1932

Abstract

Environmental DNA (eDNA) is genetic material that has been shed from macroorganisms. It has received increased attention as an indirect marker for biodiversity monitoring. This article reviews the current status of eDNA metabarcoding (simultaneous detection of multiple species) as a noninvasive and cost-effective approach for monitoring marine fish communities and discusses the prospects for this growing field. eDNA metabarcoding coamplifies short fragments of fish eDNA across a wide variety of taxa and, coupled with high-throughput sequencing technologies, allows massively parallel sequencing to be performed simultaneously for dozens to hundreds of samples. It can predict species richness in a given area, detect habitat segregation and biogeographic patterns from small to large spatial scales, and monitor the spatiotemporal dynamics of fish communities. In addition, it can detect an anthropogenic impact on fish communities through evaluation of their functional diversity. Recognizing the strengths and limitations of eDNA metabarcoding will help ensure that continuous biodiversity monitoring at multiple sites will be useful for ecosystem conservation and sustainable use of fishery resources, possibly contributing to achieving the targets of the United Nations’ Sustainable Development Goal 14 for 2030.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-041421-082251
2022-01-03
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-041421-082251.html?itemId=/content/journals/10.1146/annurev-marine-041421-082251&mimeType=html&fmt=ahah

Literature Cited

  1. Afzali SF, Bourdages H, Laporte M, Mérot C, Normandeau E et al. 2021. Comparing environmental metabarcoding and trawling survey of demersal fish communities in the Gulf of St. Lawrence, Canada Environ. DNA 3:22–42
    [Google Scholar]
  2. Aglieri G, Baillie C, Mariani S, Cattano C, Calò A et al. 2021. Environmental DNA effectively captures functional diversity of coastal fish communities. Mol. Ecol. 31:3127–39
    [Google Scholar]
  3. Ahn H, Kume M, Terashima Y, Ye F, Kameyama S et al. 2020. Evaluation of fish biodiversity in estuaries using environmental DNA metabarcoding. PLOS ONE 15:e0231127
    [Google Scholar]
  4. Andriyono S, Alam MJ, Kim H-W 2019. Environmental DNA (eDNA) metabarcoding: diversity study around the Pondok Dadap fish landing station, Malang, Indonesia. Biodiversitas 20:3772–81
    [Google Scholar]
  5. Andruszkiewicz EA, Starks HA, Chavez FP, Sassoubre LM, Block BA, Boehm AB. 2017. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLOS ONE 12:e0176343
    [Google Scholar]
  6. Bakker J, Wangensteen OS, Chapman DD, Boussarie G, Buddo D et al. 2017. Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Sci. Rep. 7:16886
    [Google Scholar]
  7. Barber P, Palumbi S, Erdmann M, Moosa M. 2000. A marine Wallace's line?. Nature 406:692–93
    [Google Scholar]
  8. Barneche DR, Rezende EL, Parravicini V, Maire E, Edgar GJ et al. 2018. Body size, reef area and temperature predict global reef-fish species richness across spatial scales. Glob. Ecol. Biogeogr. 28:315–27
    [Google Scholar]
  9. Barnes MA, Turner CR. 2016. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17:1–17
    [Google Scholar]
  10. Beng KC, Corlett RT. 2020. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers. Conserv. 29:2089–121
    [Google Scholar]
  11. Bessey C, Jarman SN, Berry O, Olsen YS, Bunce M et al. 2020. Maximizing fish detection with eDNA metabarcoding. Environ. DNA 2:493–504
    [Google Scholar]
  12. Bhaduri A, Bogardi J, Siddiqi A, Voigt H, Vörösmarty C et al. 2016. Achieving Sustainable Development Goals from a water perspective. Front. Environ. Sci. 4:64
    [Google Scholar]
  13. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S et al. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29:358–67
    [Google Scholar]
  14. Boussarie G, Bakker J, Wangensteen OS, Mariani S, Bonnin L et al. 2018. Environmental DNA illuminates the dark diversity of sharks. Sci. Adv. 2:e23297
    [Google Scholar]
  15. Burke L, Kura Y, Kassem K, Revenga C, Spalding M, McAllister D. 2001. Coastal ecosystems Rep., World Resour. Inst Washington, DC:
    [Google Scholar]
  16. Bylemans J, Gleeson DM, Lintermans M, Gilligan DM, Hardy CM et al. 2018. Monitoring riverine fish communities through eDNA metabarcoding: determining optimal sampling strategies along an altitudinal and biodiversity gradient. Metabarcoding Metagenom 2:e30457
    [Google Scholar]
  17. Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–43
    [Google Scholar]
  18. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581–83
    [Google Scholar]
  19. Chang C-W, Ushio M, Hsieh C. 2017. Empirical dynamic modeling for beginners. Ecol. Res. 32:785–96
    [Google Scholar]
  20. Cheang C, Lee B, Ip BH, Yiu W, Tsang L, Ang PO. 2020. Fish and crustacean biodiversity in an outer maritime estuary of the Pearl River Delta revealed by environmental DNA. Mar. Pollut. Bull. 161:111707
    [Google Scholar]
  21. Chee SY, Othman AG, Sim YK, Adam ANM, Firth LB. 2017. Land reclamation and artificial islands: walking the tightrope between development and conservation. Glob. Ecol. Conserv. 12:80–95
    [Google Scholar]
  22. Clementi GM, Bakker J, Flowers KI, Postaire BD, Babcock EA et al. 2021. Moray eels are more common on coral reefs subject to higher human pressure in the greater Caribbean. iScience 24:102097
    [Google Scholar]
  23. Closek CJ, Santora JA, Starks HA, Schroeder ID, Andruszkiewicz EA et al. 2019. Marine vertebrate biodiversity and distribution within the central California Current using environmental DNA (eDNA) metabarcoding and ecosystem surveys. Front. Mar. Sci. 6:732
    [Google Scholar]
  24. Coissac E, Riaz T, Puillandre N. 2012. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21:1834–47
    [Google Scholar]
  25. Cole VJ, Harasti D, Lines R, Stat M. 2021. Estuarine fishes associated with intertidal oyster reefs characterized using environmental DNA and baited remote underwater video. Environ. DNA. https://doi.org/10.1002/edn3.190
    [Crossref] [Google Scholar]
  26. Collins RA, Bakker J, Wangensteen OS, Soto AZ, Corrigan L et al. 2019. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10:1985–2001
    [Google Scholar]
  27. Colwell RK 2009. Biodiversity: concepts, patterns, and measurement. The Princeton Guide to Ecology SA Levin, SR Carpenter, HCJ Godfray, AP Kinzig, M Loreau, et al 257–63 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  28. Costello MJ. 2009. Distinguishing marine habitat classification concepts for ecological data management. Mar. Ecol. Prog. Ser. 397:253–68
    [Google Scholar]
  29. Costello MJ, Chaudhary C. 2017. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27:R511–27
    [Google Scholar]
  30. Costello MJ, Cheung A, Hauwere ND. 2010. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world's seas, oceans, and countries. Environ. Sci. Technol. 44:8821–28
    [Google Scholar]
  31. Cristescu ME, Hebert PDN. 2018. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49:209–30
    [Google Scholar]
  32. D'agata S, Mouillot D, Kulbicki M, Andréfouët S, Bellwood DR et al. 2014. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr. Biol. 24:555–60
    [Google Scholar]
  33. Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P. 2014. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol. Lett. 10:20140562
    [Google Scholar]
  34. Deiner K, Bik HM, Mächler E, Seymour M, Roussel AL et al. 2017. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26:5872–95
    [Google Scholar]
  35. DiBattista JD, Coker DJ, Sinclair-Taylor TH, Stat M, Berumen ML, Bunce M. 2017. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs 36:1245–52
    [Google Scholar]
  36. Doi H, Fukaya K, Oka S, Sato K, Kondoh M, Miya M. 2019. Evaluation of detection probabilities at the water-filtering and initial PCR steps in environmental DNA metabarcoding using a multispecies site occupancy model. Sci. Rep. 9:3581
    [Google Scholar]
  37. Dorenbosch M, Grol M, Nagelkerken I, van der Velde G. 2005. Distribution of coral reef fishes along a coral reef-seagrass gradient: edge effects and habitat segregation. Mar. Ecol. Prog. Ser. 299:277–88
    [Google Scholar]
  38. Edgar RC. 2016. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 081257. https://doi.org/10.1101/081257
    [Crossref]
  39. eDNA Soc 2019. Environmental DNA Sampling and Experiment Manual: Version 2.1 Otsu, Jpn: eDNA Soc http://ednasociety.org/en/manual
    [Google Scholar]
  40. Eschmeyer WN, Fricke R, Fong JD, Polack DA. 2010. Marine fish diversity: history of knowledge and discovery (Pisces). Zootaxa 2525:19–50
    [Google Scholar]
  41. Fabricius K, De'ath G, McCook L, Turak E, Williams DM. 2005. Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Mar. Pollut. Bull. 51:384–98
    [Google Scholar]
  42. Fediajevaite J, Priestley V, Arnold R, Savolainen V 2021. Meta-analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecol. Evol. 11:4803–15
    [Google Scholar]
  43. Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C et al. 2015. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15:543–56
    [Google Scholar]
  44. Fraija-Fernández N, Bouquieaux M, Rey A, Mendibil I, Cotano U et al. 2020. Marine water environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial patterns in a large oceanic area. Ecol. Evol. 10:7560–84
    [Google Scholar]
  45. Fujikura K, Lindsay D, Kitazato H, Nishida S, Shirayama Y, Schnur J. 2010. Marine biodiversity in Japanese waters. PLOS ONE 5:e11836
    [Google Scholar]
  46. Fukaya K, Murakami H, Yoon S, Minami K, Osada Y et al. 2021. Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling. Mol. Ecol. 30:3057–67
    [Google Scholar]
  47. Fukuba T, Sano Y, Yamamoto H, Miwa T, Fujii T. 2019. Development, deployment and improvement of miniaturized in situ bio/biochemical analysis systems towards multi-modal ocean sensing. 2019 IEEE Underwater Technology. Piscataway, NJ: IEEE https://doi.org/10.1109/UT.2019.8734416
    [Crossref] [Google Scholar]
  48. Gilbey J, Carvalho G, Castilho R, Coscia I, Coulson MW et al. 2021. Life in a drop: sampling environmental DNA for marine fishery management and ecosystem monitoring. Mar. Policy 124:104331
    [Google Scholar]
  49. Gold Z, Choi E, Kacev D, Frable B, Burton R et al. 2020. FishCARD: fish 12S California Current specific reference database for enhanced metabarcoding efforts.. Authorea 159136805.55528691. https://doi.org/10.22541/au.159136805.55528691
    [Crossref]
  50. Gold Z, Sprague J, Kushner DJ, Zerecero Marin E, Barber PH 2021. eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLOS ONE 16:e0238557
    [Google Scholar]
  51. Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF et al. 2016. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7:1299–307
    [Google Scholar]
  52. Hansen BK, Bekkevold D, Clausen LW, Nielsen EE. 2018. The sceptical optimist: challenges and perspectives for the application of environmental DNA in marine fisheries. Fish Fish 19:751–68
    [Google Scholar]
  53. Harrison JB, Sunday JM, Rogers SM. 2019. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B 286:20191409
    [Google Scholar]
  54. Heinen JH, Rahbek C, Borregaard MK. 2020. Conservation of species interactions to achieve self-sustaining ecosystems. Ecography 43:1603–11
    [Google Scholar]
  55. Hoshino T, Inagaki F. 2017. Application of stochastic labeling with random-sequence barcodes for simultaneous quantification and sequencing of environmental 16S rRNA genes. PLOS ONE 12:e0169431
    [Google Scholar]
  56. Hoshino T, Nakao R, Doi H, Minamoto T. 2021. Simultaneous absolute quantification and sequencing of fish environmental DNA in a mesocosm by quantitative sequencing technique. Sci. Rep. 11:4372
    [Google Scholar]
  57. Iacarella JC, Adamczyk E, Bowen D, Chalifour L, Eger A et al. 2018. Anthropogenic disturbance homogenizes seagrass fish communities. Glob. Change Biol. 24:1904–18
    [Google Scholar]
  58. Jeunen G-J, Knapp M, Spencer HG, Lamare MD, Taylor HR et al. 2019. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 19:426–38
    [Google Scholar]
  59. Jeunen G-J, Lamare MD, Knapp M, Spencer HG, Taylor HR et al. 2020. Water stratification in the marine biome restricts vertical environmental DNA (eDNA) signal dispersal. Environ. DNA 2:99–111
    [Google Scholar]
  60. Jeunen G-J, Urban L, Lewis R, Knapp M, Lamare M et al. 2021. Marine environmental DNA (eDNA) for biodiversity assessments: a one-to-one comparison between eDNA and baited remote underwater video (BRUV) surveys. Authorea 160278512.26241559. https://doi.org/10.22541/au.160278512.26241559/v1
    [Crossref]
  61. Jia H, Wang Y, Yoshizawa S, Iwasaki W, Li Y et al. 2020. Seasonal variation and assessment of fish resources in the Yangtze Estuary based on environmental DNA. Water 12:2874
    [Google Scholar]
  62. Jollivet D. 1996. Specific and genetic diversity at deep-sea hydrothermal vents: an overview. Biodivers. Conserv. 5:1619–53
    [Google Scholar]
  63. Juhel J-B, Utama RS, Marques V, Vimono IB, Sugeha HY et al. 2020. Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle. Proc. R. Soc. B 287:20200248
    [Google Scholar]
  64. Kaartvedt S, Langbehn TJ, Aksnes DL. 2019. Enlightening the ocean's twilight zone. ICES J. Mar. Sci. 76:803–12
    [Google Scholar]
  65. Kahn AS, Yahel G, Chu JWF, Tunnicliffe V, Leys SP. 2015. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60:78–88
    [Google Scholar]
  66. Kamimura S, Kozuki Y, Otani S, Hirakawa R, Iwami K et al. 2018. Fish diversity detection at port and urban canal area using environmental DNA metabarcoding. J. Jpn. Soc. Civil Eng. B3 74:474–79
    [Google Scholar]
  67. Kawato M, Yoshida T, Miya M, Tsuchida S, Nagano Y et al. 2021. Optimization of environmental DNA extraction and amplification methods for metabarcoding of deep-sea fish. MethodsX 8:101238
    [Google Scholar]
  68. Kelly RP, Gallego R, Jacobs-Palmer E. 2018. The effect of tides on nearshore environmental DNA. PeerJ 6:e4521
    [Google Scholar]
  69. Kelly RP, Shelton AO, Gallego R. 2019. Understanding PCR processes to draw meaningful conclusions from environmental DNA studies. Sci. Rep. 9:12133
    [Google Scholar]
  70. Kume M, Lavergne E, Ahn H, Terashima Y, Kadowaki K et al. 2021. Factors structuring estuarine and coastal fish communities across Japan using environmental DNA metabarcoding. Ecol. Indic. 121:107216
    [Google Scholar]
  71. Lafferty KD, Garcia-Vedrenne AE, McLaughlin JP, Childress JN, Morse MF, Jerde CL. 2021. At Palmyra Atoll, the fish-community environmental DNA signal changes across habitats but not with tides. J. Fish Biol. 98:415–25
    [Google Scholar]
  72. Larson ER, Graham BM, Achury R, Coon JJ, Daniels MK et al. 2020. From eDNA to citizen science: emerging tools for the early detection of invasive species. Front. Ecol. Environ. 18:194–202
    [Google Scholar]
  73. Mariani S, Baillie C, Colosimo G, Riesgo A. 2019. Sponges as natural environmental DNA samplers. Curr. Biol. 29:R401–2
    [Google Scholar]
  74. McClenaghan B, Fahner N, Cote D, Chawarski J, McCarthy A et al. 2020. Harnessing the power of eDNA metabarcoding for the detection of deep-sea fishes. PLOS ONE 15:e0236540
    [Google Scholar]
  75. McElroy ME, Dressler TL, Titcomb GC, Wilson EA, Deiner K et al. 2020. Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness. Front. Ecol. Evol. 8:276
    [Google Scholar]
  76. Meyer R, Ramos M, Lin M, Schweizer T, Gold Z et al. 2021. The CALeDNA program: Citizen scientists and researchers inventory California's biodiversity. Calif. Agric. 75:20–32
    [Google Scholar]
  77. Min M, Barber P, Gold Z. 2020. MiSebastes: an eDNA metabarcoding primer set for rockfishes (genus Sebastes). bioRxiv 2020.10.29.360859. https://doi.org/10.1101/2020.10.29.360859
    [Crossref]
  78. Mirimin L, Desmet S, Romero DL, Fernandez SF, Miller DL et al. 2021. Don't catch me if you can – using cabled observatories as multidisciplinary platforms for marine fish community monitoring: an in situ case study combining underwater video and environmental DNA data. Sci. Total Environ. 773:145351
    [Google Scholar]
  79. Miya M, Gotoh RO, Sado T. 2020. MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fish. Sci. 86:939–70
    [Google Scholar]
  80. Miya M, Minamoto T, Yamanaka H, Oka S, Sato K et al. 2016. Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. J. Vis. Exp. 117:e54741
    [Google Scholar]
  81. Miya M, Sado T. 2019. Multiple species detection using MiFish primers. See eDNA Soc. 2019 55–92
  82. Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY et al. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2:150088
    [Google Scholar]
  83. Monti F, Duriez O, Dominici J-M, Sforzi A, Robert A et al. 2018. The price of success: integrative long-term study reveals ecotourism impacts on a flagship species at a UNESCO site. Anim. Conserv. 21:448–58
    [Google Scholar]
  84. Morita K, Sahashi G, Miya M, Kamada S, Kanbe T, Araki H. 2019. Ongoing localized extinctions of stream-dwelling white-spotted charr populations in small dammed-off habitats of Hokkaido Island, Japan. Hydrobiologia 840:207–13
    [Google Scholar]
  85. Murakami H, Yoon S, Kasai A, Minamoto T, Yamamoto S et al. 2019. Dispersion and degradation of environmental DNA from caged fish in a marine environment. Fish. Sci. 85:327–37
    [Google Scholar]
  86. Nelson JS, Grande TC, Wilson MV. 2016. Fishes of the World Hoboken, NJ: Wiley & Sons. , 5th ed..
    [Google Scholar]
  87. Nester GM, Brauwer MD, Koziol A, West KM, DiBattista JD et al. 2020. Development and evaluation of fish eDNA metabarcoding assays facilitate the detection of cryptic seahorse taxa (family: Syngnathidae). Environ. DNA 2:614–26
    [Google Scholar]
  88. O'Donnell JL, Kelly RP, Lowell NC, Port JA. 2016. Indexed PCR primers induce template-specific bias in large-scale DNA sequencing studies. PLOS ONE 11:e0148698
    [Google Scholar]
  89. Ojha SN, Babu SC 2019. Why convergence of fisheries co-management with agricultural technology management agency is significant. Agricultural Extension Reforms in South Asia: Status, Challenges, and Policy Options SC Babu, PK Joshi 329–47 San Diego, CA: Academic
    [Google Scholar]
  90. Oka S, Doi H, Miyamoto K, Hanahara N, Sado T, Miya M. 2021. Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: estimation of species richness and detection of habitat segregation. Environ. DNA 3:55–69
    [Google Scholar]
  91. Perry D, Staveley TAB, Gullström M. 2018. Habitat connectivity of fish in temperate shallow-water seascapes. Front. . Mar. Sci. 4:440
    [Google Scholar]
  92. Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R et al. 2014. Ecosystem-based fishery management. Science 305:346–47
    [Google Scholar]
  93. Port JA, O'Donnell JL, Romero-Maraccini OC, Leary PR, Litvin SY et al. 2016. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25:527–41
    [Google Scholar]
  94. Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC. 2014. The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51:1450–59
    [Google Scholar]
  95. Riser SC, Freeland HJ, Roemmich D, Wijffels S, Troisi A et al. 2016. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6:145–53
    [Google Scholar]
  96. Rohde K, Heap M, Heap D. 1993. Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. Am. Nat. 142:1–16
    [Google Scholar]
  97. Ruppert KM, Kline RJ, Rahman MS. 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17:e00547
    [Google Scholar]
  98. Sachs JD. 2012. From Millennium Development Goals to Sustainable Development Goals. Lancet 379:2206–11
    [Google Scholar]
  99. Sato Y, Miya M, Fukunaga T, Sado T, Iwasaki W. 2018. MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol. Biol. Evol. 10:421–23
    [Google Scholar]
  100. Scholin CA, Birch J, Jensen S, Marin R III, Massion E et al. 2017. The quest to develop ecogenomic sensors: a 25-year history of the environmental sample processor (ESP) as a case study. Oceanography 30:4100–13
    [Google Scholar]
  101. Secor DH. 2015. Migration Ecology of Marine Fishes. Baltimore, MD: John Hopkins Univ. Press
    [Google Scholar]
  102. Sergio F, Newton I, Marchesi L, Pedrini P. 2006. Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. J. Appl. Ecol. 43:1049–55
    [Google Scholar]
  103. Shiklomanov IA. 1993. World fresh water resources. Water in Crisis: A Guide to the World's Fresh Water Resources PH Gleick 13–24 New York: Oxford Univ. Press
    [Google Scholar]
  104. Shu L, Ludwig A, Peng Z. 2021. Environmental DNA metabarcoding primers for freshwater fish detection and quantification: in silico and in tanks. Ecol. Evol 11:8281–94
    [Google Scholar]
  105. Sigsgaard EE, Nielsen IB, Carl H, Krag MA, Knudsen SW et al. 2017. Seawater environmental DNA reflects seasonality of a coastal fish community. Mar. Biol. 164:128
    [Google Scholar]
  106. Sigsgaard EE, Torquato F, Frøslev TG, Moore ABM, Sørensen JM et al. 2020. Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conserv. Biol. 34:697–710
    [Google Scholar]
  107. Spens J, Evans AR, Halfmaerten D, Knudsen SW, Sengupta ME et al. 2017. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol. Evol. 8:635–45
    [Google Scholar]
  108. Stat M, Huggett MJ, Bernasconi R, DiBattista JD, Berry TE et al. 2017. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7:12240
    [Google Scholar]
  109. Stat M, John J, DiBattista JD, Newman SJ, Bunce M, Harvey ES. 2018. Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conserv. Biol. 33:196–205
    [Google Scholar]
  110. Stoeckle MY, Adolf J, Charlop-Powers Z, Dunton KJ, Hinks G, VanMorter SM. 2021. Trawl and eDNA assessment of marine fish diversity, seasonality, and relative abundance in coastal New Jersey, USA. ICES J. Mar. Sci. 78:293–304
    [Google Scholar]
  111. Stoeckle MY, Mishu MD, Charlop-Powers Z. 2020. Improved environmental DNA reference library detects overlooked marine fishes in New Jersey, United States. Front. Mar. Sci. 7:226
    [Google Scholar]
  112. Stoeckle MY, Soboleva L, Charlop-Powers Z. 2017. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLOS ONE 12:e0175186
    [Google Scholar]
  113. Taberlet P, Bonin A, Coissac E, Zinger L 2018. Environmental DNA: For Biodiversity Research and Monitoring. Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  114. Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH. 2012. Environmental DNA. Mol. Ecol. 21:1789–93
    [Google Scholar]
  115. Takeuchi A, Sado T, Gotoh RO, Watanabe S, Tsukamoto K, Miya M. 2019a. New PCR primers for metabarcoding environmental DNA from freshwater eels, genus Anguilla. Sci. Rep 9:7977
    [Google Scholar]
  116. Takeuchi A, Watanabe S, Yamamoto S, Miller M, Fukuba T et al. 2019b. First use of oceanic environmental DNA to study the spawning ecology of the Japanese eel Anguilla japonica. Mar. Ecol. Prog. Ser. 609:187–96
    [Google Scholar]
  117. Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E. 2012. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLOS ONE 7:e41732
    [Google Scholar]
  118. Thomsen PF, Møller PR, Sigsgaard EE, Knudsen SW, Jørgensen OA, Willerslev E. 2016. Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLOS ONE 11:e0165252
    [Google Scholar]
  119. Thomsen PF, Willerslev E. 2015. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183:4–18
    [Google Scholar]
  120. Turon M, Angulo-Preckler C, Antich A, Præbel K, Wangensteen OS. 2020. More than expected from old sponge samples: a natural sampler DNA metabarcoding assessment of marine fish diversity in Nha Trang Bay (Vietnam). Front. Mar. Sci. 7:605148
    [Google Scholar]
  121. UN 2021. Sustainable development. UN Department of Economic and Social Affairs. https://sustainabledevelopment.un.org
  122. Ushio M, Hiroaki M, Masuda R, Sado T, Miya M et al. 2018a. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcoding Metagenom 2:e23297
    [Google Scholar]
  123. Ushio M, Hsieh C, Masuda R, Deyle ER, Ye H et al. 2018b. Fluctuating interaction network and time-varying stability of a natural fish community. Nature 554:360–63
    [Google Scholar]
  124. van Bleijswijk JDL, Engelmann JC, Klunder L, Witte HJ, Witte JIJ, Veer HW. 2020. Analysis of a coastal North Sea fish community: comparison of aquatic environmental DNA concentrations to fish catches. Environ. DNA 2:429–45
    [Google Scholar]
  125. Wang S, Yan Z, Hänfling B, Zheng X, Wang P et al. 2021. Methodology of fish eDNA and its applications in ecology and environment. Sci. Total Environ. 755:142622
    [Google Scholar]
  126. Ward RD, Hanner R, Hebert PD. 2009. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol 74:329–56
    [Google Scholar]
  127. West KM, Stat M, Harvey ES, Skepper CL, DiBattista JD et al. 2020. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol. Ecol. 29:1069–86
    [Google Scholar]
  128. West KM, Travers MJ, Stat M, Harvey ES, Richards ZT et al. 2021. Large-scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north-western Australia. Divers. Distrib. 27:194257
    [Google Scholar]
  129. Wong MK-S, Nakao M, Hyodo S. 2020. Field application of an improved protocol for environmental DNA extraction, purification, and measurement using Sterivex filter. Sci. Rep. 10:21531
    [Google Scholar]
  130. Yamahara KM, Preston CM, Birch J, Walz K, Marin R et al. 2019. In situ autonomous acquisition and preservation of marine environmental DNA using an autonomous underwater vehicle. Front. Mar. Sci. 6:373
    [Google Scholar]
  131. Yamamoto S, Masuda R, Sato Y, Sado T, Araki H et al. 2017. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7:40368
    [Google Scholar]
  132. Yamamoto S, Minami K, Fukaya K, Takahashi K, Sawada H et al. 2016. Environmental DNA as a ‘snapshot’ of fish distribution: a case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan. PLOS ONE 11:e0149786
    [Google Scholar]
  133. Yamanoue Y, Miya M, Matsuura K, Miyazawa S, Tsukamoto N et al. 2009. Explosive speciation of Takifugu: another use of fugu as a model system for evolutionary biology. Mol. Biol. Evol. 26:623–29
    [Google Scholar]
  134. Zabel RW, Harvey CJ, Katz SL, Good TP, Levin PS. 2003. Ecologically sustainable yield. Am. Sci. 91:150–57
    [Google Scholar]
  135. Zhang H, Yoshizawa S, Iwasaki W, Xian W. 2019. Seasonal fish assemblage structure using environmental DNA in the Yangtze Estuary and its adjacent waters. Front. Mar. Sci. 6:671
    [Google Scholar]
  136. Zhang S, Zhao J, Yao M. 2020. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 11:1609–25
    [Google Scholar]
  137. Zou K, Chen J, Ruan H, Li Z, Guo W et al. 2020. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702:134704
    [Google Scholar]
/content/journals/10.1146/annurev-marine-041421-082251
Loading
/content/journals/10.1146/annurev-marine-041421-082251
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error