1932

Abstract

Organic matter (OM) plays a significant role in the formation of oxygen minimum zones (OMZs) and associated biogeochemical cycling. OM supply processes to the OMZ include physical transport, particle formation, and sinking as well as active transport by migrating zooplankton and nekton. In addition to the availability of oxygen and other electron acceptors, the remineralization rate of OM is controlled by its biochemical quality. Enhanced microbial respiration of OM can induce anoxic microzones in an otherwise oxygenated water column. Reduced OM degradation under low-oxygen conditions, on the other hand, may increase the CO storage time in the ocean. Understanding the interdependencies between OM and oxygen cycling is of high relevance for an ocean facing deoxygenation as a consequence of global warming. In this review, we describe OM fluxes into and cycling within two large OMZs associated with eastern boundary upwelling systems that differ greatly in the extent of oxygen loss: the highly oxygen-depleted OMZ in the tropical South Pacific and the moderately hypoxic OMZ in the tropical North Atlantic. We summarize new findings from a large German collaborative research project, Collaborative Research Center 754 (SFB 754), and identify knowledge gaps and future research priorities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-041921-090849
2022-01-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-041921-090849.html?itemId=/content/journals/10.1146/annurev-marine-041921-090849&mimeType=html&fmt=ahah

Literature Cited

  1. Alldredge AL. 1998. The carbon, nitrogen and mass content of marine snow as a function of aggregate size. Deep-Sea Res. I 45:529–41
    [Google Scholar]
  2. Alldredge AL, Cohen Y. 1987. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235:689–91
    [Google Scholar]
  3. Amon RM, Benner R. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41:41–51
    [Google Scholar]
  4. Amon RM, Fitznar HP, Benner R. 2001. Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr. 46:287–97
    [Google Scholar]
  5. Antezana T. 2010. Euphausia mucronata: a keystone herbivore and prey of the Humboldt Current System. Deep-Sea Res. II 57:652–62
    [Google Scholar]
  6. Arístegui J, Duarte CM, Agustí S, Doval MD, Álvarez-Salgado XA, Hansell DA. 2002. Dissolved organic carbon support of respiration in the dark ocean. Science 298: 1967.
    [Google Scholar]
  7. Babbin AR, Keil RG, Devol AH, Ward BB. 2014. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science 344:406–8
    [Google Scholar]
  8. Baltar F, Arístegui J, Sintes E, Van Aken HM, Gasol JM, Herndl GJ. 2009. Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso-and bathypelagic waters of the (sub)tropical Atlantic. Environ. Microbiol. 11:1998–2014
    [Google Scholar]
  9. Banyte D, Tanhua T, Visbeck M, Wallace DWR, Karstensen J et al. 2012. Diapycnal diffusivity at the upper boundary of the tropical North Atlantic oxygen minimum zone. J. Geophys. Res. Oceans 117:C09016
    [Google Scholar]
  10. Bastviken D, Olsson M, Tranvik L. 2003. Simultaneous measurements of organic carbon mineralization and bacterial production in oxic and anoxic lake sediments. Microb. Ecol. 46:73–82
    [Google Scholar]
  11. Benner R 2002. Chemical composition and reactivity. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 59–90 San Diego, CA: Academic
    [Google Scholar]
  12. Bianchi D, Galbraith ED, Carozza DA, Mislan KAS, Stock CA. 2013. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6:545–48
    [Google Scholar]
  13. Bianchi D, Weber TS, Kiko R, Deutsch C 2018. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11:263–68
    [Google Scholar]
  14. Bochdansky AB, Van Aken HM, Herndl GJ. 2010. Role of macroscopic particles in deep-sea oxygen consumption. PNAS 107:8287–91
    [Google Scholar]
  15. Brandt P, Bange HW, Banyte D, Dengler M, Didwischus SH et al. 2015. On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic. Biogeosciences 12:489–512
    [Google Scholar]
  16. Brandt P, Greatbatch RJ, Claus M, Didwischus SH, Hormann V et al. 2012. Ventilation of the equatorial Atlantic by the equatorial deep jets. J. Geophys. Res. Oceans 117:C12015
    [Google Scholar]
  17. Brandt P, Hahn J, Schmidtko S, Tuchen FP, Kopte R et al. 2021. Atlantic equatorial undercurrent intensification counteracts warming-induced deoxygenation. Nat. Geosci. 14:476–501
    [Google Scholar]
  18. Bretagnon M, Paulmier A, Garçon V, Dewitte B, Illig S et al. 2018. Modulation of the vertical particle transfer efficiency in the oxygen minimum zone off Peru. Biogeosciences 15:5093–111
    [Google Scholar]
  19. Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD et al. 2007. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J. Mar. Res. 65:345–416
    [Google Scholar]
  20. Cabré A, Marinov I, Bernardello R, Bianchi D. 2015. Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends. Biogeosciences 12:5429–54
    [Google Scholar]
  21. Carlson CA, Hansell DA 2015. DOM sources, sinks, reactivity, and budgets. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 65–126 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  22. Chavez FP, Messié M. 2009. A comparison of Eastern Boundary Upwelling Ecosystems. Prog. Oceanogr. 83:80–96
    [Google Scholar]
  23. Chelton DB, Schlax MG, Samelson RM. 2011. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91:167–216
    [Google Scholar]
  24. Childress JJ, Seibel BA. 1998. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol. 201:1223–32
    [Google Scholar]
  25. Christiansen S, Hoving HJ, Schütte F, Hauss H, Karstensen J et al. 2018. Particulate matter flux interception in oceanic mesoscale eddies by the polychaete Poeobius sp. Limnol. Oceanogr. 63:2093–109
    [Google Scholar]
  26. Codispoti LA, Yoshinari T, Devol AH 2005. Suboxic respiration in the oceanic water column. See del Giorgio & Williams 2005 225–47
  27. Cuevas LA, Morales CE. 2006. Nanoheterotroph grazing on bacteria and cyanobacteria in oxic and suboxic waters in coastal upwelling areas off northern Chile. J. Plankton Res. 28:385–97
    [Google Scholar]
  28. Davis J, Kaiser K, Benner R 2009. Amino acid and amino sugar yields and compositions as indicators of dissolved organic matter diagenesis. Org. Geochem. 40:343–52
    [Google Scholar]
  29. del Giorgio PA, Williams PJLB 2005. Respiration in Aquatic Ecosystems Oxford, UK: Oxford Univ. Press
  30. Deutsch C, Brix H, Ito T, Frenzel H, Thompson L. 2011. Climate-forced variability of ocean hypoxia. Science 333:336–39
    [Google Scholar]
  31. Devol AH, Hartnett HE. 2001. Role of the oxygen-deficient zone in transfer of organic carbon to the deep ocean. Limnol. Oceanogr. 46:1684–90
    [Google Scholar]
  32. Doval M, Hansell DA. 2000. Organic carbon and apparent oxygen utilization in the western South Pacific and the central Indian Oceans. Mar. Chem. 68:249–64
    [Google Scholar]
  33. Duteil O, Schwarzkopf FU, Böning CW, Oschlies A. 2014. Major role of the equatorial current system in setting oxygen levels in the eastern tropical Atlantic Ocean: a high-resolution model study. Geophys. Res. Lett. 41:2033–40
    [Google Scholar]
  34. Ekau W, Auel H, Pörtner HO, Gilbert D. 2010. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7:1669–99
    [Google Scholar]
  35. Engel A, Wagner H, Le Moigne FA, Wilson ST 2017. Particle export fluxes to the oxygen minimum zone of the eastern tropical North Atlantic. Biogeosciences 14:1825–38
    [Google Scholar]
  36. Fenchel T. 2014. Protozoa and oxygen. Acta Protozool 53:3–12
    [Google Scholar]
  37. Fenchel T, Finlay BJ. 1995. Ecology and Evolution in Anoxic Worlds Oxford, UK: Oxford Univ. Press
  38. Fiedler B, Grundle DS, Schütte F, Karstensen J, Löscher CR et al. 2016. Oxygen utilization and downward carbon flux in an oxygen-depleted eddy in the eastern tropical North Atlantic. Biogeosciences 13:5633–47
    [Google Scholar]
  39. Fischer G, Neuer S, Davenport R, Helmke P, Schlitzer R et al. 2010. The northwest African margin. Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis K-K Liu, L Atkinson, R Quiñones, L Talaue-McManus 78–103 Berlin: Springer
    [Google Scholar]
  40. Fischer T, Banyte D, Brandt P, Dengler M, Krahmann G et al. 2013. Diapycnal oxygen supply to the tropical North Atlantic oxygen minimum zone. Biogeosciences 10:5079–93
    [Google Scholar]
  41. Fox-Kemper B, Ferrari R, Hallberg R. 2008. Parameterization of mixed layer eddies. Part I: theory and diagnosis. J. Phys. Oceanogr. 38:1145–65
    [Google Scholar]
  42. Frenger I, Bianchi D, Stührenberg C, Oschlies A, Dunne J et al. 2018. Biogeochemical role of subsurface coherent eddies in the ocean: tracer cannonballs, hypoxic storms, and microbial stewpots?. Glob. Biogeochem. Cycles 32:226–49
    [Google Scholar]
  43. Fuhrman J. 1987. Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach. Mar. Ecol. Prog. Ser 37:45–52
    [Google Scholar]
  44. Garcia-Robledo E, Padilla CC, Aldunate M, Stewart FJ, Ulloa O et al. 2017. Cryptic oxygen cycling in anoxic marine zones. PNAS 114:8319–24
    [Google Scholar]
  45. González HE, Hebbeln D, Iriarte JL, Marchant M. 2004. Downward fluxes of faecal material and microplankton at 2300 m depth in the oceanic area off Coquimbo (30°S), Chile, during 1993–1995. Deep-Sea Res. II 51:2457–74
    [Google Scholar]
  46. Gonzalez RR, Quiñones RA. 2002. Ldh activity in Euphausia mucronata and Calanus chilensis: implications for vertical migration behaviour. J. Plankton Res. 24:1349–56
    [Google Scholar]
  47. Grodsky SA, Carton JA, McClain CR. 2008. Variability of upwelling and chlorophyll in the equatorial Atlantic. Geophys. Res. Lett. 35:L03610
    [Google Scholar]
  48. Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Münnich M et al. 2011. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4:787–92
    [Google Scholar]
  49. Hahn J, Brandt P, Greatbatch RJ, Krahmann G, Körtzinger A 2014. Oxygen variance and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone. Clim. Dyn. 43:2999–3024
    [Google Scholar]
  50. Hahn J, Brandt P, Schmidtko S, Krahmann G 2017. Decadal oxygen change in the eastern tropical North Atlantic. Ocean Sci 13:551–76
    [Google Scholar]
  51. Hansell DA. 2013. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5:421–45
    [Google Scholar]
  52. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R. 2009. Dissolved organic matter in the ocean: A controversy stimulates new insights. Oceanography 22:4202–11
    [Google Scholar]
  53. Hauschildt J, Thomsen S, Echevin V, Oschlies A, José YS et al. 2021. The fate of upwelled nitrate off Peru shaped by submesoscale filaments and fronts. Biogeosciences 18:3605–29
    [Google Scholar]
  54. Hauss H, Christiansen S, Schütte F, Kiko R, Edvam Lima M et al. 2016. Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies. Biogeosciences 13:1977–89
    [Google Scholar]
  55. Hebbeln D, Marchant M, Wefer G. 2000. Seasonal variations of the particle flux in the Peru-Chile current at 30°S under normal and El Niño conditions. Deep-Sea Res. II 47:2101–28
    [Google Scholar]
  56. Hernández-León S, Olivar MP, Fernández de Puelles ML, Bode A, Castellón A et al. 2019. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front. Mar. Sci. 6:535
    [Google Scholar]
  57. Hirst AG, Kiørboe T. 2002. Mortality of marine planktonic copepods: global rates and patterns. Mar. Ecol. Prog. Ser. 230:195–209
    [Google Scholar]
  58. Ho TY, Scranton MI, Taylor GT, Varela R, Thunell RC, Muller-Karger F. 2002. Acetate cycling in the water column of the Cariaco Basin: seasonal and vertical variability and implication for carbon cycling. Limnol. Oceanogr. 47:1119–28
    [Google Scholar]
  59. Honjo S, Manganini SJ, Krishfield RA, Francois R. 2008. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76:217–85
    [Google Scholar]
  60. Hoppe HG, Arnosti C, Herndl G 2002. Ecological Significance of Bacterial Enzymes in the Marine Environment New York: Dekker
  61. Hoppe HG, Gocke K, Kuparinen J 1990. Effect of H2S on heterotrophic substrate uptake, extracellular enzyme activity and growth of brackish water bacteria. Mar. Ecol. Prog. Ser. 64:157–67
    [Google Scholar]
  62. Hoving HJT, Neitzel P, Hauss H, Christiansen S, Kiko R et al. 2020. In situ observations show vertical community structure of pelagic fauna in the eastern tropical North Atlantic off Cape Verde. Sci. Rep. 10:21798
    [Google Scholar]
  63. Ikeda T. 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar. Biol. 85:1–11
    [Google Scholar]
  64. Inthorn M, Mohrholz V, Zabel M. 2006. Nepheloid layer distribution in the Benguela upwelling area offshore Namibia. Deep-Sea Res. I 53:1423–38
    [Google Scholar]
  65. Iversen MH, Nowald N, Ploug H, Jackson GA, Fischer G 2010. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: degradation processes and ballasting effects. Deep-Sea Res. I 57:771–84
    [Google Scholar]
  66. Iversen MH, Ploug H. 2013. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes. Biogeosciences 10:4073–85
    [Google Scholar]
  67. Jahnke R 2010. Global synthesis. Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis KK Liu, L Atkinson, R Quiñones, L Talaue-McManus 597–615 Berlin: Springer
    [Google Scholar]
  68. Jenkins WJ. 1982. Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems. Nature 300:246–48
    [Google Scholar]
  69. Kalvelage T, Lavik G, Jensen MM, Revsbech NP, Löscher C et al. 2015. Aerobic microbial respiration in oceanic oxygen minimum zones. PLOS ONE 10:e0133526
    [Google Scholar]
  70. Kalvelage T, Lavik G, Lam P, Contreras S, Arteaga L et al. 2013. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat. Geosci. 6:228–34
    [Google Scholar]
  71. Karstensen J, Fiedler B, Schütte F, Brandt P, Körtzinger A et al. 2015. Open ocean dead zones in the tropical North Atlantic Ocean. Biogeosciences 12:2597–605
    [Google Scholar]
  72. Karstensen J, Stramma L, Visbeck M. 2008. Oxygen minimum zones in the eastern tropical Atlantic and Pacific Oceans. Prog. Oceanogr. 77:331–50
    [Google Scholar]
  73. Karthäuser C, Ahmerkamp S, Marchant HK, Bristow LA, Hauss H et al. 2021. Small sinking particles control anammox rates in the Peruvian oxygen minimum zone. Nat. Commun. 12:3235
    [Google Scholar]
  74. Keil RG, Neibauer JA, Biladeau C, van der Elst K, Devol AH. 2016. A multiproxy approach to understanding the “enhanced” flux of organic matter through the oxygen-deficient waters of the Arabian Sea. Biogeosciences 13:2077–92
    [Google Scholar]
  75. Kiko R, Brandt P, Christiansen S, Faustmann J, Kriest I et al. 2020. Zooplankton-mediated fluxes in the eastern tropical North Atlantic. Front. Mar. Sci. 7:358
    [Google Scholar]
  76. Kiko R, Hauss H. 2019. On the estimation of zooplankton-mediated active fluxes in oxygen minimum zone regions. Front. Mar. Sci. 6:741
    [Google Scholar]
  77. Kiko R, Hauss H, Buchholz F, Melzner F. 2016. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions. Biogeosciences 13:2241–55
    [Google Scholar]
  78. Kiko R, Hauss H, Dengler M, Sommer S, Melzner F 2015. The squat lobster Pleuroncodes monodon tolerates anoxic “dead zone” conditions off Peru. Mar. Biol. 162:1913–21
    [Google Scholar]
  79. Kirchman DL. 2012. Processes in anoxic environments. Processes in Microbial Ecology92–112 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  80. Klawonn I, Bonaglia S, Brüchert V, Ploug H. 2015. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. ISME J 9:1456–66
    [Google Scholar]
  81. Klenz T, Dengler M, Brandt P. 2018. Seasonal variability of the Mauritania Current and hydrography at 18°N. J. Geophys. Res. Oceans 123:8122–37
    [Google Scholar]
  82. Kunze E, MacKay C, McPhee-Shaw EE, Morrice K, Girton JB, Terker SR. 2012. Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr. 42:910–27
    [Google Scholar]
  83. Kwiatkowski L, Torres O, Bopp L, Aumont O, Chamberlain M et al. 2020. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17:3439–70
    [Google Scholar]
  84. Lam P, Kuypers MM. 2011. Microbial nitrogen cycling processes in oxygen minimum zones. Annu. Rev. Mar. Sci. 3:317–45
    [Google Scholar]
  85. Lam VWY, Cheung WWL, Swartz W, Sumaila UR. 2012. Climate change impacts on fisheries in West Africa: implications for economic, food and nutritional security. Afr. J. Mar. Sci. 34:103–17
    [Google Scholar]
  86. Le Moigne FA, Cisternas-Novoa C, Piontek J, Maßmig M, Engel A 2017. On the effect of low oxygen concentrations on bacterial degradation of sinking particles. Sci. Rep. 7:16722
    [Google Scholar]
  87. Lee C. 1992. Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim. Cosmochim. Acta 56:3323–35
    [Google Scholar]
  88. Liu S, Wawrik B, Liu Z. 2017. Different bacterial communities involved in peptide decomposition between normoxic and hypoxic coastal waters. Front. Microbiol. 8:353
    [Google Scholar]
  89. Loginova AN, Dale AW, Le Moigne FA, Thomsen S, Sommer S et al. 2020. Sediment release of dissolved organic matter to the oxygen minimum zone off Peru. Biogeosciences 17:4663–79
    [Google Scholar]
  90. Loginova AN, Thomsen S, Dengler M, Lüdke J, Engel A 2019. Diapycnal dissolved organic matter supply into the upper Peruvian oxycline. Biogeosciences 16:2033–47
    [Google Scholar]
  91. Loginova AN, Thomsen S, Engel A. 2016. Chromophoric and fluorescent dissolved organic matter in and above the oxygen minimum zone off Peru. J. Geophys. Res. Oceans 121:7973–90
    [Google Scholar]
  92. Mahadevan A, Pascual A, Rudnick DL, Ruiz S, Tintoré J, D'Asaro E. 2020. Coherent pathways for vertical transport from the surface ocean to interior. Bull. Am. Meteorol. Soc. 101:E1996–2004
    [Google Scholar]
  93. Marsay CM, Sanders RJ, Henson SA, Pabortsava K, Achterberg EP, Lampitt RS 2015. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS 112:1089–94
    [Google Scholar]
  94. Martin JH, Knauer GA, Karl DM, Broenkow WW 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. A 34:267–85
    [Google Scholar]
  95. Maßmig M, Engel A. 2021. Dissolved organic matter in the upwelling system off Peru: imprints of bacterial activity and water mass characteristics. J. Geophys. Res. Biogeosci. 126:e2020JG006048
    [Google Scholar]
  96. Maßmig M, Lüdke J, Krahmann G, Engel A 2020. Bacterial degradation activity in the eastern tropical South Pacific oxygen minimum zone. Biogeosciences 17:215–30
    [Google Scholar]
  97. Maßmig M, Piontek J, Le Moigne FA, Cisternas-Novoa C, Engel A 2019. Potential role of oxygen and inorganic nutrients on microbial carbon turnover in the Baltic Sea. Aquat. Microb. Ecol. 83:95–108
    [Google Scholar]
  98. McPhee-Shaw E 2006. Boundary–interior exchange: reviewing the idea that internal-wave mixing enhances lateral dispersal near continental margins. Deep-Sea Res. II 53:42–59
    [Google Scholar]
  99. McPhee-Shaw EE, Kunze E 2002. Boundary layer intrusions from a sloping bottom: a mechanism for generating intermediate nepheloid layers. J. Geophys. Res. 107:3-116
    [Google Scholar]
  100. Medina LE, Taylor CD, Pachiadaki MG, Henrquez-Castillo C, Ulloa O, Edgcomb VP 2017. A review of protist grazing below the photic zone emphasizing studies of oxygen-depleted water columns and recent applications of in situ approaches. Front. Mar. Sci. 4:105
    [Google Scholar]
  101. Messié M, Chavez FP. 2015. Seasonal regulation of primary production in eastern boundary upwelling systems. Prog. Oceanogr. 134:1–18
    [Google Scholar]
  102. Moradi N, Liu B, Iversen M, Kuypers MM, Ploug H, Khalili A. 2018. A new mathematical model to explore microbial processes and their constraints in phytoplankton colonies and sinking marine aggregates. Sci. Adv. 4:eaat1991
    [Google Scholar]
  103. Morris RL, Schmidt TM. 2013. Shallow breathing: bacterial life at low O2. Nat. Rev. Microbiol. 11:205–12
    [Google Scholar]
  104. Nagai T, Gruber N, Frenzel H, Lachkar Z, McWilliams JC, Plattner GK. 2015. Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California Current System. J. Geophys. Res. Oceans 120:5318–41
    [Google Scholar]
  105. Nguyen RT, Harvey HR 1997. Protein and amino acid cycling during phytoplankton decomposition in oxic and anoxic waters. Org. Geochem. 27:115–28
    [Google Scholar]
  106. Omand MM, D'Asaro EA, Lee CM, Perry MJ, Briggs N et al. 2015. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348:222–25
    [Google Scholar]
  107. Oschlies A, Achterberg E, Ayon P, Bange H, Brietburg D et al. 2018a. Kiel declaration on ocean deoxygenation https://www.ocean-oxygen.org/declaration
  108. Oschlies A, Brandt P, Stramma L, Schmidtko S. 2018b. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11:467–73
    [Google Scholar]
  109. Pantoja S, Rossel P, Castro R, Cuevas LA, Daneri G, Córdova C. 2009. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters. Deep-Sea Res. II 56:1055–62
    [Google Scholar]
  110. Pantoja S, Sepúlveda J, González HE. 2004. Decomposition of sinking proteinaceous material during fall in the oxygen minimum zone off northern Chile. Deep-Sea Res. I 51:55–70
    [Google Scholar]
  111. Pavia FJ, Anderson RF, Lam PJ, Cael BB, Vivancos SM et al. 2019. Shallow particulate organic carbon regeneration in the South Pacific Ocean. PNAS 116:9753–58
    [Google Scholar]
  112. Ploug H. 2001. Small-scale oxygen fluxes and remineralization in sinking aggregates. Limnol. Oceanogr. 46:1624–31
    [Google Scholar]
  113. Ploug H, Kühl M, Buchholz-Cleven B, Jørgensen BB. 1997. Anoxic aggregates—an ephemeral phenomenon in the pelagic environment?. Aquat. Microb. Ecol. 13:285–94
    [Google Scholar]
  114. Rasse R, Dall'Olmo G. 2019. Do oceanic hypoxic regions act as barriers for sinking particles? A case study in the eastern tropical North Atlantic. Glob. Biogeochem. Cycles 33:1611–30
    [Google Scholar]
  115. Revsbech NP, Larsen LH, Gundersen J, Dalsgaard T, Ulloa O, Thamdrup B 2009. Determination of ultra-low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnol. Oceanogr. Methods 7:371–81
    [Google Scholar]
  116. Rixen T, Cowie G, Gaye B, Goes J, do Rosário Gomes H et al. 2020. Reviews and syntheses: present, past, and future of the oxygen minimum zone in the northern Indian Ocean. Biogeosciences 17:6051–80
    [Google Scholar]
  117. Schafstall J, Dengler M, Brandt P, Bange H. 2010. Tidal-induced mixing and diapycnal nutrient fluxes in the Mauritanian upwelling region. J. Geophys. Res. Oceans 115:C10014
    [Google Scholar]
  118. Schmidtko S, Stramma L, Visbeck M. 2017. Decline in global oceanic oxygen content during the past five decades. Nature 542:335–39
    [Google Scholar]
  119. Schnetzer A, Steinberg DK 2002. Active transport of particulate organic carbon and nitrogen by vertically migrating zooplankton in the Sargasso Sea. Mar. Ecol. Prog. Ser. 234:71–84
    [Google Scholar]
  120. Schütte F, Brandt P, Karstensen J. 2016a. Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean. Ocean Sci 12:663–85
    [Google Scholar]
  121. Schütte F, Karstensen J, Krahmann G, Hauss H, Fiedler B et al. 2016b. Characterization of “dead-zone” eddies in the eastern tropical North Atlantic. Biogeosciences 13:5865–81
    [Google Scholar]
  122. Seibel BA. 2011. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J. Exp. Biol. 214:326–36
    [Google Scholar]
  123. Seibel BA, Schneider JL, Kaartvedt S, Wishner KF, Daly KL. 2016. Hypoxia tolerance and metabolic suppression in oxygen minimum zone euphausiids: implications for ocean deoxygenation and biogeochemical cycles. Integr. Comp. Biol. 56:510–23
    [Google Scholar]
  124. Shanks AL, Reeder ML. 1993. Reducing microzones and sulfide production in marine snow. Mar. Ecol. Prog. Ser. 96:43–47
    [Google Scholar]
  125. Siegenthaler U, Sarmiento JL. 1993. Atmospheric carbon dioxide and the ocean. Nature 365:119–25
    [Google Scholar]
  126. Simon M, Grossart HP, Schweitzer B, Ploug H. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28:175–211
    [Google Scholar]
  127. Sipler RE, Bronk DA 2015. Dynamics of dissolved organic nitrogen. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 127–32 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  128. Spall MA. 1995. Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res. Oceans 100:2543–57
    [Google Scholar]
  129. Srain BM, Sobarzo M, Daneri G, González HE, Testa G et al. 2020. Fermentation and anaerobic oxidation of organic carbon in the oxygen minimum zone of the upwelling ecosystem off Concepción, in central Chile.. Front. Mar. Sci 7:533
    [Google Scholar]
  130. Stief P, Kamp A, Thamdrup B, Glud RN. 2016. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels. Front. Microbiol. 7:98
    [Google Scholar]
  131. Stramma L, Johnson GC, Sprintall J, Mohrholz V. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–58
    [Google Scholar]
  132. Stramma L, Schmidtko S, Bograd SJ, Ono T, Ross T et al. 2020. Trends and decadal oscillations of oxygen and nutrients at 50 to 300 m depth in the equatorial and North Pacific. Biogeosciences 17:813–31
    [Google Scholar]
  133. Strohm TO, Griffin B, Zumft WG, Schink B. 2007. Growth yields in bacterial denitrification and nitrate ammonification. Appl. Environ. Microbiol. 73:1420–24
    [Google Scholar]
  134. Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T et al. 2011. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–300
    [Google Scholar]
  135. Taylor GT, Thunell R, Varela R, Benitez-Nelson C, Scranton MI. 2009. Hydrolytic ectoenzyme activity associated with suspended and sinking organic particles within the anoxic Cariaco Basin. Deep-Sea Res. I 56:1266–83
    [Google Scholar]
  136. Thomsen S, Kanzow T, Colas F, Echevin V, Krahmann G, Engel A 2016a. Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?. Geophys. Res. Lett. 43:8133–42
    [Google Scholar]
  137. Thomsen S, Kanzow T, Krahmann G, Greatbatch RJ, Dengler M, Lavik G. 2016b. The formation of a subsurface anticyclonic eddy in the Peru-Chile undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions. J. Geophys. Res. Oceans 121:476–501
    [Google Scholar]
  138. Thomsen S, Karstensen J, Kiko R, Krahmann G, Dengler M, Engel A. 2019. Remote and local drivers of oxygen and nitrate variability in the shallow oxygen minimum zone off Mauritania in June 2014. Biogeosciences 16:979–98
    [Google Scholar]
  139. Thorpe SA, White M. 1988. A deep intermediate nepheloid layer. Deep-Sea Res. I 35:1665–71
    [Google Scholar]
  140. Tiano L, Garcia-Robledo E, Revsbech NP. 2014. A new highly sensitive method to assess respiration rates and kinetics of natural planktonic communities by use of the switchable trace oxygen sensor and reduced oxygen concentrations. PLOS ONE 9:e105399
    [Google Scholar]
  141. Tutasi P, Escribano R. 2020. Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences 17:455–73
    [Google Scholar]
  142. Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ. 2012. Microbial oceanography of anoxic oxygen minimum zones. PNAS 109:15996–6003
    [Google Scholar]
  143. Van der Jagt H, Friese C, Stuut JBW, Fischer G, Iversen MH. 2018. The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: aggregation, settling, and scavenging potential of marine snow. Limnol. Oceanogr. 63:1386–94
    [Google Scholar]
  144. Van Mooy BA, Keil RG, Devol AH 2002. Impact of suboxia on sinking particulate organic carbon: enhanced carbon flux and preferential degradation of amino acids via denitrification. Geochim. Cosmochim. Acta 66:457–65
    [Google Scholar]
  145. Ward BB, Tuit CB, Jayakumar A, Rich JJ, Moffett J, Naqvi SWA. 2008. Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean. Deep-Sea Res. I 55:1672–83
    [Google Scholar]
  146. Waugh DW, Haine TWN, Hall TM. 2004. Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean. Deep-Sea Res. Part I 51:1475–91
    [Google Scholar]
  147. Weber T, Bianchi D 2020. Efficient particle transfer to depth in oxygen minimum zones of the Pacific and Indian Oceans. Front. Earth Sci. 8:376
    [Google Scholar]
  148. Whitmire AL, Letelier RM, Villagrán V, Ulloa O. 2009. Autonomous observations of in vivo fluorescence and particle backscattering in an oceanic oxygen minimum zone. Opt. Express 17:21992–2004
    [Google Scholar]
  149. Wishner KF, Outram DM, Seibel BA, Daly KL, Williams RL. 2013. Zooplankton in the eastern tropical north Pacific: boundary effects of oxygen minimum zone expansion. Deep-Sea Res. I 79:122–40
    [Google Scholar]
  150. Wishner KF, Seibel BA, Roman C, Deutsch C, Outram D et al. 2018. Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci. Adv. 4:eaau5180
    [Google Scholar]
  151. Wright JJ, Konwar KM, Hallam SJ. 2012. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10:381–94
    [Google Scholar]
  152. Wyrtki K. 1962. The oxygen minima in relation to ocean circulation. Deep-Sea Res 9:11–23
    [Google Scholar]
  153. Xie RC, Le Moigne FAC, Rapp I, Lüdke J, Gasser B et al. 2020. Effects of 238U variability and physical transport on water column 234Th downward fluxes in the coastal upwelling system off Peru. Biogeosciences 17:4919–36
    [Google Scholar]
  154. Zakem EJ, Mahadevan A, Lauderdale JM, Follows MJ. 2020. Stable aerobic and anaerobic coexistence in anoxic marine zones. ISME J 14:288–301
    [Google Scholar]
/content/journals/10.1146/annurev-marine-041921-090849
Loading
/content/journals/10.1146/annurev-marine-041921-090849
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error