1932

Abstract

Lipids are structurally diverse biomolecules that serve multiple roles in cells. As such, they are used as biomarkers in the modern ocean and as paleoproxies to explore the geological past. Here, I review lipid geochemistry, biosynthesis, and compartmentalization; the varied uses of lipids as biomarkers; and the evolution of analytical techniques used to measure and characterize lipids. Advancements in high-resolution accurate-mass mass spectrometry have revolutionized the lipidomic and metabolomic fields, both of which are quickly being integrated into marine meta-omic studies. Lipidomics allows us to analyze tens of thousands of features, providing an open analytical window and the ability to quantify unknown compounds that can be structurally elucidated later. However, lipidome annotation is not a trivial matter and represents one of the biggest challenges for oceanographers, owing in part to the lack of marine lipids in current in silico databases and data repositories. A case study reveals the gaps in our knowledge and open opportunities to answer fundamental questions about molecular-level control of chemical reactions and global-scale patterns in the lipidscape.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040422-094104
2023-01-16
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-040422-094104.html?itemId=/content/journals/10.1146/annurev-marine-040422-094104&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal S, Kumar S, Sehgal R, George S, Gupta R et al. 2019. El-MAVEN: a fast, robust, and user-friendly mass spectrometry data processing engine for metabolomics. High-Throughput Metabolomics: Methods and Protocols A D'Alessandro 301–21 New York: Springer
    [Google Scholar]
  2. Bale NJ, Ding S, Hopmans EC, Arts MGI, Villanueva L et al. 2021. Lipidomics of environmental microbial communities. I: Visualization of component distributions using untargeted analysis of high-resolution mass spectrometry data. Front. Microbiol. 12:659302
    [Google Scholar]
  3. Becker KW, Collins JR, Durham BP, Groussman RD, White AE et al. 2018. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat. Commun. 9:5179
    [Google Scholar]
  4. Becker KW, Harke MJ, Mende DR, Muratore D, Weitz JS et al. 2021. Combined pigment and metatranscriptomic analysis reveals highly synchronized diel patterns of phenotypic light response across domains in the open oligotrophic ocean. ISME J. 15:520–33
    [Google Scholar]
  5. Benning C. 1998. Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:53–75
    [Google Scholar]
  6. Berge JP, Barnathan G. 2005. Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Mar. Biotechnol. I 96:49–125
    [Google Scholar]
  7. Bianchi TS, Canuel EA. 2011. Photosynthetic pigments: chlorophylls, carotenoids, and phycobilins. Chemical Biomarkers in Aquatic Systems221–47 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  8. Boyd PW, Claustre H, Levy M, Siegel DA, Weber T. 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568:327–35
    [Google Scholar]
  9. Boysen AK, Carlson LT, Durham BP, Groussman RD, Aylward FO et al. 2021. Particulate metabolites and transcripts reflect diel oscillations of microbial activity in the surface ocean. mSystems 6:e00896–20
    [Google Scholar]
  10. Brown DA, London E. 2000. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275:17221–24
    [Google Scholar]
  11. Byrdwell WC. 2005. Qualitative and quantitative analysis of triacylglycerols by atmospheric pressure ionization (APCI and ESI) mass spectrometry techniques. Modern Methods for Lipid Analysis by Liquid Chromatography/Mass Spectrometry and Related Techniques WC Byrdwell 298–412 Champaign, IL: AOCS Press
    [Google Scholar]
  12. Close HG, Wakeham SG, Pearson A. 2014. Lipid and 13C signatures of submicron and suspended particulate organic matter in the Eastern Tropical North Pacific: implications for the contribution of Bacteria. Deep-Sea Res. I 85:15–34
    [Google Scholar]
  13. Collins JR, Edwards BR, Fredricks HF, Van Mooy BAS. 2016. LOBSTAHS: an adduct-based lipidomics strategy for discovery and identification of oxidative stress biomarkers. Anal. Chem. 88:7154–62
    [Google Scholar]
  14. Collins JR, Fredricks HF, Bowman JS, Ward CP, Moreno C et al. 2018. The molecular products and biogeochemical significance of lipid photooxidation in West Antarctic surface waters. Geochim. Cosmochim. Acta 232:244–64
    [Google Scholar]
  15. DeLong EF, Yayanos AA. 1985. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–3
    [Google Scholar]
  16. Diaz BP, Knowles B, Johns CT, Laber CP, Bondoc KGV et al. 2021. Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic. Nat. Commun. 12:6634
    [Google Scholar]
  17. Ding S, Bale NJ, Hopmans EC, Villanueva L, Arts MGI et al. 2021. Lipidomics of environmental microbial communities. II: Characterization using molecular networking and information theory. Front. Microbiol. 12:659315
    [Google Scholar]
  18. Dufourc EJ. 2008. Sterols and membrane dynamics. J. Chem. Biol. 1:63–77
    [Google Scholar]
  19. Edwards BR. 2016. The biogeochemistry of lipid derived infochemical signals in the ocean PhD Thesis Mass. Inst. Technol. Cambridge, MA, and Woods Hole Oceanogr. Inst. Woods Hole, MA:
    [Google Scholar]
  20. Edwards BR, Bidle KD, van Mooy BAS. 2015. Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: implications for the carbon cycle. PNAS 112:5909–14
    [Google Scholar]
  21. Eglinton TI, Eglinton G. 2008. Molecular proxies for paleoclimatology. Earth Planet. Sci. Lett. 275:1–16
    [Google Scholar]
  22. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA et al. 2004. The evolution of modern eukaryotic phytoplankton. Science 305:354–60
    [Google Scholar]
  23. Franzè G, Pierson JJ, Stoecker DK, Lavrentyev PJ. 2018. Diatom-produced allelochemicals trigger trophic cascades in the planktonic food web. Limnol. Oceanogr. 63:1093–108
    [Google Scholar]
  24. Fulton JM, Fredricks HF, Van Mooy BAS. 2017. Intact polar lipid export in the temperate western North Atlantic and Sargasso Sea. Org. Geochem. 114:45–56
    [Google Scholar]
  25. Gaw S, Thomas KV, Hutchinson TH. 2014. Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philos. Trans. R. Soc. B 369:20130572
    [Google Scholar]
  26. Guéguen N, Le Moigne D, Amato A, Salvaing J, Maréchal E 2021. Lipid droplets in unicellular photosynthetic stramenopiles. Front. Plant Sci. 12:639276
    [Google Scholar]
  27. Herbert TD. 2014. Alkenone paleotemperature determinations. Treatise on Geochemistry HD Holland, KK Turekian 399–433 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  28. Hertkorn N, Harir M, Koch BP, Michalke B, Schmitt-Kopplin P. 2013. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10:1583–624
    [Google Scholar]
  29. Hixson SM, Arts MT. 2016. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22:2744–55
    [Google Scholar]
  30. Hofmann AE, Chimiak L, Dallas B, Griep-Raming J, Juchelka D et al. 2020. Using Orbitrap mass spectrometry to assess the isotopic compositions of individual compounds in mixtures. Int. J. Mass Spectrom. 457:116410
    [Google Scholar]
  31. Hummel J, Segu S, Li Y, Irgang S, Jueppner J, Giavalisco P. 2011. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front. Plant Sci. 2:54
    [Google Scholar]
  32. Hunter JE, Brandsma J, Dymond MK, Koster G, Moore CM et al. 2018. Lipidomics of Thalassiosira pseudonana under phosphorus stress reveal underlying phospholipid substitution dynamics and novel diglycosylceramide substitutes. Appl. Environ. Microbiol. 84:e02034–17
    [Google Scholar]
  33. Hunter JE, Frada MJ, Fredricks HF, Vardi A, Van Mooy BAS. 2015. Targeted and untargeted lipidomics of Emiliania huxleyi viral infection and life cycle phases highlights molecular biomarkers of infection, susceptibility, and ploidy. Front. Mar. Sci. 2:81
    [Google Scholar]
  34. Hunter JE, Fredricks HF, Behrendt L, Alcolombri U, Bent SM et al. 2021. Using high-sensitivity lipidomics to assess microscale heterogeneity in oceanic sinking particles and single phytoplankton cells. Environ. Sci. Technol. 55:15456–65
    [Google Scholar]
  35. Hwang JS, Druffel ERM. 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean?. Science 299:881–84
    [Google Scholar]
  36. Johnson MD, Edwards BR, Beaudoin DJ, Van Mooy BAS, Vardi A 2020. Nitric oxide mediates oxylipin production and grazing defense in diatoms. Environ. Microbiol. 22:629–45
    [Google Scholar]
  37. Jónasdóttir SH, Visser AW, Richardson K, Heath MR. 2015. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. PNAS 112:12122–26
    [Google Scholar]
  38. Kabeya N, Fonseca MM, Ferrier DEK, Navarro JC, Bay LK et al. 2018. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 4:eaar6849
    [Google Scholar]
  39. Karl DM, Church MJ, Dore JE, Letelier RM, Mahaffey C. 2012. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. PNAS 109:1842–49
    [Google Scholar]
  40. Karl DM, Dobbs FC. 1998. Molecular approaches to microbial biomass estimation in the sea. Molecular Approaches to the Study of the Ocean KE Cooksey 29–89 Dordrecht, Neth: Springer
    [Google Scholar]
  41. Kato M, Sakai M, Adachi K, Ikemoto H, Sano H. 1996. Distribution of betaine lipids in marine algae. Phytochemistry 42:1341–45
    [Google Scholar]
  42. Kharbush JJ, Allen AE, Moustafa A, Dorrestein PC, Aluwihare LI. 2016. Intact polar diacylglycerol biomarker lipids isolated from suspended particulate organic matter accumulating in an ultraoligotrophic water column. Org. Geochem. 100:29–41
    [Google Scholar]
  43. Kind T, Liu K-H, Lee DY, DeFelice B, Meissen JK, Fiehn O. 2013. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10:755–58
    [Google Scholar]
  44. Kiyonami R, Peake DA, Yokoi Y, Miller K. 2016. Increased throughput and confidence for lipidomic profiling using comprehensive HCD MS2 and CID MS2/MS3 on a Tribrid Orbitrap mass spectrometer. Appl. Note 648 Thermo Fisher Sci. Waltham, MA:
    [Google Scholar]
  45. Koelmel JP, Napolitano MP, Ulmer CZ, Vasiliou V, Garrett TJ et al. 2020. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics 16:56
    [Google Scholar]
  46. La Ferla R, Lo Giudice A, Maimone G 2004. Morphology and LPS content for the estimation of marine bacterioplankton biomass in the Ionian Sea. Sci. Mar. 68:23–31
    [Google Scholar]
  47. Laber CP, Hunter JE, Carvalho F, Collins JR, Hunter EJ et al. 2018. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3:537–47
    [Google Scholar]
  48. Lee RF, Hagen W, Kattner G. 2006. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307:273–306
    [Google Scholar]
  49. Li F, Leu A, Poff K, Carlson LT, Ingalls AE, DeLong EF. 2021. Planktonic archaeal ether lipid origins in surface waters of the North Pacific subtropical gyre. Front. Microbiol. 12:610675
    [Google Scholar]
  50. Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. 2019. The lipid biochemistry of eukaryotic algae. Prog. Lipid Res. 74:31–68
    [Google Scholar]
  51. Llewellyn CA, Sommer U, Dupont CL, Allen AE, Viant MR. 2015. Using community metabolomics as a new approach to discriminate marine microbial particulate organic matter in the western English Channel. Prog. Oceanogr. 137:421–33
    [Google Scholar]
  52. Loh AN, Bauer JE, Druffel ERM. 2004. Variable ageing and storage of dissolved organic components in the open ocean. Nature 430:877–81
    [Google Scholar]
  53. Loh AN, Canuel EA, Bauer JE. 2008. Potential source and diagenetic signatures of oceanic dissolved and particulate organic matter as distinguished by lipid biomarker distributions. Mar. Chem. 112:189–202
    [Google Scholar]
  54. Lombard J, López-García P, Moreira D. 2012. The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10:507–15
    [Google Scholar]
  55. Longnecker K, Futrelle J, Coburn E, Soule MCK, Kujawinski EB. 2015. Environmental metabolomics: databases and tools for data analysis. Mar. Chem. 177:366–73
    [Google Scholar]
  56. Lowenstein DP, Mayers K, Fredricks HF, Van Mooy BAS. 2021. Targeted and untargeted lipidomic analysis of haptophyte cultures reveals novel and divergent nutrient-stress adaptations. Org. Geochem. 161:104315
    [Google Scholar]
  57. Lu YD, Xu J. 2015. Phytohormones in microalgae: a new opportunity for microalgal biotechnology?. Trends Plant Sci. 20:273–82
    [Google Scholar]
  58. Mackey MD, Mackey DJ, Higgins HW, Wright SW. 1996. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144:265–83
    [Google Scholar]
  59. MacLean BX, Pratt BS, Egertson JD, MacCoss MJ, Smith RD, Baker ES. 2018. Using skyline to analyze data-containing liquid chromatography, ion mobility spectrometry, and mass spectrometry dimensions. J. Am. Soc. Mass. Spectrom. 29:2182–88
    [Google Scholar]
  60. Maldonado MT, Marchetti A, Saito MA, Tagliabue A. 2018. Biogeoscapes: ocean metabolism and nutrient cycles on a changing planet. Zenodo. https://doi.org/10.5281/zenodo.4314954
    [Crossref] [Google Scholar]
  61. Mareš J, Strunecký O, Bučinská L, Wiedermannová J. 2019. Evolutionary patterns of thylakoid architecture in cyanobacteria. Front. Microbiol. 10:277
    [Google Scholar]
  62. Michaud JM, Thompson LR, Kaul D, Espinoza JL, Richter RA et al. 2018. Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. Nat. Commun. 9:2017
    [Google Scholar]
  63. Miralto A, Barone G, Romano G, Poulet SA, Ianora A et al. 1999. The insidious effect of diatoms on copepod reproduction. Nature 402:173–76
    [Google Scholar]
  64. Mojica KDA, Brussaard CPD. 2014. Factors affecting virus dynamics and microbial host–virus interactions in marine environments. FEMS Microbiol. Ecol. 89:495–515
    [Google Scholar]
  65. Muratore D, Boysen AK, Harke MJ, Becker KW, Casey JR et al. 2022. Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nat. Ecol. Evol. 6:218–29
    [Google Scholar]
  66. Pearson A. 2014. Lipidomics for geochemistry. Treatise on Geochemistry HD Holland, KK Turekian 291–336 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  67. Pedrosa-Pamies R, Conte MH, Weber JC, Johnson R 2018. Carbon cycling in the Sargasso Sea water column: insights from lipid biomarkers in suspended particles. Prog. Oceanogr. 168:248–78
    [Google Scholar]
  68. Peng B, Kopczynski D, Pratt BS, Ejsing CS, Burla B et al. 2020. LipidCreator workbench to probe the lipidomic landscape. Nat. Commun. 11:2057
    [Google Scholar]
  69. Petroutsos D, Amiar S, Abida H, Dolch LJ, Bastien O et al. 2014. Evolution of galactoglycerolipid biosynthetic pathways—from cyanobacteria to primary plastids and from primary to secondary plastids. Prog. Lipid Res. 54:68–85
    [Google Scholar]
  70. Pohnert G. 2000. Wound-activated chemical defense in unicellular planktonic algae. Angew. Chem. Int. Ed. 39:4352–54
    [Google Scholar]
  71. Pond DW, Tarling GA. 2011. Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol. Oceanogr. 56:1310–18
    [Google Scholar]
  72. Popendorf KJ, Fredricks HF, Van Mooy BAS. 2013. Molecular ion-independent quantification of polar glycerolipid classes in marine plankton using triple quadrupole MS. Lipids 48:185–95
    [Google Scholar]
  73. Popendorf KJ, Tanaka T, Pujo-Pay M, Lagaria A, Courties C et al. 2011. Gradients in intact polar diacylglycerolipids across the Mediterranean Sea are related to phosphate availability. Biogeosciences 8:3733–45
    [Google Scholar]
  74. Poulin RX, Hogan S, Poulson-Ellestad KL, Brown E, Fernández FM, Kubanek J. 2018. Karenia brevis allelopathy compromises the lipidome, membrane integrity, and photosynthesis of competitors. Sci. Rep. 8:9572
    [Google Scholar]
  75. Record NR, Ji R, Maps F, Varpe Ø, Runge JA et al. 2018. Copepod diapause and the biogeography of the marine lipidscape. J. Biogeogr. 45:2238–51
    [Google Scholar]
  76. Repeta DJ, Simpson DJ, Jorgensen BB, Jannasch HW. 1989. Evidence for anoxygenic photosynthesis from the distribution of bacterio-chlorophylls in the Black Sea. Nature 342:69–72
    [Google Scholar]
  77. Roitman S, Hornung E, Flores-Uribe J, Sharon I, Feussner I, Beja O 2018. Cyanophage-encoded lipid desaturases: oceanic distribution, diversity and function. ISME J 12:343–55
    [Google Scholar]
  78. Rontani J-F, Bonin PC, Volkman JK. 1999. Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds. Appl. Environ. Microbiol. 65:221–30
    [Google Scholar]
  79. Roy S. 2018. Distributions of phytoplankton carbohydrate, protein and lipid in the world oceans from satellite ocean colour. ISME J. 12:1457–72
    [Google Scholar]
  80. Salazar G, Sunagawa S. 2017. Marine microbial diversity. Curr. Biol. 27:R489–94
    [Google Scholar]
  81. Sato N. 2004. Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J. Plant Res. 117:495–505
    [Google Scholar]
  82. Schouten S, Hopmans EC, Damste JSS. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54:19–61
    [Google Scholar]
  83. Sebastián M, Smith AF, González JM, Fredricks HF, Van Mooy B et al. 2016. Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME J. 10:968–78
    [Google Scholar]
  84. Spicer RA, Salek R, Steinbeck C. 2017. A decade after the metabolomics standards initiative it's time for a revision. Sci. Data 4:170138
    [Google Scholar]
  85. Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U. 2004. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun. Mass Spectrom. 18:617–28
    [Google Scholar]
  86. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R et al. 2007. Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–21
    [Google Scholar]
  87. Sun C, Wu C, Su Y, Wang RJ, Fu GY et al. 2017. Hyphococcus flavus gen. nov., sp. nov., a novel alphaproteobacterium isolated from deep seawater. Int. J. Syst. Evol. Microbiol. 67:4024–31
    [Google Scholar]
  88. Tian H-F, Feng J-M, Wen J-F. 2012. The evolution of cardiolipin biosynthesis and maturation pathways and its implications for the evolution of eukaryotes. BMC Evol. Biol. 12:32
    [Google Scholar]
  89. Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y et al. 2020. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 38:1159–63
    [Google Scholar]
  90. Van Mooy BAS, Fredricks HF. 2010. Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: water-column distribution, planktonic sources, and fatty acid composition. Geochim. Cosmochim. Acta 74:6499–516
    [Google Scholar]
  91. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM et al. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72
    [Google Scholar]
  92. Van Mooy BAS, Moutin T, Duhamel S, Rimmelin P, Van Wambeke F. 2008. Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean. Biogeosciences 5:133–39
    [Google Scholar]
  93. Vardi A, Haramaty L, Van Mooy BAS, Fredricks HF, Kimmance SA et al. 2012. Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. PNAS 109:19327–32
    [Google Scholar]
  94. Vardi A, Van Mooy BAS, Fredricks HF, Popendorf KJ, Ossolinski JE et al. 2009. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 326:861–65
    [Google Scholar]
  95. Villanueva L, von Meijenfeldt FAB, Westbye AB, Yadav S, Hopmans EC et al. 2021. Bridging the membrane lipid divide: Bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. ISME J. 15:168–82
    [Google Scholar]
  96. Volkman JK. 2003. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60:495–506
    [Google Scholar]
  97. Volkman JK. 2018. Lipids of geochemical interest in microalgae. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate H Wilkes 1–34 Cham, Switz: Springer
    [Google Scholar]
  98. Volkman JK, Everitt DA, Allen DI 1986. Some analyses of lipid classes in marine organisms, sediments and seawater using thin-layer chromatography—flame ionisation detection. J. Chromatogr. A 356:147–62
    [Google Scholar]
  99. Volkman JK, Johns RB, Gillan FT, Perry GJ, Bavor HJ. 1980. Microbial lipids of an inter-tidal sediment. 1. Fatty-acids and hydrocarbons. Geochim. Cosmochim. Acta 44:1133–43
    [Google Scholar]
  100. Wakeham SG. 1995. Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water columns of the ocean. Deep-Sea Res. I 42:1749–71
    [Google Scholar]
  101. Wakeham SG, Beier JA. 1991. Fatty-acid and sterol biomarkers as indicators of particulate matter source and alteration processes in the Black Sea. Deep-Sea Res. A 38:S943–68
    [Google Scholar]
  102. Wakeham SG, Canuel EA. 1988. Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: implications for particle dynamics. J. Mar. Res. 46:183–213
    [Google Scholar]
  103. Wakeham SG, Lee C. 1989. Organic geochemistry of particulate matter in the ocean: the role of particles in oceanic sedimentary cycles. Org. Geochem. 14:83–96
    [Google Scholar]
  104. Wakeham SG, Lee C, Hedges JI 2000. Fluxes of major biochemicals in the equatorial Pacific ocean. Dynamics and Characterization of Marine Organic Matter N Handa, E Tanoue, T Hama 117–40 Dordrecht, Neth: Springer
    [Google Scholar]
  105. Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson ML. 1997. Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta 61:5363–69
    [Google Scholar]
  106. Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R et al. 2005. Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol. Microbiol. 55:750–63
    [Google Scholar]
  107. Wang F, Liigand J, Tian S, Arndt D, Greiner R, Wishart DS. 2021. CFM-ID 4.0: more accurate ESI-MS/MS spectral prediction and compound identification. Anal. Chem. 93:11692–700
    [Google Scholar]
  108. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N et al. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34:828–37
    [Google Scholar]
  109. Watson SW, Novitsky TJ, Quinby HL, Valois FW. 1977. Determination of bacterial number and biomass in the marine environment. Appl. Environ. Microbiol. 33:940–46
    [Google Scholar]
  110. Yi Z, Xu M, Di X, Brynjolfsson S, Fu W. 2017. Exploring valuable lipids in diatoms. Front. Mar. Sci. 4:17
    [Google Scholar]
  111. Ziolkowski LA, Druffel ERM. 2010. Aged black carbon identified in marine dissolved organic carbon. Geophys. Res. Lett. 37:L16601
    [Google Scholar]
  112. Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I. 2018. Current trends to comprehend lipid metabolism in diatoms. Prog. Lipid Res. 70:1–16
    [Google Scholar]
/content/journals/10.1146/annurev-marine-040422-094104
Loading
/content/journals/10.1146/annurev-marine-040422-094104
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error