1932

Abstract

In the outer solar system, a growing number of giant planet satellites are now known to be abodes for global oceans hidden below an outer layer of ice. These planetary oceans are a natural laboratory for studying physical oceanographic processes in settings that challenge traditional assumptions made for Earth's oceans. While some driving mechanisms are common to both systems, such as buoyancy-driven flows and tides, others, such as libration, precession, and electromagnetic pumping, are likely more significant for moons in orbit around a host planet. Here, we review these mechanisms and how they may operate across the solar system, including their implications for ice–ocean interactions. Future studies should continue to advance our understanding of each of these processes as well as how they may act together in concert. This interplay also has strong implications for habitability as well as testing oceanic hypotheses with future missions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040323-101355
2024-01-17
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-040323-101355.html?itemId=/content/journals/10.1146/annurev-marine-040323-101355&mimeType=html&fmt=ahah

Literature Cited

  1. Aldridge KD, Seyed-Mahmoud B, Henderson G, van Wijngaarden W. 1997. Elliptical instability of the Earth's fluid core. Phys. Earth Planet. Inter. 103:3–4365–74
    [Google Scholar]
  2. Aldridge KD, Toomre A. 1969. Axisymmetric inertial oscillations of a fluid in a rotating spherical container. J. Fluid Mech. 37:2307–23
    [Google Scholar]
  3. Amit H, Choblet G, Tobie G, Terra-Nova F, Čadek O, Bouffard M 2020. Cooling patterns in rotating thin spherical shells—application to Titan's subsurface ocean. Icarus 338:113509
    [Google Scholar]
  4. Ashkenazy Y, Tziperman E. 2021. Dynamic Europa ocean shows transient Taylor columns and convection driven by ice melting and salinity. Nat. Commun. 12:16376
    [Google Scholar]
  5. Aurnou JM, Heimpel MH, Wicht J. 2007. The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190:110–26
    [Google Scholar]
  6. Aurnou JM, Horn S, Julien K. 2020. Connections between nonrotating, slowly rotating, and rapidly rotating turbulent convection transport scalings. Phys. Rev. Res. 2:4043115
    [Google Scholar]
  7. Barker AJ, Lithwick Y. 2013. Non-linear evolution of the tidal elliptical instability in gaseous planets and stars. Mon. Not. R. Astron. Soc. 435:43614–26
    [Google Scholar]
  8. Bauer JM, Roush TL, Geballe TR, Meech KJ, Owen TC et al. 2002. The near infrared spectrum of Miranda: evidence of crystalline water ice. Icarus 158:1178–90
    [Google Scholar]
  9. Beddingfield C, Burr D, Emery J. 2015. Fault geometries on Uranus' satellite Miranda: implications for internal structure and heat flow. Icarus 247:35–52
    [Google Scholar]
  10. Běhounková M, Tobie G, Choblet G, Kervazo M, Melwani Daswani M et al. 2021. Tidally induced magmatic pulses on the oceanic floor of Jupiter's moon Europa. Geophys. Res. Lett. 48:3e2020GL090077
    [Google Scholar]
  11. Beuthe M, Rivoldini A, Trinh A. 2016. Enceladus's and Dione's floating ice shells supported by minimum stress isostasy. Geophys. Res. Lett. 43:1910088–96
    [Google Scholar]
  12. Bierson CJ, Nimmo F. 2022. A note on the possibility of subsurface oceans on the Uranian satellites. Icarus 373:114776
    [Google Scholar]
  13. Bire S, Kang W, Ramadhan A, Campin JM, Marshall J. 2022. Exploring ocean circulation on icy moons heated from below. J. Geophys. Res. Planets 127:3e2021JE007025
    [Google Scholar]
  14. Bland MT, Showman AP, Tobie G 2009. The orbital–thermal evolution and global expansion of Ganymede. Icarus 200:1207–21
    [Google Scholar]
  15. Brouzet C, Ermanyuk EV, Joubaud S, Sibgatullin I, Dauxois T. 2016. Energy cascade in internal-wave attractors. Europhys. Lett. 113:444001
    [Google Scholar]
  16. Burmann F, Noir J. 2018. Effects of bottom topography on the spin-up in a cylinder. Phys. Fluids 30:10106601
    [Google Scholar]
  17. Busse F. 2010. Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 650:505–12
    [Google Scholar]
  18. Čadek O, Souček O, Běhounková M, Choblet G, Tobie G, Hron J 2019. Long-term stability of Enceladus' uneven ice shell. Icarus 319:476–84
    [Google Scholar]
  19. Calkins MA, Noir J, Eldredge JD, Aurnou JM. 2010. Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids 22:8086602
    [Google Scholar]
  20. Cartwright RJ, Beddingfield CB, Nordheim TA, Roser J, Grundy WM et al. 2020. Evidence for ammonia-bearing species on the Uranian satellite Ariel supports recent geologic activity. Astrophys. J. Lett. 898:1L22
    [Google Scholar]
  21. Castillo-Rogez JC, Hemingway D, Rhoden A, Tobie G, McKinnon WB 2018. Origin and evolution of Saturn's mid-sized moons. Enceladus and the Icy Moons of Saturn PM Schenk, RN Clark, CJA Howett, AJ Verbiscer, JH Waite 285–305. Tucson: Univ. Ariz. Press
    [Google Scholar]
  22. Castillo-Rogez JC, Weiss B, Beddingfield C, Biersteker J, Cartwright R et al. 2023. Compositions and interior structures of the large moons of Uranus and implications for future spacecraft observations. J. Geophys. Res. Planets 128:1e2022JE007432
    [Google Scholar]
  23. Cébron D, Laguerre R, Noir J, Schaeffer N. 2019. Precessing spherical shells: flows, dissipation, dynamo and the lunar core. Geophys. J. Int. 219:Suppl. 1S34–57
    [Google Scholar]
  24. Cébron D, Maubert P, Le Bars M 2010. Tidal instability in a rotating and differentially heated ellipsoidal shell. Geophys. J. Int. 182:31311–18
    [Google Scholar]
  25. Chen E, Nimmo F, Glatzmaier G. 2014. Tidal heating in icy satellite oceans. Icarus 229:11–30
    [Google Scholar]
  26. Cheng JS, Aurnou JM, Julien K, Kunnen RPJ. 2018. A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys. Astrophys. Fluid Dyn. 112:4277–300
    [Google Scholar]
  27. Choblet G, Tobie G, Sotin C, Běhounková M, Čadek O et al. 2017a. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1:12841–47
    [Google Scholar]
  28. Choblet G, Tobie G, Sotin C, Kalousová K, Grasset O. 2017b. Heat transport in the high-pressure ice mantle of large icy moons. Icarus 285:252–62
    [Google Scholar]
  29. Ćuk M, Dones L, Nesvorný D. 2016. Dynamical evidence for a late formation of Saturn's moons. Astrophys. J. 820:297
    [Google Scholar]
  30. Ćuk M, Moutamid ME, Tiscareno MS. 2020. Dynamical history of the Uranian system. Planet. Sci. J. 1:122
    [Google Scholar]
  31. de Vries NB, Barker AJ, Hollerbach R. 2023. The interactions of the elliptical instability and convection. Phys. Fluids 35:2024116
    [Google Scholar]
  32. Dintras B, Rieutord M, Valdettaro L. 1999. Gravito-inertial waves in a rotating stratified sphere or spherical shell. J. Fluid Mech. 398:271–97
    [Google Scholar]
  33. Downey BG, Nimmo F, Matsuyama I. 2020. Inclination damping on Callisto. Mon. Not. R. Astron. Soc. 499:140–51
    [Google Scholar]
  34. Drazin PG, Reid WH. 2004. Hydrodynamic Stability Cambridge, UK: Cambridge Univ. Press
  35. Dutrieux P, Stewart C, Jenkins A, Nicholls KW, Corr HFJ et al. 2014. Basal terraces on melting ice shelves. Geophys. Res. Lett. 41:155506–13
    [Google Scholar]
  36. Favier B, Barker A, Baruteau C, Ogilvie G. 2014. Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. Mon. Not. R. Astron. Soc. 439:1845–60
    [Google Scholar]
  37. Garrett C, Kunze E. 2007. Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39:57–87
    [Google Scholar]
  38. Gastine T, Wicht J, Aurnou JM. 2013. Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225:156–72
    [Google Scholar]
  39. Gerkema T. 2019. An Introduction to Tides Cambridge, UK: Cambridge Univ. Press
  40. Gerkema T, Zimmerman JTF. 2008. An introduction to internal waves Lect. Notes R. Neth. Inst. Sea Res. Texel, Neth.:
  41. Gerkema T, Zimmerman JTF, Maas LRM, van Haren H. 2008. Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46:2RG2004
    [Google Scholar]
  42. Gissinger C, Petitdemange L. 2019. A magnetically driven equatorial jet in Europa's ocean. Nat. Astron. 3:401–7
    [Google Scholar]
  43. Godeferd FS, Moisy F. 2015. Structure and dynamics of rotating turbulence: a review of recent experimental and numerical results. Appl. Mech. Rev. 67:3030802
    [Google Scholar]
  44. Goodman JC, Collins GC, Marshall J, Pierrehumbert RT. 2004. Hydrothermal plume dynamics on Europa: implications for chaos formation. J. Geophys. Res. 109:E03008
    [Google Scholar]
  45. Goodman JC, Lenferink E. 2012. Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds. Icarus 221:970–83
    [Google Scholar]
  46. Green JAM, Nycander J. 2013. A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr. 43:1104–19
    [Google Scholar]
  47. Hartkorn O, Saur J. 2017. Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean. J. Geophys. Res. Space Phys. 122:1111677–97
    [Google Scholar]
  48. Hawkins EK, Cheng JS, Abbate JA, Pilegard T, Stellmach S et al. 2023. Laboratory models of planetary core-style convective turbulence. Fluids 8:4106
    [Google Scholar]
  49. Hay HCFC, Fenty I, Pappalardo RT, Nakayama Y. 2023. Turbulent drag at the ice-ocean interface of Europa in simulations of rotating convection: implications for nonsynchronous rotation of the ice shell. J. Geophys. Res. Planets 128:3e2022JE007648
    [Google Scholar]
  50. Hay HCFC, Matsuyama I. 2017. Numerically modelling tidal dissipation with bottom drag in the oceans of Titan and Enceladus. Icarus 281:342–56
    [Google Scholar]
  51. Hay HCFC, Matsuyama I, Pappalardo RT. 2022. The high-frequency tidal response of ocean worlds: application to Europa and Ganymede. J. Geophys. Res. Planets 127:5e2021JE007064
    [Google Scholar]
  52. Hay HCFC, Trinh A, Matsuyama I. 2020. Powering the Galilean satellites with moon-moon tides. Geophys. Res. Lett. 47:15e2020GL088317
    [Google Scholar]
  53. Heimpel MH, Aurnou JM, Wicht J. 2005. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 483:193–96
    [Google Scholar]
  54. Hemingway DJ, Iess L, Tajeddine R, Tobie G 2018. The interior of Enceladus. Enceladus and the Icy Moons of Saturn PM Schenk, RN Clark, CJA Howett, AJ Verbiscer, JH Waite 57–78. Tucson: Univ. Ariz. Press
    [Google Scholar]
  55. Hewitt IJ. 2020. Subglacial plumes. Annu. Rev. Fluid Mech. 52:145–69
    [Google Scholar]
  56. Hoff M, Harlander U, Egbers C. 2016. Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech. 789:589–616
    [Google Scholar]
  57. Hofgartner JD, Birch SP, Castillo J, Grundy WM, Hansen CJ et al. 2022. Hypotheses for Triton's plumes: new analyses and future remote sensing tests. Icarus 375:114835
    [Google Scholar]
  58. Hsu HW, Postberg F, Sekine Y, Shibuya T, Kempf S et al. 2015. Ongoing hydrothermal activities within Enceladus. Nature 519:207–10
    [Google Scholar]
  59. Hussmann H, Spohn T. 2004. Thermal-orbital evolution of Io and Europa. Icarus 171:2391–410
    [Google Scholar]
  60. Ingersoll AP. 2005. Boussinesq and anelastic approximations revisited: potential energy release during thermobaric instability. J. Phys. Oceanogr. 35:81359–69
    [Google Scholar]
  61. Journaux B, Kalousová K, Sotin C, Tobie G, Vance SD et al. 2020. High-pressure ices in large ocean worlds. Space Sci. Rev. 216:17
    [Google Scholar]
  62. Kalousová K, Soderlund KM, Solomonidou A, Sotin C 2024. Structure and evolution of Ganymede's hydrosphere. Ganymede M Volwerk, MA McGrath, X Jia, T Spohn Cambridge, UK: Cambridge Univ. Press. In press
    [Google Scholar]
  63. Kalousová K, Sotin C 2020. The insulating effect of methane clathrate crust on Titan's thermal evolution. Geophys. Res. Lett 4713e2020GL087481
    [Google Scholar]
  64. Kang W, Jansen M. 2022. On icy ocean worlds, size controls ice shell geometry. Astrophys. J. 935:2103
    [Google Scholar]
  65. Kang W, Marshall J, Mittal T, Bire S. 2022a. Ocean dynamics and tracer transport over the south pole geysers of Enceladus. Mon. Not. R. Astron. Soc. 517:33485–94
    [Google Scholar]
  66. Kang W, Mittal T, Bire S, Campin JM, Marshall J. 2022b. How does salinity shape ocean circulation and ice geometry on Enceladus and other icy satellites?. Sci. Adv. 8:29eabm4665
    [Google Scholar]
  67. Kerswell R. 1993. The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72:1–4107–44
    [Google Scholar]
  68. Khurana KK, Kivelson MG, Stevenson DJ, Schubert G, Russell CT et al. 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:6704777–80
    [Google Scholar]
  69. Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C. 2000. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:54831340–43
    [Google Scholar]
  70. Kivelson MG, Khurana KK, Volwerk M. 2002. The permanent and inductive magnetic moments of Ganymede. Icarus 157:2507–22
    [Google Scholar]
  71. Koch I, Fitzsimons S, Samyn D, Tison JL. 2015. Marine ice recycling at the southern McMurdo Ice Shelf, Antarctica. J. Glaciol. 61:228689–701
    [Google Scholar]
  72. Koch S, Harlander U, Egbers C, Hollerbach R. 2013. Inertial waves in a spherical shell induced by librations of the inner sphere: experimental and numerical results. Fluid Dyn. Res. 45:3035504
    [Google Scholar]
  73. Kvorka J, Čadek O, Tobie G, Choblet G. 2018. Does Titan's long-wavelength topography contain information about subsurface ocean dynamics?. Icarus 310:149–64
    [Google Scholar]
  74. Kvorka J, Čadek O. 2022. A numerical model of convective heat transfer in Titan's subsurface ocean. Icarus 376:114853
    [Google Scholar]
  75. Lacaze L, Le Gal P, Le Dizès S 2005. Elliptical instability of the flow in a rotating shell. Phys. Earth Planet. Inter. 151:3–4194–205
    [Google Scholar]
  76. Landeau M, Fournier A, Nataf HC, Cébron D, Schaeffer N. 2022. Sustaining Earth's magnetic dynamo. Nat. Rev. Earth Environ. 3:4255–69
    [Google Scholar]
  77. Lawrence JD. 2022. Antarctic ice shelves as ocean world analogs PhD Thesis Ga. Inst. Technol. Atlanta:
  78. Lawrence JD, Washam PM, Stevens C, Hulbe C, Horgan HJ et al. 2023. Crevasse refreezing and signatures of retreat observed at Kamb Ice Stream grounding zone. Nat. Geosci. 16:238–43
    [Google Scholar]
  79. Le Bars M, Cébron D, Le Gal P 2015. Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47:163–93
    [Google Scholar]
  80. Le Reun T, Favier B, Barker AJ, Le Bars M 2017. Inertial wave turbulence driven by elliptical instability. Phys. Rev. Lett. 119:3034502
    [Google Scholar]
  81. Le Reun T, Favier B, Le Bars M 2018. Parametric instability and wave turbulence driven by tidal excitation of internal waves. J. Fluid Mech. 840:498–529
    [Google Scholar]
  82. Le Reun T, Favier B, Le Bars M 2019. Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence. J. Fluid Mech. 879:296–326
    [Google Scholar]
  83. LeBlond PH, Mysak LA. 1978. Waves in the Ocean Amsterdam: Elsevier
  84. Lemasquerier D, Bierson CJ, Soderlund KM. 2022. Can convection in icy moons' oceans translate interior tidal heating patterns to the ice-ocean boundary? Paper presented at the American Geophysical Society Fall Meeting Chicago: Dec. 12–16
  85. Lemasquerier D, Grannan A, Vidal J, Cébron D, Favier B et al. 2017. Libration-driven flows in ellipsoidal shells. J. Geophys. Res. Planets 122:91926–50
    [Google Scholar]
  86. Lewis EL, Perkin RG. 1986. Ice pumps and their rates. J. Geophys. Res. 91:11756–62
    [Google Scholar]
  87. Lin Y, Marti P, Noir J. 2015. Shear-driven parametric instability in a precessing sphere. Phys. Fluids 27:4046601
    [Google Scholar]
  88. Lobo AH, Thompson AF, Vance SD, Tharimena S. 2021. A pole-to-equator ocean overturning circulation on Enceladus. Nat. Geosci. 14:4185–89
    [Google Scholar]
  89. Lowell RP, DuBose M. 2005. Hydrothermal systems on Europa. Geophys. Res. Lett. 32:L05202
    [Google Scholar]
  90. Maas LRM. 2005. Wave attractors: linear yet nonlinear. Int. J. Bifurc. Chaos 15:92757–82
    [Google Scholar]
  91. Malkus W. 1968. Precession of the earth as the cause of geomagnetism: Experiments lend support to the proposal that precessional torques drive the earth's dynamo. Science 160:3825259–64
    [Google Scholar]
  92. Matsuyama I. 2014. Tidal dissipation in the oceans of icy satellites. Icarus 242:11–18
    [Google Scholar]
  93. Matsuyama I, Beuthe M, Hay HC, Nimmo F, Kamata S. 2018. Ocean tidal heating in icy satellites with solid shells. Icarus 312:208–30
    [Google Scholar]
  94. McKinnon WB. 1984. On the origin of Triton and Pluto. Nature 311:5984355–58
    [Google Scholar]
  95. Melosh HJ, Ekholm AG, Showman AP, Lorenz RD. 2004. The temperature of Europa's subsurface water ocean. Icarus 168:498–502
    [Google Scholar]
  96. Morize C, Le Bars M, Le Gal P, Tilgner A 2010. Experimental determination of zonal winds driven by tides. Phys. Rev. Lett. 104:21214501
    [Google Scholar]
  97. Natl. Acad. Sci 2022. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032 Washington, DC: Natl. Acad. Press
  98. Neveu M, Rhoden AR. 2019. Evolution of Saturn's mid-sized moons. Nat. Astron. 3:6543–52
    [Google Scholar]
  99. Nimmo F, Pappalardo RT. 2016. Ocean worlds in the outer solar system. J. Geophys. Res. Planets 121:81378–99
    [Google Scholar]
  100. Nimmo F, Spencer J. 2015. Powering Triton's recent geological activity by obliquity tides: implications for Pluto geology. Icarus 246:2–10
    [Google Scholar]
  101. Nobili C, Meunier P, Favier B, Le Bars M 2021. Hysteresis and instabilities in a spheroid in precession near the resonance with the tilt-over mode. J. Fluid Mech. 909:A17
    [Google Scholar]
  102. Noir J, Cébron D, Le Bars M, Sauret A, Aurnou J 2012. Experimental study of libration-driven zonal flows in non-axisymmetric containers. Phys. Earth Planet. Inter. 204–5:1–10
    [Google Scholar]
  103. Noir J, Hemmerlin F, Wicht J, Baca S, Aurnou J. 2009. An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Phys. Earth Planet. Inter. 173:1–2141–52
    [Google Scholar]
  104. Ojakangas GW, Stevenson DJ. 1989. Thermal state of an ice shell on Europa. Icarus 81:2220–41
    [Google Scholar]
  105. Pappalardo RT, Belton MJS, Breneman HH, Carr MH, Chapman CR et al. 1999. Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res. Planets 104:E1024015–55
    [Google Scholar]
  106. Peale SJ. 1999. Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37:533–602
    [Google Scholar]
  107. Peterson G, Nimmo F, Schenk P. 2015. Elastic thickness and heat flux estimates for the Uranian satellite Ariel. Icarus 250:116–22
    [Google Scholar]
  108. Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J et al. 2006. Cassini observes the active south pole of Enceladus. Science 311:57661393–401
    [Google Scholar]
  109. Rekier J, Trinh A, Triana SA, Dehant V. 2019. Internal energy dissipation in Enceladus's subsurface ocean from tides and libration and the role of inertial waves. J. Geophys. Res. Planets 124:82198–212
    [Google Scholar]
  110. Renaud JP, Henning WG, Saxena P, Neveu M, Bagheri A et al. 2021. Tidal dissipation in dual-body, highly eccentric, and nonsynchronously rotating systems: applications to Pluto-Charon and the exoplanet TRAPPIST-1e. Planet. Sci. J. 2:14
    [Google Scholar]
  111. Rhoden AR, Walker ME. 2022. The case for an ocean-bearing Mimas from tidal heating analysis. Icarus 376:114872
    [Google Scholar]
  112. Richard A, Rambaux N, Charnay B. 2014. Librational response of a deformed 3-layer Titan perturbed by non-Keplerian orbit and atmospheric couplings. Planet. Space Sci. 93:22–34
    [Google Scholar]
  113. Rieutord M, Georgeot B, Valdettaro L. 2001. Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435:103–44
    [Google Scholar]
  114. Robinson NJ, Williams MJM, Stevens CL, Langhorne PJ, Haskell TG. 2014. Evolution of a supercooled ice shelf water plume with an actively growing subice platelet matrix. J. Geophys. Res. Oceans 119:63425–46
    [Google Scholar]
  115. Ross MN, Schubert G. 1990. The coupled orbital and thermal evolution of Triton. Geophys. Res. Lett. 17:101749–52
    [Google Scholar]
  116. Rovira-Navarro M, Matsuyama I, Hay HCFC. 2023. Thin-shell tidal dynamics of ocean worlds. Planet. Sci. J. 4:223
    [Google Scholar]
  117. Rovira-Navarro M, Rieutord M, Gerkema T, Maas LR, van der Wal W, Vermeersen B. 2019. Do tidally-generated inertial waves heat the subsurface oceans of Europa and Enceladus?. Icarus 321:126–40
    [Google Scholar]
  118. Sasaki T, Stewart GR, Ida S. 2010. Origin of the different architectures of the Jovian and Saturnian satellite systems. Astrophys. J. 714:21052–64
    [Google Scholar]
  119. Saur J, Duling S, Roth L, Jia X, Strobel DF et al. 2015. The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. Space Phys. 120:31715–37
    [Google Scholar]
  120. Sauret A, Cébron D, Le Bars M 2013. Spontaneous generation of inertial waves from boundary turbulence in a librating sphere. J. Fluid Mech. 728:R5
    [Google Scholar]
  121. Sauret A, Cébron D, Morize C, Le Bars M 2010. Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 662:260–68
    [Google Scholar]
  122. Sauret A, Le Bars M, Le Gal P 2014. Tide-driven shear instability in planetary liquid cores. Geophys. Res. Lett. 41:176078–83
    [Google Scholar]
  123. Schenk P. 2010. Atlas of the Galilean Satellites Cambridge, UK: Cambridge Univ. Press
  124. Schmidt BE, Washam P, Davis PED, Nicholls KW, Holland DM et al. 2023. Heterogeneous melting near the Thwaites Glacier grounding line. Nature 614:7948471–78
    [Google Scholar]
  125. Schoenfeld AM, Hawkins EK, Soderlund KM, Vance SD, Leonard E, Yin A. 2023. Particle entrainment and rotating convection in Enceladus' ocean. Commun. Earth Environ. 4:128
    [Google Scholar]
  126. Smith BA, Soderblom LA, Banfield D, Barnet C, Basilevsky AT et al. 1989. Voyager 2 at Neptune: imaging science results. Science 246:49361422–49
    [Google Scholar]
  127. Smith BA, Soderblom LA, Beebe R, Bliss D, Boyce JM et al. 1986. Voyager 2 in the Uranian system: imaging science results. Science 233:475943–64
    [Google Scholar]
  128. Soderlund KM. 2019. Ocean dynamics of outer solar system satellites. Geophys. Res. Lett. 46:158700–10
    [Google Scholar]
  129. Soderlund KM, Kalousová K, Buffo JJ, Glein CR, Goodman JC et al. 2020. Ice-ocean exchange processes in the Jovian and Saturnian satellites. Space Sci. Rev. 216:580
    [Google Scholar]
  130. Soderlund KM, Schmidt BE, Wicht J, Blankenship DD. 2014. Ocean-driven heating of Europa's icy shell at low latitudes. Nat. Geosci. 7:16–19
    [Google Scholar]
  131. Sotin C, Kalousová K, Tobie G 2021. Titan's interior structure and dynamics after the Cassini-Huygens mission. Annu. Rev. Earth Planet. Sci. 49:579–607
    [Google Scholar]
  132. Staquet C, Sommeria J. 2002. Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Dyn. 34:559–93
    [Google Scholar]
  133. Stewartson K. 1966. On almost rigid rotations. Part 2. J. Fluid Mech. 26:1131–44
    [Google Scholar]
  134. Stewartson K, Rickard JA. 1969. Pathological oscillations of a rotating fluid. J. Fluid Mech. 35:4759–73
    [Google Scholar]
  135. Straneo F, Cedenese C. 2015. The dynamics of Greenland's glacial fjords and their role in climate. Annu. Rev. Mar. Sci. 7:89–112
    [Google Scholar]
  136. Terra-Nova F, Amit H, Choblet G, Tobie G, Bouffard M, Čadek O. 2023. The influence of heterogeneous seafloor heat flux on the cooling patterns of Ganymede's and Titan's subsurface oceans. Icarus 389:115232
    [Google Scholar]
  137. Thomson RE, Delaney JR. 2001. Evidence for a weakly stratified Europan ocean sustained by seafloor heat flux. J. Geophys. Res. 106:12355–65
    [Google Scholar]
  138. Tilgner A. 2007. Zonal wind driven by inertial modes. Phys. Rev. Lett. 99:19194501
    [Google Scholar]
  139. Townsend AA. 1964. Natural convection in water over an ice surface. Q. J. R. Meteorol. Soc. 90:385248–59
    [Google Scholar]
  140. Tritton DJ. 1998. Physical Fluid Dynamics Oxford, UK: Oxford Univ. Press
  141. Tyler RH. 2008. Strong ocean tidal flow and heating on moons of the outer planets. Nature 456:7223770–72
    [Google Scholar]
  142. Tyler RH. 2011a. Magnetic remote sensing of Europa's ocean tides. Icarus 211:906–8
    [Google Scholar]
  143. Tyler RH. 2011b. Tidal dynamical considerations constrain the state of an ocean on Enceladus. Icarus 211:1770–79
    [Google Scholar]
  144. Tyler RH. 2014. Comparative estimates of the heat generated by ocean tides on icy satellites in the outer Solar System. Icarus 243:Suppl. C358–85
    [Google Scholar]
  145. Van Hoolst T, Rambaux N, Karatekin Ö, Dehant V, Rivoldini A. 2008. The librations, shape, and icy shell of Europa. Icarus 195:1386–99
    [Google Scholar]
  146. Vance SD, Goodman JC 2009. Oceanography of an ice-covered moon. Europa RT Pappalardo, WB McKinnon, KK Khurana 459–82. Tucson: Univ. Ariz. Press
    [Google Scholar]
  147. Vance SD, Panning MP, Stahler S, Cammarano F, Bills BG et al. 2018. Geophysical investigations of habitability in ice-covered ocean worlds. J. Geophys. Res. 123:180–205
    [Google Scholar]
  148. Vance SD, Styczinski MJ, Bills BG, Cochrane CJ, Soderlund KM et al. 2020. Magnetic induction responses of Jupiter's ocean moons including effects from adiabatic convection. J. Geophys. Res. Planets 126:2e2020JE006418
    [Google Scholar]
  149. Vilella K, Choblet G, Tsao WE, Deschamps F. 2020. Tidally heated convection and the occurrence of melting in icy satellites: application to Europa. J. Geophys. Res. Planets 125:3e2019JE006248
    [Google Scholar]
  150. Waite JH, Glein CR, Perryman RS, Teolis BD, Magee BA et al. 2017. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356:155–59
    [Google Scholar]
  151. Walker ME, Rhoden AR. 2022. Tidal heating at Europa using the Multifrequency Analysis of Tidal Heating toolkit. Planet. Sci. J. 3:7149
    [Google Scholar]
  152. Washam P, Münchow A, Nicholls KW. 2018. A decade of ocean changes impacting the ice shelf of Petermann Gletscher, Greenland. J. Phys. Oceanogr. 48:102477–93
    [Google Scholar]
  153. Wilson A, Kerswell RR. 2018. Can libration maintain Enceladus's ocean?. Earth Planet. Sci. Lett. 500:41–46
    [Google Scholar]
  154. Wolfenbarger NS, Buffo JJ, Soderlund KM, Blankenship DD. 2022. Ice shell structure and composition of ocean worlds: insights from accreted ice on Earth. Astrobiology 22:8937–61
    [Google Scholar]
  155. Wong T, Hansen U, Wiesehöfer T, McKinnon WB. 2022. Layering by double-diffusive convection in the subsurface oceans of Europa and Enceladus. J. Geophys. Res. Planets 127:12e2022JE007316
    [Google Scholar]
  156. Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36:281–314
    [Google Scholar]
  157. Xie X, Liu X, Chen Z, Wang Y, Chen D et al. 2023. Pure inertial waves radiating from low-frequency flows over large-scale topography. Geophys. Res. Lett. 50:4e2022GL099889
    [Google Scholar]
  158. Zannoni M, Hemingway D, Gomez Casajus L, Tortora P 2020. The gravity field and interior structure of Dione. Icarus 345:113713
    [Google Scholar]
  159. Zeng Y, Jansen MF. 2021. Ocean circulation on Enceladus with a high-versus low-salinity ocean. Planet. Sci. J. 2:4151
    [Google Scholar]
  160. Zhang K, Chan KH, Liao X, Aurnou JM. 2013. The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration. J. Fluid Mech. 720:212–35
    [Google Scholar]
/content/journals/10.1146/annurev-marine-040323-101355
Loading
/content/journals/10.1146/annurev-marine-040323-101355
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error