1932

Abstract

Radionuclides can provide key information on the temporal dimension of environmental processes, given their well-known rates of radioactive decay and production. Naturally occurring radionuclides, such as 234Th and 210Po, have been used as powerful particle tracers in the marine environment to study particle cycling and vertical export. Since their application to quantify the magnitude of particulate organic carbon (POC) export in the 1990s, 234Th and, to a lesser extent, 210Po have been widely used to characterize the magnitude of the biological carbon pump (BCP). Combining both radionuclides, with their different half-lives, biogeochemical behaviors, and input sources to the ocean, can help to better constrain POC export and capture BCP dynamics that would be missed by a single tracer. Here, we review the studies that have simultaneously used 234Th and 210Po as tracers of POC export, emphasizing what can be learned from their joint application, and provide recommendations and future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-041923-013807
2024-01-17
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-041923-013807.html?itemId=/content/journals/10.1146/annurev-marine-041923-013807&mimeType=html&fmt=ahah

Literature Cited

  1. Anand SS, Rengarajan R, Shenoy D, Gauns M, Naqvi SWA. 2018. POC export fluxes in the Arabian Sea and the Bay of Bengal: a simultaneous 234Th/238U and 210Po/210Pb study. Mar. Chem. 198:7087
    [Google Scholar]
  2. Anderson R, Mawji E, Cutter G, Measures C, Jeandel C. 2014. GEOTRACES: changing the way we explore ocean chemistry. Oceanography 27:15061
    [Google Scholar]
  3. Bacon MP, Anderson RF. 1982. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. J. Geophys. Res. 87:C3204556
    [Google Scholar]
  4. Bacon MP, Spencer DW, Brewer PG. 1976. 210Pb/226Ra and 210Po/210Pb disequilibria in seawater and suspended particulate matter. Earth Planet. Sci. Lett. 32:227796
    [Google Scholar]
  5. Baker CA, Estapa ML, Iversen M, Lampitt R, Buesseler K. 2020. Are all sediment traps created equal? An intercomparison study of carbon export methodologies at the PAP-SO site. Prog. Oceanogr. 184:102317
    [Google Scholar]
  6. Bam W, Maiti K, Baskaran M, Krupp K, Lam PJ, Xiang Y. 2020. Variability in 210Pb and 210Po partition coefficients (Kd) along the US GEOTRACES Arctic transect. Mar. Chem. 219:103749
    [Google Scholar]
  7. Baskaran M. 2011. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. J. Environ. Radioact. 102:550013
    [Google Scholar]
  8. Baskaran M, Church T, Hong G, Kumar A, Qiang M et al. 2013. Effects of flow rates and composition of the filter, and decay/ingrowth correction factors involved with the determination of in situ particulate 210Po and 210Pb in seawater. Limnol. Oceanogr. Methods 11:312638
    [Google Scholar]
  9. Benitez-Nelson C, Buesseler KO, Rutgers van der Loeff M, Andrews J, Ball L et al. 2001. Testing a new small-volume technique for determining 234Th in seawater. J. Radioanal. Nucl. Chem. 248:379599
    [Google Scholar]
  10. Bhat SG, Krishnaswamy S, Lal D, Rama MWS. 1969. 234Th/238U ratios in the ocean. Earth Planet. Sci. Lett. 5:48391
    [Google Scholar]
  11. Bishop JKB, Lam PJ, Wood TJ. 2012. Getting good particles: accurate sampling of particles by large volume in-situ filtration. Limnol. Oceanogr. Methods 10:681710
    [Google Scholar]
  12. Black EE, Buesseler KO, Pike SM, Lam PJ. 2018. 234Th as a tracer of particulate export and remineralization in the southeastern tropical Pacific. Mar. Chem. 201:3550
    [Google Scholar]
  13. Black EE, Lam PJ, Lee J-M, Buesseler KO. 2019. Insights from the 238U-234Th method into the coupling of biological export and the cycling of cadmium, cobalt, and manganese in the southeast Pacific Ocean. Glob. Biogeochem. Cycles 33:11536
    [Google Scholar]
  14. Brew HS, Moran SB, Lomas MW, Burd AB. 2009. Plankton community composition, organic carbon and thorium-234 particle size distributions, and particle export in the Sargasso Sea. J. Mar. Res. 67:684568
    [Google Scholar]
  15. Buesseler KO, Andrews JE, Pike SM, Charette MA, Goldson LE et al. 2005. Particle export during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 50:131127
    [Google Scholar]
  16. Buesseler KO, Bacon M, Cochran JK, Livingston H. 1992a. Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from 234Th:238U disequilibria. Deep-Sea Res. A 39:7–8111537
    [Google Scholar]
  17. Buesseler KO, Benitez-Nelson CR, Moran SB, Burd A, Charette M et al. 2006. An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Mar. Chem. 100:3–421333
    [Google Scholar]
  18. Buesseler KO, Benitez-Nelson CR, Roca-Martí M, Wyatt AM, Resplandy L et al. 2020a. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport Processes in the Ocean from RemoTe Sensing field campaign. Elem. Sci. Anthr. 8:130
    [Google Scholar]
  19. Buesseler KO, Benitez-Nelson CR, Rutgers van der Loeff M, Andrews J, Ball L et al. 2001. An intercomparison of small-and large-volume techniques for thorium-234 in seawater. Mar. Chem. 74:11528
    [Google Scholar]
  20. Buesseler KO, Boyd PW, Black EE, Siegel DA. 2020b. Metrics that matter for assessing the ocean biological carbon pump. PNAS 117:18967987
    [Google Scholar]
  21. Buesseler KO, Cochran JK, Bacon MP, Livingston HD, Casso SA et al. 1992b. Determination of thorium isotopes in seawater by nondestructive and radiochemical procedures. Deep-Sea Res. A 39:7–8110314
    [Google Scholar]
  22. Buesseler KO, Lamborg C, Cai P, Escoube R, Johnson R et al. 2008. Particle fluxes associated with mesoscale eddies in the Sargasso Sea. Deep-Sea Res. II 55:10–13142644
    [Google Scholar]
  23. Ceballos-Romero E, Buesseler KO, Villa-Alfageme M. 2022. Revisiting five decades of 234Th data: a comprehensive global oceanic compilation. Earth Syst. Sci. Data 14:6263979
    [Google Scholar]
  24. Ceballos-Romero E, De Soto F, Le Moigne FAC, García-Tenorio R, Villa-Alfageme M 2018. 234Th-derived particle fluxes and seasonal variability: When is the SS assumption reliable? Insights from a novel approach for carbon flux simulation. Geophys. Res. Lett. 45:241341426
    [Google Scholar]
  25. Ceballos-Romero E, Le Moigne FAC, Henson S, Marsay CM, Sanders RJ et al. 2016. Influence of bloom dynamics on Particle Export Efficiency in the North Atlantic: a comparative study of radioanalytical techniques and sediment traps. Mar. Chem. 186:198210
    [Google Scholar]
  26. Cent. Mar. Environ. Radioact 2023. Methods cookbook. Center for Marine and Environmental Radioactivity https://cmer.whoi.edu/cookbook
    [Google Scholar]
  27. Charette MA, Moran SB. 1999. Rates of particle scavenging and particulate organic carbon export estimated using 234Th as a tracer in the subtropical and equatorial Atlantic Ocean. Deep-Sea Res. II 46:5885906
    [Google Scholar]
  28. Chase Z, Anderson RF, Fleisher MQ, Kubik PW. 2002. The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean. Earth Planet. Sci. Lett. 204:121529
    [Google Scholar]
  29. Chen JH, Lawrence Edwards R, Wasserburg GJ 1986. 238U, 234U and 232Th in seawater. Earth Planet. Sci. Lett. 80:24151
    [Google Scholar]
  30. Cherrier J, Burnett WC, LaRock PA. 1995. Uptake of polonium and sulfur by bacteria. Geomicrobiol. J. 13:210315
    [Google Scholar]
  31. Chuang C-Y, Santschi PH, Ho Y-F, Conte MH, Guo L et al. 2013. Role of biopolymers as major carrier phases of Th, Pa, Pb, Po, and Be radionuclides in settling particles from the Atlantic Ocean. Mar. Chem. 157:13143
    [Google Scholar]
  32. Chung Y, Finkel R, Bacon MP, Cochran JK, Krishnaswami S. 1983. Intercomparison of 210Pb measurements at GEOSECS station 500 in the northeast Pacific. Earth Planet. Sci. Lett. 65:2393405
    [Google Scholar]
  33. Church TM, Rigaud S, Baskaran M, Kumar A, Friedrich J et al. 2012. Intercalibration studies of 210Po and 210Pb in dissolved and particulate seawater samples. Limnol. Oceanogr. Methods 10:77689
    [Google Scholar]
  34. Church TM, Sarin MM. 2008. U- and Th-series nuclides in the atmosphere: supply, exchange, scavenging, and applications to aquatic processes. Radioact. Environ. 13:1147
    [Google Scholar]
  35. Clevenger SJ, Benitez-Nelson CR, Drysdale J, Pike S, Puigcorbé V, Buesseler KO. 2021. Review of the analysis of 234Th in small volume (2–4 liters) seawater samples: improvements and recommendations. J. Radioanal. Nucl. Chem. 329:1113
    [Google Scholar]
  36. Coale KH, Bruland KW. 1985. 234Th:238U disequilibria within the California Current. Limnol. Oceanogr. 30:2233
    [Google Scholar]
  37. Cochran JK, Masqué P. 2003. Short-lived U/Th series radionuclides in the ocean: tracers for scavenging rates, export fluxes and particle dynamics. Rev. Mineral. Geochem. 52:146192
    [Google Scholar]
  38. Durkin CA, Buesseler KO, Cetinić I, Estapa ML, Kelly RP, Omand M. 2021. A visual tour of carbon export by sinking particles. Glob. Biogeochem. Cycles 35:10e2021GB006985
    [Google Scholar]
  39. Durkin CA, Estapa ML, Buesseler KO. 2015. Observations of carbon export by small sinking particles in the upper mesopelagic. Mar. Chem. 175:7281
    [Google Scholar]
  40. Fisher NS, Burns KA, Cherry RD, Heyraud M. 1983. Accumulation and cellular distribution of 241Am, 210Po, and 210Pb in two marine algae. Mar. Ecol. Prog. Ser. 11:23337
    [Google Scholar]
  41. Fleer AP, Bacon MP. 1984. Determination of 210Pb and 210Po in seawater and marine particulate matter. Nucl. Instrum. Methods Phys. Res. 223:2–324349
    [Google Scholar]
  42. Fowler SW. 2011. 210Po in the marine environment with emphasis on its behaviour within the biosphere. J. Environ. Radioact. 102:544861
    [Google Scholar]
  43. Friedrich J, Rutgers van der Loeff M. 2002. A two-tracer (210Po-234Th) approach to distinguish organic carbon and biogenic silica export flux in the Antarctic Circumpolar Current. Deep-Sea Res. I 49:110120
    [Google Scholar]
  44. Gustafsson Ö, Gschwend PM, Buesseler KO. 1997. Using 234Th disequilibria to estimate the vertical removal rates of polycyclic aromatic hydrocarbons from the surface ocean. Mar. Chem. 57:1–21123
    [Google Scholar]
  45. Hayes CT, Anderson RF, Fleisher MQ, Vivancos SM, Lam PJ et al. 2015. Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean. Mar. Chem. 170:4960
    [Google Scholar]
  46. Hayes CT, Black EE, Anderson RF, Baskaran M, Buesseler KO et al. 2018. Flux of particulate elements in the North Atlantic Ocean constrained by multiple radionuclides. Glob. Biogeochem. Cycles 32:12173858
    [Google Scholar]
  47. Honeyman BD, Balistrieri LS, Murray JW. 1988. Oceanic trace metal scavenging: the importance of particle concentration. Deep-Sea Res. A 35:222746
    [Google Scholar]
  48. Horowitz EJ, Cochran JK, Bacon MP, Hirschberg DJ. 2020. 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: implications for POC export. Deep-Sea Res. I 164:103339
    [Google Scholar]
  49. Hussain N, Ferdelman TG, Church TM, Luther GW. 1995. Bio-volatilization of polonium: results from laboratory analyses. Aquat. Geochem. 1:217588
    [Google Scholar]
  50. Iversen MH. 2023. Carbon export in the ocean: a biologist's perspective. Annu. Rev. Mar. Sci. 15:35781
    [Google Scholar]
  51. Kim G. 2001. Large deficiency of polonium in the oligotrophic ocean's interior. Earth Planet. Sci. Lett. 192:11521
    [Google Scholar]
  52. Kim G, Church TM. 2001. Seasonal biogeochemical fluxes of 234Th and 210Po in the upper Sargasso Sea: influence from atmospheric iron deposition. Glob. Biogeochem. Cycles 15:365161
    [Google Scholar]
  53. Kwon EY, Primeau F, Sarmiento JL. 2009. The impact of remineralization depth on the air-sea carbon balance. Nat. Geosci. 2:63035
    [Google Scholar]
  54. Lam PJ, Marchal O. 2015. Insights into particle cycling from thorium and particle data. Annu. Rev. Mar. Sci. 7:15984
    [Google Scholar]
  55. LaRock P, Hyun JH, Boutelle S, Burnett WC, Hull CD. 1996. Bacterial mobilization of polonium. Geochim. Cosmochim. Acta 60:22432128
    [Google Scholar]
  56. Le Moigne FAC, Villa-Alfageme M, Sanders RJ, Marsay C, Henson S, García-Tenorio R 2013. Export of organic carbon and biominerals derived from 234Th and 210Po at the Porcupine Abyssal Plain. Deep-Sea Res. I 72:88101
    [Google Scholar]
  57. Lemaitre N, Planchon F, Planquette H, Dehairs F, Fonseca-Batista D et al. 2018. High variability of particulate organic carbon export along the North Atlantic GEOTRACES section GA01 as deduced from 234Th fluxes. Biogeosciences 15:21641737
    [Google Scholar]
  58. Luo S, Ku T-L, Kusakabe M, Bishop JKB, Yang Y-L. 1995. Tracing particle cycling in the upper ocean with 230Th and 228Th: an investigation in the equatorial Pacific along 140°W. Deep-Sea Res. II 42:280529
    [Google Scholar]
  59. Maiti K, Benitez-Nelson CR, Rii Y, Bidigare R. 2008. The influence of a mature cyclonic eddy on particle export in the lee of Hawaii. Deep-Sea Res. II 55:10144560
    [Google Scholar]
  60. Maiti K, Bosu S, D'Sa EJ, Adhikari PL, Sutor M, Longnecker K 2016. Export fluxes in northern Gulf of Mexico – comparative evaluation of direct, indirect and satellite-based estimates. Mar. Chem. 184:6077
    [Google Scholar]
  61. Maiti K, Buesseler KO, Pike SM, Benitez-Nelson C, Cai P et al. 2012. Intercalibration studies of short-lived thorium-234 in the water column and marine particles. Limnol. Oceanogr. Methods 10:63144
    [Google Scholar]
  62. Matsumoto E. 1975. 234Th:238U radioactive disequilibrium in the surface layer of the ocean. Geochim. Cosmochim. Acta 39:220512
    [Google Scholar]
  63. Murray JW, Paul B, Dunne JP, Chapin T. 2005. 234Th, 210Pb, 210Po and stable Pb in the central equatorial Pacific: tracers for particle cycling. Deep-Sea Res. I 52:11210939
    [Google Scholar]
  64. Not C, Brown K, Ghaleb B, Hillaire-Marcel C. 2012. Conservative behavior of uranium versus salinity in Arctic sea ice and brine. Mar. Chem. 130–31:3339
    [Google Scholar]
  65. Nowicki M, DeVries T, Siegel DA. 2022. Quantifying the carbon export and sequestration pathways of the ocean's biological carbon pump. Glob. Biogeochem. Cycles 36:3e2021GB007083
    [Google Scholar]
  66. Nozaki Y, Thomson J, Turekian KK. 1976. The distribution of 210Pb and 210Po in the surface waters of the Pacific Ocean. Earth Planet. Sci. Lett. 32:230412
    [Google Scholar]
  67. Owens SA, Buesseler KO, Sims KWW. 2011. Re-evaluating the 238U-salinity relationship in seawater: implications for the 238U-234Th disequilibrium method. Mar. Chem. 127:3139
    [Google Scholar]
  68. Owens SA, Pike S, Buesseler KO. 2015. Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean. Deep-Sea Res. II 116:4259
    [Google Scholar]
  69. Pike SM, Buesseler KO, Andrews J, Savoye N. 2005. Quantification of Th-234 recovery in small volume seawater samples by inductively coupled plasma-mass spectrometry. J. Radioanal. Nucl. Chem. 263:35560
    [Google Scholar]
  70. Puigcorbé V, Benitez-Nelson CR, Masqué P, Verdeny E, White AE et al. 2015. Small phytoplankton drive high summertime carbon and nutrient export in the Gulf of California and Eastern Tropical North Pacific. Glob. Biogeochem. Cycles 29:8130932
    [Google Scholar]
  71. Puigcorbé V, Masqué P, Le Moigne FAC 2020. Global database of ratios of particulate organic carbon to thorium-234 in the ocean: improving estimates of the biological carbon pump. Earth Syst. Sci. Data 12:2126785
    [Google Scholar]
  72. Quigley MS, Santschi PH, Hung CC, Guo L, Honeyman BD. 2002. Importance of acid polysaccharides for 234Th complexation to marine organic matter. Limnol. Oceanogr. 47:236777
    [Google Scholar]
  73. Resplandy L, Martin AP, Le Moigne F, Martin P, Aquilina A et al. 2012. How does dynamical spatial variability impact 234Th-derived estimates of organic export?. Deep-Sea Res. I 68:2445
    [Google Scholar]
  74. Richardson TL. 2019. Mechanisms and pathways of small-phytoplankton export from the surface ocean. Annu. Rev. Mar. Sci. 11:5774
    [Google Scholar]
  75. Rigaud S, Puigcorbé V, Cámara-Mor P, Casacuberta N, Roca-Martí M et al. 2013. A methods assessment and recommendations for improving calculations and reducing uncertainties in the determination of 210Po and 210Pb activities in seawater. Limnol. Oceanogr. Methods 116:6078
    [Google Scholar]
  76. Rigaud S, Stewart G, Baskaran M, Marsan D, Church T. 2015. 210Po and 210Pb distribution, dissolved-particulate exchange rates, and particulate export along the North Atlantic US GEOTRACES GA03 section. Deep-Sea Res. II 116:6078
    [Google Scholar]
  77. Roca-Martí M, Benitez-Nelson CR, Umhau BP, Wyatt AM, Clevenger SJ et al. 2021a. Concentrations, ratios, and sinking fluxes of major bioelements at Ocean Station Papa. Elem. Sci. Anthr. 9:1166
    [Google Scholar]
  78. Roca-Martí M, Puigcorbé V, Castrillejo M, Casacuberta N, Garcia-Orellana J et al. 2021b. Quantifying 210Po/210Pb disequilibrium in seawater: a comparison of two precipitation methods with differing results. Front. Mar. Sci. 8:684484
    [Google Scholar]
  79. Roca-Martí M, Puigcorbé V, Rutgers van der Loeff MM, Katlein C, Fernández-Méndez M et al. 2016. Carbon export fluxes and export efficiency in the central Arctic during the record sea-ice minimum in 2012: a joint 234Th/238U and 210Po/210Pb study. J. Geophys. Res. Oceans 121:7503049
    [Google Scholar]
  80. Rodellas V, Roca-Martí M, Puigcorbé V, Castrillejo M, Casacuberta N. 2023. Radionuclides as ocean tracers. Marine Analytical Chemistry J Blasco, A Tovar-Sánchez 199273. Cham, Switz.: Springer
    [Google Scholar]
  81. Rutgers van der Loeff MM, Geibert W 2008. U- and Th-series nuclides as tracers of particle dynamics, scavenging and biogeochemical cycles in the oceans. U-Th Series Nuclides in Aquatic Systems S Krishnaswami, JK Cochran 22768. Amsterdam: Elsevier
    [Google Scholar]
  82. Rutgers van der Loeff MM, Moore WS 1999. Determination of natural radioactive tracers. Methods of Seawater Analysis K Grasshoff, K Kremling, M Erhardt 36597. Weinheim, Ger.: Verlag Chemie
    [Google Scholar]
  83. Sarin MM, Kim G, Church TM. 1999. 210Po and 210Pb in the south-equatorial Atlantic: distribution and disequilibrium in the upper 500 m. Deep-Sea Res. II 46:590717
    [Google Scholar]
  84. Savoye N, Benitez-Nelson C, Burd AB, Cochran JK, Charette M et al. 2006. 234Th sorption and export models in the water column: a review. Mar. Chem. 100:3–423449
    [Google Scholar]
  85. Shannon LV, Cherry RD, Orren MJ. 1970. Polonium-210 and lead-210 in the marine environment. Geochim. Cosmochim. Acta 34:670111
    [Google Scholar]
  86. Shannon LV, Orren MJ. 1970. A rapid method for the determination of polonium-210 and lead-210 in sea water. Anal. Chim. Acta 52:116669
    [Google Scholar]
  87. Shimmield GB, Ritchie GD, Fileman TW. 1995. The impact of marginal ice zone processes on the distribution of 210Pb, 210Po and 234Th and implications for new production in the Bellingshausen Sea, Antarctica. Deep-Sea Res. II 42:4–5131335
    [Google Scholar]
  88. Siegel DA, DeVries T, Cetinić I, Bisson KM. 2023. Quantifying the ocean's biological pump and its carbon cycle impacts on global scales. Annu. Rev. Mar. Sci. 15:32956
    [Google Scholar]
  89. Stewart G, Cochran JK, Miquel JC, Masqué P, Szlosek J et al. 2007a. Comparing POC export from 234Th/238U and 210Po/210Pb disequilibria with estimates from sediment traps in the northwest Mediterranean. Deep-Sea Res. I 54:9154970
    [Google Scholar]
  90. Stewart G, Cochran JK, Xue J, Lee C, Wakeham SG et al. 2007b. Exploring the connection between 210Po and organic matter in the northwestern Mediterranean. Deep-Sea Res. I 54:341527
    [Google Scholar]
  91. Stewart G, Moran SB, Lomas MW, Kelly RP. 2011. Direct comparison of 210Po, 234Th and POC particle-size distributions and export fluxes at the Bermuda Atlantic Time-series Study (BATS) site. J. Environ. Radioact. 102:547989
    [Google Scholar]
  92. Stewart GM, Fisher NS. 2003. Experimental studies on the accumulation of polonium-210 by marine phytoplankton. Limnol. Oceanogr. 48:31193201
    [Google Scholar]
  93. Stewart GM, Fowler SW, Fisher NS. 2008. The bioaccumulation of U-and Th-series radionuclides in marine organisms. Radioact. Environ. 13:269305
    [Google Scholar]
  94. Stewart GM, Moran BS, Lomas MW 2010. Seasonal POC fluxes at BATS estimated from 210Po deficits. Deep-Sea Res. I 57:111324
    [Google Scholar]
  95. Tang Y, Lemaitre N, Castrillejo M, Roca-Martí M, Masqué P, Stewart G. 2019. The export flux of particulate organic carbon derived from 210Po/210Pb disequilibria along the North Atlantic GEOTRACES GA01 transect: GEOVIDE cruise. Biogeosciences 16:230927
    [Google Scholar]
  96. Tang Y, Stewart G. 2019. The 210Po/210Pb method to calculate particle export: lessons learned from the results of three GEOTRACES transects. Mar. Chem. 217:103692
    [Google Scholar]
  97. Tang Y, Stewart G, Lam PJ, Rigaud S, Church T. 2017. The influence of particle concentration and composition on the fractionation of 210Po and 210Pb along the North Atlantic GEOTRACES transect GA03. Deep-Sea Res. I 128:4254
    [Google Scholar]
  98. Thomson J, Turekian KK. 1976. Polonium-210 and lead-210 distributions in ocean water profiles from the eastern South Pacific. Earth Planet. Sci. Lett. 32:297303
    [Google Scholar]
  99. Turekian KK, Graustein WC 2003. Natural radionuclides in the atmosphere. Treatise on Geochemistry, Vol. 4 The Atmosphere HD Holland, KK Turekian 26179. Oxford, UK: Pergamon
    [Google Scholar]
  100. Turnewitsch R, Reyss J-L, Nycander J, Waniek JJ, Lampitt RS. 2008. Internal tides and sediment dynamics in the deep sea—evidence from radioactive 234Th/238U disequilibria. Deep-Sea Res. I 55:12172747
    [Google Scholar]
  101. Verdeny E, Masqué P, Garcia-Orellana J, Hanfland C, Cochran JK, Stewart GM. 2009. POC export from ocean surface waters by means of 234Th/238U and 210Po/210Pb disequilibria: a review of the use of two radiotracer pairs. Deep-Sea Res. II 56:18150218
    [Google Scholar]
  102. Verdeny E, Masqué P, Maiti K, Garcia-Orellana J, Bruach JM et al. 2008. Particle export within cyclonic Hawaiian lee eddies derived from 210Pb-210Po disequilibrium. Deep-Sea Res. II 55:10–13146172
    [Google Scholar]
  103. Villa-Alfageme M, de Soto F, Le Moigne FAC, Giering SLC, Sanders R, García-Tenorio R 2014. Observations and modeling of slow-sinking particles in the twilight zone. Glob. Biogeochem. Cycles 28:112014GB004981
    [Google Scholar]
  104. Waples JT, Benitez-Nelson C, Savoye N, Rutgers van der Loeff M, Baskaran M, Gustafsson Ö 2006. An introduction to the application and future use of 234Th in aquatic systems. Mar. Chem. 100:3–416689
    [Google Scholar]
  105. Wei CL, Lin SY, Sheu DDD, Chou WC, Yi MC et al. 2011. Particle-reactive radionuclides (234Th, 210Pb, 210Po) as tracers for the estimation of export production in the South China Sea. Biogeosciences 8:1237933808
    [Google Scholar]
  106. Yang W, Guo L, Chuang C-Y, Santschi PH, Schumann D, Ayranov M. 2015. Influence of organic matter on the adsorption of 210Pb, 210Po and 7Be and their fractionation on nanoparticles in seawater. Earth Planet. Sci. Lett. 423:193201
    [Google Scholar]
  107. Yang W, Guo L, Chuang C-Y, Schumann D, Ayranov M, Santschi PH. 2013. Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds. Geochim. Cosmochim. Acta 107:4764
    [Google Scholar]
  108. Yang W, Tian J, Chen M, Zheng M, Chen M. 2022. A new radiotracer for particulate carbon dynamics: examination of 210Bi-210Pb in seawater. Geochem. Geophys. Geosyst. 23:12e2022GC010656
    [Google Scholar]
/content/journals/10.1146/annurev-marine-041923-013807
Loading
/content/journals/10.1146/annurev-marine-041923-013807
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error