1932

Abstract

The modes of Pacific decadal-scale variability (PDV), traditionally defined as statistical patterns of variance, reflect to first order the ocean's integration (i.e., reddening) of atmospheric forcing that arises from both a shift and a change in strength of the climatological (time-mean) atmospheric circulation. While these patterns concisely describe PDV, they do not distinguish among the key dynamical processes driving the evolution of PDV anomalies, including atmospheric and ocean teleconnections and coupled feedbacks with similar spatial structures that operate on different timescales. In this review, we synthesize past analysis using an empirical dynamical model constructed from monthly ocean surface anomalies drawn from several reanalysis products, showing that the PDV modes of variance result from two fundamental low-frequency dynamical eigenmodes: the North Pacific–central Pacific (NP-CP) and Kuroshio–Oyashio Extension (KOE) modes. Both eigenmodes highlight how two-way tropical–extratropical teleconnection dynamics are the primary mechanisms energizing and synchronizing the basin-scale footprint of PDV. While the NP-CP mode captures interannual- to decadal-scale variability, the KOE mode is linked to the basin-scale expression of PDV on decadal to multidecadal timescales, including contributions from the South Pacific.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040422-084555
2023-01-16
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-040422-084555.html?itemId=/content/journals/10.1146/annurev-marine-040422-084555&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander MA 2010. Extratropical air-sea interaction, SST variability and the Pacific Decadal Oscillation (PDO). Climate Dynamics: Why Does Climate Vary? D-Z Sun, F Bryan 123–48 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  2. Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD. 2002. The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Clim. 15:2205–31
    [Google Scholar]
  3. Alexander MA, Matrosova L, Penland C, Scott JD, Chang P 2008. Forecasting Pacific SSTs: linear inverse model predictions of the PDO. J. Clim. 21:385–402
    [Google Scholar]
  4. Amaya DJ. 2019. The Pacific Meridional Mode and ENSO: a review. Curr. Clim. Change Rep. 5:296–307
    [Google Scholar]
  5. Amaya DJ, Bond N, Miller AJ, DeFlorio M. 2016. The evolution and known atmospheric forcing mechanisms behind the 2013–2015 North Pacific warm anomalies. US CLIVAR Variations Spring1–6
    [Google Scholar]
  6. Anderson BT. 2003. Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J. Geophys. Res. Atmos. 108:4732
    [Google Scholar]
  7. Anderson BT. 2007. On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J. Clim. 20:1593–99
    [Google Scholar]
  8. Anderson BT. 2019. Empirical evidence linking the Pacific decadal precession to Kuroshio Extension variability. J. Geophys. Res. Atmos. 124:12845–63
    [Google Scholar]
  9. Anderson BT, Furtado JC, Cobb KM, Di Lorenzo E 2013a. Extratropical forcing of El Niño–Southern Oscillation asymmetry. Geophys. Res. Lett. 40:4916–21
    [Google Scholar]
  10. Anderson BT, Furtado JC, Di Lorenzo E, Gianotti DJS. 2017. Tracking the Pacific Decadal Precession. J. Geophys. Res. Atmos. 122:3214–27
    [Google Scholar]
  11. Anderson BT, Gianotti DJS, Furtado JC, Di Lorenzo E 2016. A decadal precession of atmospheric pressures over the North Pacific. Geophys. Res. Lett. 43:3921–27
    [Google Scholar]
  12. Anderson BT, Perez RC. 2015. ENSO and non-ENSO induced charging and discharging of the equatorial Pacific. Clim. Dyn. 45:2309–27
    [Google Scholar]
  13. Anderson BT, Perez RC, Karspeck A. 2013b. Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophys. Res. Lett. 40:1212–16
    [Google Scholar]
  14. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T. 2007. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans 112:C11007
    [Google Scholar]
  15. Balmaseda MA, Mogensen K, Weaver AT. 2013. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139:1132–61
    [Google Scholar]
  16. Bjerknes J. 1968. Atmospheric teleconnections from the equatorial Pacific Rep., RAND Corp. Santa Monica, CA:
    [Google Scholar]
  17. Bograd SJ, Kang S, Di Lorenzo E, Horii T, Katugin ON et al. 2019. Developing a social-ecological-environmental system framework to address climate change impacts in the North Pacific. Front. Mar. Sci. 6:333
    [Google Scholar]
  18. Bond NA, Overland JE, Spillane M, Stabeno P. 2003. Recent shifts in the state of the North Pacific. Geophys. Res. Lett. 30:2183
    [Google Scholar]
  19. Capotondi A, Alexander MA, Deser C, McPhaden MJ. 2005. Anatomy and decadal evolution of the Pacific Subtropical-Tropical Cells (STCs). J. Clim. 18:3739–58
    [Google Scholar]
  20. Capotondi A, Newman M, Xu T, Di Lorenzo E 2022. An optimal precursor of Northeast Pacific marine heatwaves and Central Pacific El Niño events. Geophys. Res. Lett. 49:e2021GL097350
    [Google Scholar]
  21. Capotondi A, Ricciardulli L. 2021. The influence of Pacific winds on ENSO diversity. Sci. Rep. 11:18672
    [Google Scholar]
  22. Capotondi A, Sardeshmukh PD. 2017. Is El Niño really changing?. Geophys. Res. Lett. 44:8548–56
    [Google Scholar]
  23. Capotondi A, Sardeshmukh PD, Di Lorenzo E, Subramanian AC, Miller AJ. 2019. Predictability of US West Coast ocean temperatures is not solely due to ENSO. Sci. Rep. 9:10993
    [Google Scholar]
  24. Capotondi A, Wittenberg AT, Kug J-S, Takahashi K, McPhaden MJ 2021. ENSO diversity. In El Niño Southern Oscillation in a Changing Climateed. A Santoso, M McPhaden, W Caipp. 6586 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  25. Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY et al. 2015. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96:921–38
    [Google Scholar]
  26. Ceballos LI, Di Lorenzo E, Hoyos CD, Schneider N, Taguchi B. 2009. North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J. Clim. 22:5163–74
    [Google Scholar]
  27. Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH et al. 2007. Pacific Meridional Mode and El Niño–Southern Oscillation. Geophys. Res. Lett. 34:L16608
    [Google Scholar]
  28. Chen XY, Wallace JM. 2015. ENSO-like variability: 1900–2013. J. Clim. 28:9623–41
    [Google Scholar]
  29. Chhak KC, Di Lorenzo E, Schneider N, Cummins PF. 2009. Forcing of low-frequency ocean variability in the northeast Pacific. J. Clim. 22:1255–76
    [Google Scholar]
  30. Chiang JCH, Vimont DJ. 2004. Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J. Clim. 17:4143–58
    [Google Scholar]
  31. Chu PS, Clark JD. 1999. Decadal variations of tropical cyclone activity over the central North Pacific. Bull. Am. Meteorol. Soc. 80:1875–81
    [Google Scholar]
  32. Dai AG. 2013. The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim. Dyn. 41:633–46
    [Google Scholar]
  33. Deepa JS, Gnanaseelan C, Mohapatra S, Chowdary JS, Karmakar A et al. 2019. The tropical Indian Ocean decadal sea level response to the Pacific Decadal Oscillation forcing. Clim. Dyn. 52:5045–58
    [Google Scholar]
  34. Deser C, Alexander MA, Timlin MS. 2003. Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Clim. 16:57–72
    [Google Scholar]
  35. Deser C, Alexander MA, Xie SP, Phillips AS. 2010. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2:115–43
    [Google Scholar]
  36. Deser C, Phillips AS, Hurrell JW. 2004. Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J. Clim. 17:3109–24
    [Google Scholar]
  37. Deser C, Simpson IR, McKinnon KA, Phillips AS. 2017. The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly?. J. Clim. 30:5059–82
    [Google Scholar]
  38. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT et al. 2010. Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci. 3:762–65
    [Google Scholar]
  39. Di Lorenzo E, Combes V, Keister JE, Strub PT, Thomas AC et al. 2013. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography 26:468–81
    [Google Scholar]
  40. Di Lorenzo E, Liguori G, Schneider N, Furtado JC, Anderson BT, Alexander MA. 2015. ENSO and meridional modes: a null hypothesis for Pacific climate variability. Geophys. Res. Lett. 42:9440–48
    [Google Scholar]
  41. Di Lorenzo E, Mantua N. 2016. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6:1042–47
    [Google Scholar]
  42. Di Lorenzo E, Schneider N, Cobb KM, Franks PJS, Chhak K et al. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. 35:L08607
    [Google Scholar]
  43. Ding R, Li J, Tseng Y. 2015. The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Clim. Dyn. 44:2017–34
    [Google Scholar]
  44. Ding R, Li J, Tseng Y, Sun C, Xie F. 2017. Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J. Geophys. Res. Atmos. 122:279–98
    [Google Scholar]
  45. Ding R, Tseng Y, Di Lorenzo E, Shi L, Yu J-Y et al. 2022. Multi-year El Niño events tied to the North Pacific Oscillation. Nat. Commun. 13:3871
    [Google Scholar]
  46. England MH, McGregor S, Spence P, Meehl GA, Timmermann A et al. 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4:222–27
    [Google Scholar]
  47. Farrell B. 1988. Optimal excitation of neutral Rossby waves. J. Atmos. Sci. 45:163–72
    [Google Scholar]
  48. Frankignoul C, Gastineau G, Kwon YO. 2017. Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation. J. Clim. 30:9871–95
    [Google Scholar]
  49. Frankignoul C, Hasselmann K. 1977. Stochastic climate models, part II: application to sea-surface temperature anomalies and thermocline variability. Tellus 29:289–305
    [Google Scholar]
  50. Frankignoul C, Reynolds RW. 1983. Testing a dynamical model for mid-latitude sea surface temperature anomalies. J. Phys. Oceanogr. 13:1131–45
    [Google Scholar]
  51. Frankignoul C, Sennechael N, Kwon YO, Alexander MA 2011. Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Clim. 24:762–77
    [Google Scholar]
  52. Furtado JC, Di Lorenzo E, Anderson BT, Schneider N. 2012. Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Clim. Dyn. 39:2833–46
    [Google Scholar]
  53. Furtado JC, Di Lorenzo E, Schneider N, Bond NA. 2011. North Pacific decadal variability and climate change in the IPCC AR4 models. J. Clim. 24:3049–67
    [Google Scholar]
  54. Garreaud RD, Battisti DS. 1999. Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Clim. 12:2113–23
    [Google Scholar]
  55. Hare SR, Mantua NJ. 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47:103–45
    [Google Scholar]
  56. Hare SR, Mantua NJ, Francis RC. 1999. Inverse production regimes: Alaska and West Coast Pacific salmon. Fisheries 24:6–14
    [Google Scholar]
  57. Hasselmann K. 1976. Stochastic climate models part I: theory. Tellus 28:473–85
    [Google Scholar]
  58. Hoerling MP, Kumar A, Zhong M. 1997. El Niño, La Niña, and the nonlinearity of their teleconnections. J. Clim. 10:1769–86
    [Google Scholar]
  59. Holbrook NJ, Scannell HA, Sen Gupta A, Benthuysen JA, Feng M et al. 2019. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10:2624
    [Google Scholar]
  60. Hoskins BJ, Karoly DJ. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38:1179–96
    [Google Scholar]
  61. Hsu HH, Chen YL. 2011. Decadal to bi-decadal rainfall variation in the western Pacific: a footprint of South Pacific decadal variability?. Geophys. Res. Lett. 38:L03703
    [Google Scholar]
  62. Jia F, Cai WJ, Gan BL, Wu LX, Di Lorenzo E 2021. Enhanced North Pacific impact on El Niño/Southern Oscillation under greenhouse warming. Nat. Clim. Change 11:840–47
    [Google Scholar]
  63. Joh Y, Di Lorenzo E 2017. Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 44:11663–71
    [Google Scholar]
  64. Joh Y, Di Lorenzo E 2019. Interactions between Kuroshio Extension and Central Tropical Pacific lead to preferred decadal-timescale oscillations in Pacific climate. Sci. Rep. 9:13558
    [Google Scholar]
  65. Joh Y, Di Lorenzo E, Siqueira L, Kirtman BP. 2021. Enhanced interactions of Kuroshio Extension with tropical Pacific in a changing climate. Sci. Rep. 11:6247
    [Google Scholar]
  66. Knight JR, Folland CK, Scaife AA. 2006. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 33:L17706
    [Google Scholar]
  67. Knutson TR, Manabe S. 1998. Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Clim. 11:2273–96
    [Google Scholar]
  68. Kosaka Y, Xie SP. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–7
    [Google Scholar]
  69. Kucharski F, Ikram F, Molteni F, Farneti R, Kang IS et al. 2016. Atlantic forcing of Pacific decadal variability. Clim. Dyn. 46:2337–51
    [Google Scholar]
  70. Kwon YO, Alexander MA, Bond NA, Frankignoul C, Nakamura H et al. 2010. Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: a review. J. Clim. 23:3249–81
    [Google Scholar]
  71. Larson SM, Kirtman BP. 2014. The Pacific meridional mode as an ENSO precursor and predictor in the North American Multimodel Ensemble. J. Clim. 27:7018–32
    [Google Scholar]
  72. Larson SM, Pegion KV, Kirtman BP. 2018. The South Pacific meridional mode as a thermally driven source of ENSO amplitude modulation and uncertainty. J. Clim. 31:5127–45
    [Google Scholar]
  73. Levine AF, McPhaden MJ, Frierson DM. 2017. The impact of the AMO on multidecadal ENSO variability. Geophys. Res. Lett. 44:3877–86
    [Google Scholar]
  74. Liguori G, Di Lorenzo E 2018. Meridional modes and increasing Pacific decadal variability under anthropogenic forcing. Geophys. Res. Lett. 45:983–91
    [Google Scholar]
  75. Liguori G, Di Lorenzo E 2019. Separating the North and South Pacific Meridional Modes contributions to ENSO and tropical decadal variability. Geophys. Res. Lett. 46:906–15
    [Google Scholar]
  76. Linkin ME, Nigam S. 2008. The North Pacific Oscillation–west Pacific teleconnection pattern: mature-phase structure and winter impacts. J. Clim. 21:1979–97
    [Google Scholar]
  77. Liu Z, Alexander M 2007. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 45:RG2005
    [Google Scholar]
  78. Liu Z, Di Lorenzo E 2018. Mechanisms and predictability of Pacific decadal variability. Curr. Clim. Change Rep. 4:128–44
    [Google Scholar]
  79. Lou J, Holbrook NJ, O'Kane TJ. 2019. South Pacific decadal climate variability and potential predictability. J. Clim. 32:6051–69
    [Google Scholar]
  80. Lou J, O'Kane TJ, Holbrook NJ 2020. A linear inverse model of tropical and South Pacific seasonal predictability. J. Clim. 33:4537–54
    [Google Scholar]
  81. Lou J, O'Kane TJ, Holbrook NJ 2021. A linear inverse model of tropical and South Pacific climate variability: optimal structure and stochastic forcing. J. Clim. 34:143–55
    [Google Scholar]
  82. Ma X, Chang P, Saravanan R, Montuoro R, Nakamura H et al. 2017. Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Clim. 30:1861–80
    [Google Scholar]
  83. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78:1069–79
    [Google Scholar]
  84. Martinez-Villalobos C, Vimont DJ. 2017. An analytical framework for understanding tropical meridional modes. J. Clim. 30:3303–23
    [Google Scholar]
  85. Meehl GA, Arblaster JM, Fasullo JT, Hu AX, Trenberth KE. 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 1:360–64
    [Google Scholar]
  86. Meehl GA, van Loon H, Arblaster JM. 2017. The role of the Southern Hemisphere semiannual oscillation in the development of a precursor to central and eastern Pacific Southern Oscillation warm events. Geophys. Res. Lett. 44:6959–65
    [Google Scholar]
  87. Messie M, Chavez F. 2011. Global modes of sea surface temperature variability in relation to regional climate indices. J. Clim. 24:4314–31
    [Google Scholar]
  88. Min Q, Su J, Zhang R. 2017. Impact of the South and North Pacific meridional modes on the El Niño–Southern Oscillation: observational analysis and comparison. J. Clim. 30:1705–20
    [Google Scholar]
  89. Monahan AH, Fyfe JC, Ambaum MHP, Stephenson DB, North GR. 2009. Empirical orthogonal functions: The medium is the message. J. Clim. 22:6501–14
    [Google Scholar]
  90. Na H, Kim KY, Minobe S, Sasaki YN. 2018. Interannual to decadal variability of the upper-ocean heat content in the western North Pacific and its relationship to oceanic and atmospheric variability. J. Clim. 31:5107–25
    [Google Scholar]
  91. Namias J, Born RM. 1974. Further studies of temporal coherence in North Pacific sea surface temperatures. J. Geophys. Res. 79:797–98
    [Google Scholar]
  92. Newman M. 2007. Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Clim. 20:2333–56
    [Google Scholar]
  93. Newman M. 2013. An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Clim. 26:5260–69
    [Google Scholar]
  94. Newman M, Alexander MA, Ault TR, Cobb KM, Deser C et al. 2016. The Pacific Decadal Oscillation, revisited. J. Clim. 29:4399–427
    [Google Scholar]
  95. Newman M, Alexander MA, Scott JD 2011. An empirical model of tropical ocean dynamics. Clim. Dyn. 37:1823–41
    [Google Scholar]
  96. Newman M, Compo GP, Alexander MA 2003. ENSO-forced variability of the Pacific decadal oscillation. J. Clim. 16:3853–57
    [Google Scholar]
  97. Newman M, Sardeshmukh PD. 2017. Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?. Geophys. Res. Lett. 44:8520–29
    [Google Scholar]
  98. Nigam S, Sengupta A, Ruiz-Barradas A. 2020. Atlantic–Pacific links in observed multidecadal SST variability: Is the Atlantic Multidecadal Oscillation's phase reversal orchestrated by the Pacific Decadal Oscillation?. J. Clim. 33:5479–505
    [Google Scholar]
  99. Nurhati IS, Cobb KM, Di Lorenzo E 2011. Decadal-scale SST and salinity variations in the central tropical Pacific: signatures of natural and anthropogenic climate change. J. Clim. 24:3294–308
    [Google Scholar]
  100. Okumura YM. 2013. Origins of tropical Pacific decadal variability: role of stochastic atmospheric forcing from the South Pacific. J. Clim. 26:9791–96
    [Google Scholar]
  101. Penland C, Matrosova L. 1994. A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation. J. Clim. 7:1352–72
    [Google Scholar]
  102. Penland C, Matrosova L. 2006. Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Clim. 19:5796–815
    [Google Scholar]
  103. Penland C, Sardeshmukh PD. 1995. The optimal growth of tropical sea surface temperature anomalies. J. Clim. 8:1999–2024
    [Google Scholar]
  104. Power S, Casey T, Folland C, Colman A, Mehta V. 1999. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15:319–24
    [Google Scholar]
  105. Power S, Lengaigne M, Capotondi A, Khodri M, Vialard J et al. 2021. Decadal climate variability in the tropical Pacific: characteristics, causes, predictability, and prospects. Science 374:eaay9165
    [Google Scholar]
  106. Pozo Buil M, Di Lorenzo E 2015. Decadal changes in Gulf of Alaska upwelling source waters. Geophys. Res. Lett. 42:1488–95
    [Google Scholar]
  107. Pozo Buil M, Di Lorenzo E 2017. Decadal dynamics and predictability of oxygen and subsurface tracers in the California Current System. Geophys. Res. Lett. 44:4204–13
    [Google Scholar]
  108. Qiu B. 2003. Kuroshio Extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback. J. Phys. Oceanogr. 33:2465–82
    [Google Scholar]
  109. Qiu B, Chen S 2005. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr. 35:2090–103
    [Google Scholar]
  110. Qiu B, Chen S, Schneider N, Taguchi B. 2014. A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Clim. 27:1751–64
    [Google Scholar]
  111. Qiu B, Schneider N, Chen S 2007. Coupled decadal variability in the North Pacific: an observationally constrained idealized model. J. Clim. 20:3602–20
    [Google Scholar]
  112. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108:4407
    [Google Scholar]
  113. Rogers JC. 1981. The North Pacific Oscillation. J. Climatol. 1:39–57
    [Google Scholar]
  114. Rudnick DL, Davis RE. 2003. Red noise and regime shifts. Deep-Sea Res. I 50:691–99
    [Google Scholar]
  115. Sardeshmukh PD, Hoskins BJ. 1988. The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci. 45:1228–51
    [Google Scholar]
  116. Sasaki YN, Schneider N. 2011. Decadal shifts of the Kuroshio Extension jet: application of thin-jet theory. J. Phys. Oceanogr. 41:979–93
    [Google Scholar]
  117. Schneider N, Cornuelle BD. 2005. The forcing of the Pacific decadal oscillation. J. Clim. 18:4355–73
    [Google Scholar]
  118. Schneider N, Miller AJ. 2001. Predicting western North Pacific Ocean climate. J. Clim. 14:3997–4002
    [Google Scholar]
  119. Schneider N, Miller AJ, Alexander MA, Deser C. 1999. Subduction of decadal North Pacific temperature anomalies: observations and dynamics. J. Phys. Oceanogr. 29:1056–70
    [Google Scholar]
  120. Schwing FB, Murphree T, deWitt L, Green PM. 2002. The evolution of oceanic and atmospheric anomalies in the northeast Pacific during the El Niño and La Niña events of 1995–2001. Prog. Oceanogr. 54:459–91
    [Google Scholar]
  121. Screen JA, Francis JA. 2016. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Clim. Change 6:856–60
    [Google Scholar]
  122. Seager R, Henderson N. 2016. On the role of tropical ocean forcing of the persistent North American West Coast ridge of winter 2013/14. J. Clim. 29:8027–49
    [Google Scholar]
  123. Shakun JD, Shaman J. 2009. Tropical origins of North and South Pacific decadal variability. Geophys. Res. Lett. 36:L19711
    [Google Scholar]
  124. Siqueira L, Kirtman BP, Laurindo LC. 2021. Forecasting remote atmospheric responses to decadal Kuroshio stability transitions. J. Clim. 34:379–95
    [Google Scholar]
  125. Smirnov D, Newman M, Alexander MA, Kwon Y-O, Frankignoul C. 2015. Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Clim. 28:1126–47
    [Google Scholar]
  126. Smith TM, Reynolds RW, Peterson TC, Lawrimore J. 2008. Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 21:2283–96
    [Google Scholar]
  127. Stuecker MF. 2018. Revisiting the Pacific Meridional Mode. Sci. Rep. 8:3216
    [Google Scholar]
  128. Swain DL. 2015. A tale of two California droughts: lessons amidst record warmth and dryness in a region of complex physical and human geography. Geophys. Res. Lett. 42:9999–10003
    [Google Scholar]
  129. Taguchi B, Schneider N. 2014. Origin of decadal-scale, eastward-propagating heat content anomalies in the North Pacific. J. Clim. 27:7568–86
    [Google Scholar]
  130. Taguchi B, Xie SP, Schneider N, Nonaka M, Sasaki H, Sasai Y. 2007. Decadal variability of the Kuroshio Extension: observations and an eddy-resolving model hindcast. J. Clim. 20:2357–77
    [Google Scholar]
  131. Taschetto AS, Ummenhofer CC, Stuecker MF, Dommenget D, Ashok K et al. 2020. ENSO atmospheric teleconnections. El Niño Southern Oscillation in a Changing Climate MJ McPhaden, A Santoso, W Cai 309–35 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  132. Trenberth KE, Hurrell JW. 1994. Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn. 9:303–19
    [Google Scholar]
  133. van der Sleen P, Zuidema PA, Morrongiello J, Ong JLJ, Rykaczewski R et al. 2022. Interannual temperature variability is a principal driver of low-frequency fluctuations in marine fish populations. Commun. Biol. 5:28
    [Google Scholar]
  134. Vimont DJ. 2005. The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Clim. 18:2080–92
    [Google Scholar]
  135. Vimont DJ. 2010. Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean. J. Clim. 23:5771–89
    [Google Scholar]
  136. Vimont DJ, Alexander MA, Fontaine A. 2009. Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality. J. Clim. 22:518–34
    [Google Scholar]
  137. Vimont DJ, Alexander MA, Newman M. 2014. Optimal growth of Central and East Pacific ENSO events. Geophys. Res. Lett. 41:4027–34
    [Google Scholar]
  138. Vimont DJ, Battisti DS, Hirst AC. 2001. Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett. 28:3923–26
    [Google Scholar]
  139. Vimont DJ, Wallace JM, Battisti DS. 2003. The seasonal footprinting mechanism in the Pacific: implications for ENSO. J. Clim. 16:2668–75
    [Google Scholar]
  140. Wang C. 2018. A review of ENSO theories. Natl. Sci. Rev. 5:813–25
    [Google Scholar]
  141. Wang C, Deser C, Yu J-Y, DiNezio P, Clement A 2017. El Niño and Southern Oscillation (ENSO): a review. Coral Reefs of the Eastern Tropical Pacific P Glymn, D Manzello, I Enochs 85–106 Dordrecht, Neth: Springer
    [Google Scholar]
  142. Watanabe M, Kamae Y, Yoshimori M, Oka A, Sato M et al. 2013. Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett. 40:3175–79
    [Google Scholar]
  143. Wei W, Yan Z, Li Z 2021. Influence of Pacific Decadal Oscillation on global precipitation extremes. Environ. Res. Lett. 16:044031
    [Google Scholar]
  144. Xie S-P. 1999. A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Clim. 12:64–70
    [Google Scholar]
  145. Xu T, Newman M, Capotondi A, Di Lorenzo E 2021. The continuum of northeast Pacific marine heatwaves and their relationship to the tropical Pacific. Geophys. Res. Lett. 48:2020GL090661
    [Google Scholar]
  146. Yang X-Y, Wang G, Keenlyside N 2020. The Arctic sea ice extent change connected to Pacific decadal variability. Cryosphere 14:693–708
    [Google Scholar]
  147. Yang Y-M, An S-I, Wang B, Park JH 2020. A global-scale multidecadal variability driven by Atlantic multidecadal oscillation. Natl. Sci. Rev. 7:1190–97
    [Google Scholar]
  148. Yati E, Minobe S, Mantua N, Ito S, Di Lorenzo E 2020. Marine ecosystem variations over the North Pacific and their linkage to large-scale climate variability and change. Front. Mar. Sci. 7:578165
    [Google Scholar]
  149. You Y, Furtado JC. 2017. The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophys. Res. Lett. 44:7438–46
    [Google Scholar]
  150. You Y, Furtado JC. 2018. The South Pacific meridional mode and its role in tropical Pacific climate variability. J. Clim. 31:10141–63
    [Google Scholar]
  151. Zhang H, Clement A, Di Nezio P. 2014. The South Pacific meridional mode: a mechanism for ENSO-like variability. J. Clim. 27:769–83
    [Google Scholar]
  152. Zhang Y, Wallace JM, Battisti DS. 1997. ENSO-like interdecadal variability: 1900–93. J. Clim. 10:1004–20
    [Google Scholar]
  153. Zhang Y, Xie S-P, Kosaka Y, Yang J-C. 2018. Pacific Decadal Oscillation: tropical Pacific forcing versus internal variability. J. Clim. 31:8265–79
    [Google Scholar]
  154. Zhao Y, Di Lorenzo E 2020. The impacts of extra-tropical ENSO precursors on tropical Pacific decadal-scale variability. Sci. Rep. 10:3031
    [Google Scholar]
  155. Zhao Y, Di Lorenzo E, Sun D, Stevenson S 2021a. Tropical Pacific decadal variability and ENSO precursor in CMIP5 models. J. Clim. 34:1023–45
    [Google Scholar]
  156. Zhao Y, Newman M, Capotondi A, Di Lorenzo E, Sun D. 2021b. Removing the effects of tropical dynamics from North Pacific climate variability. J. Clim. 34:9249–65
    [Google Scholar]
  157. Zheng J, Wang F. 2017. On the formation of the South Pacific quadrupole mode. Theor. Appl. Climatol. 130:331–44
    [Google Scholar]
/content/journals/10.1146/annurev-marine-040422-084555
Loading
/content/journals/10.1146/annurev-marine-040422-084555
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error