1932

Abstract

The speciation of most biologically active trace metals in seawater is dominated by complexation by organic ligands. This review traces the history of work in this area, from the early observations that showed surprisingly poor recoveries using metal preconcentration protocols to the present day, where advances in mass spectroscopy and stable isotope geochemistry are providing new insights into the structure, origin, fate, and biogeochemical impact of organic ligands. Many long-standing hypotheses about the specific biological origin of ligands such as siderophores in seawater are finally being validated. This work has revealed the complexity of organic complexation, with multiple ligands and, in some cases, timescales of ligand exchange that are much slower than originally thought. The influence of organic complexation on scavenging is now a key parameter in biogeochemical models of biologically essential metals, especially iron. New insights about the sources and sinks of ligands are required to enhance the usefulness of these models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-033023-083652
2024-01-17
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-033023-083652.html?itemId=/content/journals/10.1146/annurev-marine-033023-083652&mimeType=html&fmt=ahah

Literature Cited

  1. Abualhaija MM, Whitby H, van den Berg CMG. 2015. Competition between copper and iron for humic ligands in estuarine waters. Mar. Chem. 172:4656
    [Google Scholar]
  2. Ahner BA, Morel FMM, Moffett JW. 1997. Trace metal control of phytochelatin production in coastal waters. Limnol. Oceanogr. 42:36018
    [Google Scholar]
  3. Aumont O, Éthé C, Tagliabue A, Bopp L, Gehlen M. 2015. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8:82465513
    [Google Scholar]
  4. Baars O, Morel FMM, Perlman DH. 2014. ChelomEx: isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS. Anal. Chem. 86:2211298305
    [Google Scholar]
  5. Baker AR, Croot PL. 2010. Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. 120:1–4413
    [Google Scholar]
  6. Balistrieri L, Brewer PG, Murray JW. 1981. Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep-Sea Res. A 28:210121
    [Google Scholar]
  7. Basu S, Gledhill M, de Beer D, Prabhu Matondkar SG, Shaked Y. 2019. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust. Commun. Biol. 2:1284
    [Google Scholar]
  8. Batley GE, Florence TM. 1976. Determination of the chemical forms of dissolved cadmium, lead and copper in seawater. Mar. Chem. 4:434763
    [Google Scholar]
  9. Blain S, Quéguiner B, Armand L, Belviso S, Bombled B et al. 2007. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:7139107074
    [Google Scholar]
  10. Boiteau RM, Fitzsimmons JN, Repeta DJ, Boyle EA. 2013. Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography–inductively coupled plasma-mass spectrometry. Anal. Chem. 85:9435762
    [Google Scholar]
  11. Boiteau RM, Mende DR, Hawco NJ, McIlvin MR, Fitzsimmons JN et al. 2016a. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. PNAS 113:501423742
    [Google Scholar]
  12. Boiteau RM, Repeta DJ. 2015. An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS. Metallomics 7:587784
    [Google Scholar]
  13. Boiteau RM, Repeta DJ. 2022. Slow kinetics of iron binding to marine ligands in seawater measured by isotope exchange liquid chromatography-inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 56:377079
    [Google Scholar]
  14. Boiteau RM, Till CP, Coale TH, Fitzsimmons JN, Bruland KW, Repeta DJ. 2019. Patterns of iron and siderophore distributions across the California Current System. Limnol. Oceanogr. 64:137689
    [Google Scholar]
  15. Boiteau RM, Till CP, Ruacho A, Bundy RM, Hawco NJ et al. 2016b. Structural characterization of natural nickel and copper binding ligands along the US GEOTRACES Eastern Pacific Zonal Transect. Front. Mar. Sci. 3:243
    [Google Scholar]
  16. Boyd PW, Ellwood MJ. 2010. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3:1067582
    [Google Scholar]
  17. Boye M, Aldrich AP, van den Berg CM, de Jong JT, Veldhuis M, de Baar HJ. 2003. Horizontal gradient of the chemical speciation of iron in surface waters of the northeast Atlantic Ocean. Mar. Chem. 80:2–312943
    [Google Scholar]
  18. Boye M, Nishioka J, Croot PL, Laan P, Timmermans KR, de Baar HJW. 2005. Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Mar. Chem. 96:3–425771
    [Google Scholar]
  19. Brand LE, Sunda WG, Guillard RR. 1986. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96:322550
    [Google Scholar]
  20. Brantley SL, Liermann LJ, Guynn RL, Anbar A, Icopini GA, Barling J. 2004. Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochim. Cosmochim. Acta 68:153189204
    [Google Scholar]
  21. Bruce MR. 1987. A stability ruler for metal ion complexes. J. Chem. Educ. 64:5402
    [Google Scholar]
  22. Bruland KW. 1992. Complexation of cadmium by natural organic ligands in the central North Pacific. Limnol. Oceanogr. 37:5100817
    [Google Scholar]
  23. Bruland KW, Franks RP, Knauer GA, Martin JH. 1979. Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel at the nanogram per liter level in sea water. Anal. Chim. Acta 105:23345
    [Google Scholar]
  24. Bruland KW, Lohan MC. 2006. Controls of trace metals in seawater. Oceans Mar. Geochem. 6:2347
    [Google Scholar]
  25. Buck KN, Bruland KW. 2005. Copper speciation in San Francisco Bay: a novel approach using multiple analytical windows. Mar. Chem. 96:1–218598
    [Google Scholar]
  26. Buck KN, Bruland KW. 2007. The physicochemical speciation of dissolved iron in the Bering Sea, Alaska. Limnol. Oceanogr. 52:518008
    [Google Scholar]
  27. Buck KN, Sedwick PN, Sohst B, Carlson CA. 2018. Organic complexation of iron in the eastern tropical South Pacific: results from US GEOTRACES Eastern Pacific Zonal Transect (GEOTRACES cruise GP16). Mar. Chem. 201:22941
    [Google Scholar]
  28. Bundy RM, Boiteau RM, McLean C, Turk-Kubo KA, McIlvin MR et al. 2018. Distinct siderophores contribute to iron cycling in the mesopelagic at Station ALOHA. Front. Mar. Sci. 5:61
    [Google Scholar]
  29. Byrne RH, Kester DR. 1976. Solubility of hydrous ferric oxide and iron speciation in seawater. Mar. Chem. 4:325574
    [Google Scholar]
  30. Coale TH, Moosburner M, Allen AE. 2019. Reduction-dependent siderophore assimilation in a model pennate diatom. PNAS 116:472360917
    [Google Scholar]
  31. Conway TM, Rosenberg AD, Adkins JF, John SG. 2013. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Anal. Chim. Acta 793:4452
    [Google Scholar]
  32. Davis JA. 1984. Complexation of trace metals by adsorbed natural organic matter. Geochim. Cosmochim. Acta 48:467991
    [Google Scholar]
  33. Deicke M, Mohr JF, Bellenger J-PP, Wichard T. 2014. Metallophore mapping in complex matrices by metal isotope coded profiling of organic ligands. Analyst 139:23609699
    [Google Scholar]
  34. Dewey C, Kaplan DI, Fendorf S, Boiteau RM. 2023. Quantitative separation of unknown organic–metal complexes by liquid chromatography–inductively coupled plasma-mass spectrometry. Anal. Chem. 95:20796067
    [Google Scholar]
  35. Ellwood MJ. 2004. Zinc and cadmium speciation in subantarctic waters east of New Zealand. Mar. Chem. 87:1–23758
    [Google Scholar]
  36. Findlay AJ, Estes ER, Gartman A, Yücel M, Kamyshny A Jr., Luther GW III. 2019. Iron and sulfide nanoparticle formation and transport in nascent hydrothermal vent plumes. Nat. Commun. 10:11597
    [Google Scholar]
  37. Fitzsimmons JN, Hayes CT, Al-Subiai S, Zhang R, Morton P et al. 2015. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean Time-series Station ALOHA. Geochim. Cosmochim. Acta 171:30324
    [Google Scholar]
  38. Gartman A, Findlay AJ, Luther GW III. 2014. Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chem. Geol. 366:3241
    [Google Scholar]
  39. Gerringa LJ, Veldhuis MJW, Timmermans KR, Sarthou G, De Baar HJW. 2006. Co-variance of dissolved Fe-binding ligands with phytoplankton characteristics in the Canary Basin. Mar. Chem. 102:3–427690
    [Google Scholar]
  40. Gledhill M, Achterberg EP, Li K, Mohamed KN, Rijkenberg MJAA. 2015. Influence of ocean acidification on the complexation of iron and copper by organic ligands in estuarine waters. Mar. Chem. 177:342133
    [Google Scholar]
  41. Gledhill M, Basu S, Shaked Y. 2019. Metallophores associated with Trichodesmium erythraeum colonies from the Gulf of Aqaba. Metallomics 11:9154757
    [Google Scholar]
  42. Gledhill M, Buck KN. 2012. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3:69
    [Google Scholar]
  43. Gledhill M, Hollister A, Seidel M, Zhu K, Achterberg EP et al. 2022a. Trace metal stoichiometry of dissolved organic matter in the Amazon plume. Sci. Adv. 8:312249
    [Google Scholar]
  44. Gledhill M, McCormack P, Ussher S, Achterberg EP, Mantoura RFC, Worsfold PJ. 2004. Production of siderophore type chelates by mixed bacterioplankton populations in nutrient enriched seawater incubations. Mar. Chem. 88:1–27583
    [Google Scholar]
  45. Gledhill M, Zhu K, Rusiecka D, Achterberg EP. 2022b. Competitive interactions between microbial siderophores and humic-like binding sites in European shelf sea waters. Front. Mar. Sci. 9:855009
    [Google Scholar]
  46. Hassler CS, Cabanes D, Blanco-Ameijeiras S, Sander SG, Benner R. 2020. Importance of refractory ligands and their photodegradation for iron oceanic inventories and cycling. Mar. Freshw. Res. 71:331120
    [Google Scholar]
  47. Hassler CS, Schoemann V, Nichols CM, Butler EC, Boyd PW. 2011. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. PNAS 108:3107681
    [Google Scholar]
  48. Hawco NJ, Ohnemus DC, Resing JA, Twining BS, Saito MA. 2016. A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific. Biogeosciences 13:20569717
    [Google Scholar]
  49. Helfferich F. 1962. Ligand exchange. I. Equilibria. J. Am. Chem. Soc. 84:17323742
    [Google Scholar]
  50. Hertkorn N, Benner R, Frommberger M, Schmittkopplin P, Witt M et al. 2006. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70:1229903010
    [Google Scholar]
  51. Hogle SL, Hackl T, Bundy RM, Park J, Satinsky B et al. 2022. Siderophores as an iron source for picocyanobacteria in deep chlorophyll maximum layers of the oligotrophic ocean. ISME J. 16:6163646
    [Google Scholar]
  52. Hunter KA, Hawke DJ, Choo LK. 1988. Equilibrium adsorption of thorium by metal oxides in marine electrolytes. Geochim. Cosmochim. Acta 52:362736
    [Google Scholar]
  53. Jacquot JE, Moffett JW. 2015. Copper distribution and speciation across the International GEOTRACES Section GA03. Deep-Sea Res. II 116:187207
    [Google Scholar]
  54. Jensen LT, Lanning NT, Marsay CM, Buck CS, Aguilar-Islas AM et al. 2021. Biogeochemical cycling of colloidal trace metals in the arctic cryosphere. J. Geophys. Res. Oceans 126:8e2021JC017394
    [Google Scholar]
  55. Johnson KS, Gordon RM, Coale KH. 1997. What controls dissolved iron concentrations in the world ocean?. Mar. Chem. 57:3–413761
    [Google Scholar]
  56. Kazamia E, Sutak R, Paz-Yepes J, Dorrell RG, Vieira FRJ et al. 2018. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 4:5eaar4536
    [Google Scholar]
  57. Kenney GE, Rosenzweig AC. 2018. Chalkophores. Annu. Rev. Biochem. 87:64576
    [Google Scholar]
  58. Kogut MB, Voelker BM. 2003. Kinetically inert Cu in coastal waters. Environ. Sci. Technol. 37:350918
    [Google Scholar]
  59. Kondo Y, Takeda S, Nishioka J, Obata H, Furuya K et al. 2008. Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific. Geophys. Res. Lett. 35:12L12601
    [Google Scholar]
  60. Lacan F, Radic A, Jeandel C, Poitrasson F, Sarthou G et al. 2008. Measurement of the isotopic composition of dissolved iron in the open ocean. Geophys. Res. Lett. 35:24L24610
    [Google Scholar]
  61. Laglera LM, van den Berg CMG. 2009. Evidence for geochemical control of iron by humic substances in seawater. Limnol. Oceanogr. 54:261019
    [Google Scholar]
  62. Langlois RJ, Mills MM, Ridame C, Croot P, LaRoche J. 2012. Diazotrophic bacteria respond to Saharan dust additions. Mar. Ecol. Prog. Ser. 470:114
    [Google Scholar]
  63. Li J, Boiteau RM, Babcock-Adams L, Acker M, Song Z et al. 2021. Element-selective targeting of nutrient metabolites in environmental samples by inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry. Front. Mar. Sci. 8:630494
    [Google Scholar]
  64. Macrellis HM, Trick CG, Rue EL, Smith G, Bruland KW. 2001. Collection and detection of natural iron-binding ligands from seawater. Mar. Chem. 76:317587
    [Google Scholar]
  65. Mann EL, Ahlgren N, Moffett JW, Chisholm SW. 2002. Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol. Oceanogr. 47:497688
    [Google Scholar]
  66. Marañón E, Fernández A, Mouriño-Carballido B, Martínez-García S, Teira E et al. 2010. Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 55:6233952
    [Google Scholar]
  67. Mawji E, Gledhill M, Milton JA, Tarran GA, Ussher S et al. 2008. Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ. Sci. Technol. 42:23867580
    [Google Scholar]
  68. Mawji E, Gledhill M, Milton JA, Zubkov MV, Thompson A et al. 2011. Production of siderophore type chelates in Atlantic Ocean waters enriched with different carbon and nitrogen sources. Mar. Chem. 124:1–49099
    [Google Scholar]
  69. Mellett T, Brown MT, Chappell PD, Duckham C, Fitzsimmons JN et al. 2018. The biogeochemical cycling of iron, copper, nickel, cadmium, manganese, cobalt, lead, and scandium in a California Current experimental study. Limnol. Oceanogr. 63:S1S42547
    [Google Scholar]
  70. Millero FJ. 2001. The Physical Chemistry of Natural Waters New York: Wiley-Intersci.
  71. Moffett JW. 1995. Temporal and spatial variability of copper complexation by strong chelators in the Sargasso Sea. Deep-Sea Res. I 42:8127395
    [Google Scholar]
  72. Moffett JW, Brand LE. 1996. Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnol. Oceanogr. 41:338895
    [Google Scholar]
  73. Moffett JW, Brand LE, Croot PL, Barbeau KA. 1997. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs. Limnol. Oceanogr. 42:578999
    [Google Scholar]
  74. Moore LE, Heller MI, Barbeau KA, Moffett JW, Bundy RM. 2021. Organic complexation of iron by strong ligands and siderophores in the eastern tropical North Pacific oxygen deficient zone. Mar. Chem. 236:104021
    [Google Scholar]
  75. Morel FMM, Milligan AJ, Saito MA 2003. Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. In Treatise on Geochemistry, Vol. 6 The Oceans and Marine Geochemistry HD Holland, KK Turekian 11343. Amsterdam: Elsevier
    [Google Scholar]
  76. Morgan JLL, Wasylenki LE, Nuester J, Anbar AD. 2010. Fe isotope fractionation during equilibration of Fe-organic complexes. Environ. Sci. Technol. 44:166095101
    [Google Scholar]
  77. Moriyasu R, Moffett JW. 2022. Determination of inert and labile copper on GEOTRACES samples using a novel solvent extraction method. Mar. Chem. 239:104073
    [Google Scholar]
  78. Moriyasu R, Seth G, John SG, Bian X, Yang SC, Moffett JW. 2023. Cu exists predominantly as kinetically inert complexes throughout the interior of the equatorial and North Pacific Ocean. Glob. Biogeochem. Cycles 37:7e2022GB007521
    [Google Scholar]
  79. Neilands JB. 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270:452672326
    [Google Scholar]
  80. Nuester J, van den Berg CM. 2005. Determination of metal speciation by reverse titrations. Anal. Chem. 77:11119
    [Google Scholar]
  81. Pižeta I, Sander SG, Hudson RJM, Omanović D, Baars O et al. 2015. Interpretation of complexometric titration data: an intercomparison of methods for estimating models of trace metal complexation by natural organic ligands. Mar. Chem. 173:324
    [Google Scholar]
  82. Radic A, Lacan F, Murray JW. 2011. Iron isotopes in the seawater of the equatorial Pacific Ocean: new constraints for the oceanic iron cycle. Earth Planet. Sci. Lett. 306:1–2110
    [Google Scholar]
  83. Roszczenko-Jasińska P, Vu HN, Subuyuj GA, Crisostomo RV, Cai J et al. 2020. Gene products and processes contributing to lanthanide homeostasis and methanol metabolism in Methylorubrum extorquens AM1. Sci. Rep. 10:112663
    [Google Scholar]
  84. Rue EL, Bruland KW. 1995. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 50:1–411738
    [Google Scholar]
  85. Rue EL, Bruland KW. 1997. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol. Oceanogr. 42:590110
    [Google Scholar]
  86. Saito MA, Moffett JW. 2001. Complexation of cobalt by natural organic ligands in the Sargasso Sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work. Mar. Chem. 75:1–24968
    [Google Scholar]
  87. Saito MA, Rocap G, Moffett JW. 2005. Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome. Limnol. Oceanogr. 50:127990
    [Google Scholar]
  88. Sandy M, Butler A. 2009. Microbial iron acquisition: marine and terrestrial siderophores. Chem. Rev. 109:10458095
    [Google Scholar]
  89. Schlitzer R, Anderson RF, Dodas EM, Lohan M, Geibert W et al. 2018. The GEOTRACES intermediate data product 2017. Chem. Geol. 493:21023
    [Google Scholar]
  90. Sunda WG. 1989. Trace metal interactions with marine phytoplankton. Biol. Oceanogr. 6:5–641142
    [Google Scholar]
  91. Sunda WG, Huntsman SA. 1998. Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Sci. Total Environ. 219:2–316581
    [Google Scholar]
  92. Tagliabue A, Aumont O, DeAth R, Dunne JP, Dutkiewicz S et al. 2016. How well do global ocean biogeochemistry models simulate dissolved iron distributions?. Glob. Biogeochem. Cycles 30:214974
    [Google Scholar]
  93. van den Berg CM, Merks AG, Duursma EK. 1987. Organic complexation and its control of the dissolved concentrations of copper and zinc in the Scheldt estuary. Estuar. Coast. Shelf Sci. 24:678597
    [Google Scholar]
  94. Velasquez IB, Ibisanmi E, Maas EW, Boyd PW, Nodder S, Sander SG. 2016. Ferrioxamine siderophores detected amongst iron binding ligands produced during the remineralization of marine particles. Front. Mar. Sci. 3:172
    [Google Scholar]
  95. Velasquez IB, Nunn BL, Ibisanmi E, Goodlett DR, Hunter KA, Sander SG. 2011. Detection of hydroxamate siderophores in coastal and Sub-Antarctic waters off the South Eastern Coast of New Zealand. Mar. Chem. 126:1–497107
    [Google Scholar]
  96. Waska H, Koschinsky A, Ruiz Chancho MJ, Dittmar T. 2014. Investigating the potential of solid-phase extraction and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) for the isolation and identification of dissolved metal-organic complexes from natural waters. Mar. Chem. 173:7892
    [Google Scholar]
  97. Whitby H, Planquette H, Cassar N, Bucciarelli E, Osburn CL et al. 2020. A call for refining the role of humic-like substances in the oceanic iron cycle. Sci. Rep. 10:16144
    [Google Scholar]
  98. Whitby H, Posacka AM, Maldonado MT, van den Berg CM. 2018. Copper-binding ligands in the NE Pacific. Mar. Chem. 204:3648
    [Google Scholar]
  99. Whitby H, van den Berg CM. 2015. Evidence for copper-binding humic substances in seawater. Mar. Chem. 173:28290
    [Google Scholar]
  100. Wiederhold JG, Kraemer SM, Teutsch N, Borer PM, Halliday AN, Kretzschmar R. 2006. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. Environ. Sci. Technol. 40:12378793
    [Google Scholar]
  101. Yücel M, Gartman A, Chan CS, Luther GW III. 2011. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nat. Geosci. 4:636771
    [Google Scholar]
/content/journals/10.1146/annurev-marine-033023-083652
Loading
/content/journals/10.1146/annurev-marine-033023-083652
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error