski PG. 2020. Photosynthetic energy conversion efficiency along the West Antarctic Peninsula. Limnol. Oceanogr. 65:2912–25
    [Google Scholar]
  130. Sidler WA 1994. Phycobilisome and phycobiliprotein structures. The Molecular Biology of Cyanobacteria DA Bryant 139–216 Dordrecht, Neth: Kluwer Acad.
    [Google Scholar]
  131. Stokes GG. 1852. On the change in the refrangibility of light. Philos. Trans. R. Soc. Lond. 142:463–562
    [Google Scholar]
  132. Suggett DJ, Moore CM, Hickman AE, Geider RJ. 2009. Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. Mar. Ecol. Prog. Ser. 376:1–19
    [Google Scholar]
  133. Sunda WG, Huntsman SA. 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–92
    [Google Scholar]
  134. Vassiliev IR, Kolber ZS, Wyman KD, Mauzerall D, Shukla VK et al. 1995. Effects of iron limitation on photosystem II composition and light utilization in Dunaliella tertiolecta. Plant Physiol 109:963–72
    [Google Scholar]
  135. Vernotte C, Etienne AL, Briantais JM 1979. Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim. Biophys. Acta 545:519–27
    [Google Scholar]
  136. Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA et al. 2006. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007
    [Google Scholar]
  137. Wilson A, Boulay C, Wilde A, Kerfeld CA, Kirilovsky D. 2007. Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins. Plant Cell 19:656–72
    [Google Scholar]
  138. Yamamoto HY. 1979. Biochemistry of the violaxanthin cycle in higher plants. Pure Appl. Chem. 51:639–48
    [Google Scholar]
  139. Zhu Y, Ishizaka J, Tripathy SC, Wang S, Sukigara C et al. 2017. Relationship between light, community composition and the electron requirement for carbon fixation in natural phytoplankton. Mar. Ecol. Prog. Ser. 580:83–100
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032621-122346
Loading
/content/journals/10.1146/annurev-marine-032621-122346
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error