1932

Abstract

The Southern Ocean plays a fundamental role in the global carbon cycle, dominating the oceanic uptake of heat and carbon added by anthropogenic activities and modulating atmospheric carbon concentrations in past, present, and future climates. However, the remote and extreme conditions found there make the Southern Ocean perpetually one of the most difficult places on the planet to observe and to model, resulting in significant and persistent uncertainties in our knowledge of the oceanic carbon cycle there. The flow of carbon in the Southern Ocean is traditionally understood using a zonal mean framework, in which the meridional overturning circulation drives the latitudinal variability observed in both air–sea flux and interior ocean carbon concentration. However, recent advances, based largely on expanded observation and modeling capabilities in the region, reveal the importance of processes acting at smaller scales, including basin-scale zonal asymmetries in mixed-layer depth, mesoscale eddies, and high-frequency atmospheric variability. Assessing the current state of knowledge and remaining gaps emphasizes the need to move beyond the zonal mean picture and embrace a four-dimensional understanding of the carbon cycle in the Southern Ocean.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-041923-104057
2024-01-17
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-041923-104057.html?itemId=/content/journals/10.1146/annurev-marine-041923-104057&mimeType=html&fmt=ahah

Literature Cited

  1. Abell JT, Winckler G, Anderson RF, Herbert TD. 2021. Poleward and weakened westerlies during Pliocene warmth. Nature 589:784070–75
    [Google Scholar]
  2. Abernathey RP, Cerovecki I, Holland PR, Newsom E, Mazloff M, Talley LD. 2016. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 9:8596–601
    [Google Scholar]
  3. Ai XE, Studer AS, Sigman DM, Martínez-García A, Fripiat F et al. 2020. Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric CO2 change. Science 370:65221348–52
    [Google Scholar]
  4. Amante C, Eakins BW. 2009. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis Tech. Memo. NESDIS NGDC-24 Natl. Geophys. Data Cent., Natl. Ocean. Atmos. Adm. Boulder, CO.: https://doi.org/10.7289/V5C8276M
  5. Arroyo MC, Shadwick EH, Tilbrook B, Rintoul SR, Kusahara K. 2020. A continental shelf pump for CO2 on the Adélie Land coast, East Antarctica. J. Geophys. Res. Oceans 125:10e2020JC016302
    [Google Scholar]
  6. Arteaga LA, Boss E, Behrenfeld MJ, Westberry TK, Sarmiento JL. 2020. Seasonal modulation of phytoplankton biomass in the Southern Ocean. Nat. Commun. 11:5364
    [Google Scholar]
  7. Arteaga LA, Pahlow M, Bushinsky SM, Sarmiento JL. 2019. Nutrient controls on export production in the Southern Ocean. Glob. Biogeochem. Cycles 33:8942–56
    [Google Scholar]
  8. Bachman SD, Taylor JR, Adams KA, Hosegood PJ. 2017. Mesoscale and submesoscale effects on mixed layer depth in the Southern Ocean. J. Phys. Oceanogr. 47:92173–88
    [Google Scholar]
  9. Bakker DC, Pfeil B, Landa CS, Metzl N, O'Brien KM et al. 2016. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8:2383–413
    [Google Scholar]
  10. Balwada D, Gray AR, Dove LA, Thompson AF. 2023. Tracer stirring and variability in the Antarctic Circumpolar Current near the Southwest Indian Ridge.. ESS Open Arch. 167839945.50522830. https://doi.org/10.22541/essoar.167839945.50522830/v1
    [Crossref]
  11. Balwada D, Smith KS, Abernathey R. 2018. Submesoscale vertical velocities enhance tracer subduction in an idealized Antarctic Circumpolar Current. Geophys. Res. Lett. 45:189790–802
    [Google Scholar]
  12. Bittig HC, Steinhoff T, Claustre H, Fiedler B, Williams NL et al. 2018. An alternative to static climatologies: robust estimation of open ocean CO2 variables and nutrient concentrations from T, S, and O2 data using Bayesian neural networks. Front. Mar. Sci. 5:328
    [Google Scholar]
  13. Boutin J, Merlivat L, Henocq C, Martin N, Sallée JB. 2008. Air–sea CO2 flux variability in frontal regions of the Southern Ocean from CARbon Interface OCean Atmosphere drifters. Limnol. Oceanogr. 53:5part 22062–79
    [Google Scholar]
  14. Brand SVS, Prend CJ, Talley LD. 2023. Modification of North Atlantic Deep Water by Pacific/Upper Circumpolar Deep Water in the Argentine Basin. Geophys. Res. Lett. 50:2e2022GL099419
    [Google Scholar]
  15. Busecke JJ, Abernathey RP. 2019. Ocean mesoscale mixing linked to climate variability. Sci. Adv. 5:1eaav5014
    [Google Scholar]
  16. Bushinsky SM, Cerovečki I. 2023. Subantarctic mode water biogeochemical formation properties and interannual variability. AGU Adv. 4:2e2022AV000722
    [Google Scholar]
  17. Bushinsky SM, Landschützer P, Rödenbeck C, Gray AR, Baker D et al. 2019a. Reassessing Southern Ocean air-sea CO2 flux estimates with the addition of biogeochemical float observations. Glob. Biogeochem. Cycles 33:111370–88
    [Google Scholar]
  18. Bushinsky SM, Takeshita Y, Williams NL. 2019b. Observing changes in ocean carbonate chemistry: our autonomous future. Curr. Clim. Change Rep. 5:3207–20
    [Google Scholar]
  19. Byrne D, Münnich M, Frenger I, Gruber N. 2016. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean. Nat. Commun. 7:ncomms11867
    [Google Scholar]
  20. Cai Y, Chen D, Mazloff MR, Lian T, Liu X. 2022. Topographic modulation of the wind stress impact on eddy activity in the Southern Ocean. Geophys. Res. Lett. 49:13e2022GL097859
    [Google Scholar]
  21. Carranza MM, Gille ST, Franks PJS, Johnson KS, Pinkel R, Girton JB. 2018. When mixed layers are not mixed. Storm-driven mixing and bio-optical vertical gradients in mixed layers of the Southern Ocean. J. Geophys. Res. Oceans 123:107264–89
    [Google Scholar]
  22. Carroll D, Menemenlis D, Adkins JF, Bowman KW, Brix H et al. 2020. The ECCO-Darwin data-assimilative global ocean biogeochemistry model: estimates of seasonal to multidecadal surface ocean pCO2 and air-sea CO2 flux. J. Adv. Model. Earth Syst. 12:10e2019MS001888
    [Google Scholar]
  23. Chen H, Haumann FA, Talley LD, Johnson KS, Sarmiento JL. 2022. The deep ocean's carbon exhaust. Glob. Biogeochem. Cycles 36:7e2021GB007156
    [Google Scholar]
  24. Chikamoto MO, DiNezio P. 2021. Multi-century changes in the ocean carbon cycle controlled by the tropical oceans and the Southern Ocean. Glob. Biogeochem. Cycles 35:12e2021GB007090
    [Google Scholar]
  25. Clement D, Gruber N. 2018. The eMLR(C*) method to determine decadal changes in the global ocean storage of anthropogenic CO2. Glob. Biogeochem. Cycles 32:4654–79
    [Google Scholar]
  26. Coggins A, Watson AJ, Schuster U, Mackay N, King B et al. 2023. Surface ocean carbon budget in the 2017 south Georgia diatom bloom: observations and validation of profiling Biogeochemical Argo floats. Deep-Sea Res. II 209:105275
    [Google Scholar]
  27. Davila X, Gebbie G, Brakstad A, Lauvset SK, McDonagh EL et al. 2022. How is the ocean anthropogenic carbon reservoir filled?. Glob. Biogeochem. Cycles 36:5e2021GB007055
    [Google Scholar]
  28. Dawson HRS, Strutton PG, Gaube P. 2018. The unusual surface chlorophyll signatures of Southern Ocean eddies. J. Geophys. Res. Oceans 123:96053–69
    [Google Scholar]
  29. Deacon GER. 1937. The Hydrology of the Southern Ocean Discov. Rep. Vol. 15 Cambridge, UK: Cambridge Univ. Press
  30. Deike L. 2022. Mass transfer at the ocean–atmosphere interface: the role of wave breaking, droplets, and bubbles. Annu. Rev. Fluid Mech. 54:191–224
    [Google Scholar]
  31. Della Penna A, Llort J, Moreau S, Patel R, Kloser R et al. 2022. The impact of a Southern Ocean cyclonic eddy on mesopelagic micronekton. J. Geophys. Res. Oceans 127:11e2022JC018893
    [Google Scholar]
  32. Della Penna A, Trull TW, Wotherspoon S, De Monte S, Johnson CR, d'Ovidio F 2018. Mesoscale variability of conditions favoring an iron-induced diatom bloom downstream of the Kerguelen Plateau. J. Geophys. Res. Oceans 123:53355–67
    [Google Scholar]
  33. DeVries T. 2014. The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era. Glob. Biogeochem. Cycles 28:7631–47
    [Google Scholar]
  34. DeVries T. 2022. Atmospheric CO2 and sea surface temperature variability cannot explain recent decadal variability of the ocean CO2 sink. Geophys. Res. Lett. 49:7e2021GL096018
    [Google Scholar]
  35. Dickson A 2010. The carbon dioxide system in seawater: equilibrium chemistry and measurements. Guide to Best Practices for Ocean Acidification Research and Data Reporting U Riebesell, VJ Fabry, L Hansson, J-P Gattuso 17–40. Luxembourg: Publ. Off. Eur. Union
    [Google Scholar]
  36. Djeutchouang LM, Chang N, Gregor L, Vichi M, Monteiro PMS. 2022. The sensitivity of pCO2 reconstructions to sampling scales across a Southern Ocean sub-domain: a semi-idealized ocean sampling simulation approach. Biogeosciences 19:174171–95
    [Google Scholar]
  37. Dove LA, Balwada D, Thompson AF, Gray AR. 2022. Enhanced ventilation in energetic regions of the Antarctic Circumpolar Current. Geophys. Res. Lett. 49:13e2021GL097574
    [Google Scholar]
  38. Dove LA, Thompson AF, Balwada D, Gray AR. 2021. Observational evidence of ventilation hotspots in the Southern Ocean. J. Geophys. Res. Oceans 126:7e2021JC017178
    [Google Scholar]
  39. Dove LA, Viglione GA, Thompson AF, Flexas MM, Cason TR, Sprintall J. 2023. Controls on wintertime ventilation in southern Drake Passage. Geophys. Res. Lett. 50:5e2022GL102550
    [Google Scholar]
  40. du Plessis MD, Swart S, Biddle LC, Giddy IS, Monteiro PMS et al. 2022. The daily-resolved Southern Ocean mixed layer: regional contrasts assessed using glider observations. J. Geophys. Res. Oceans 127:4e2021JC017760
    [Google Scholar]
  41. Dufour CO, Griffies SM, de Souza GF, Frenger I, Morrison AK et al. 2015. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr. 45:123057–81
    [Google Scholar]
  42. Ellwood MJ, Strzepek RF, Strutton PG, Trull TW, Fourquez M, Boyd PW. 2020. Distinct iron cycling in a Southern Ocean eddy. Nat. Commun. 11:825
    [Google Scholar]
  43. Fairall CW, Yang M, Brumer SE, Blomquist BW, Edson JB et al. 2022. Air-sea trace gas fluxes: direct and indirect measurements. Front. Mar. Sci. 9:1043
    [Google Scholar]
  44. Fernández Castro B, Mazloff M, Williams RG, Naveira Garabato AC. 2022. Subtropical contribution to Sub-Antarctic Mode Waters. Geophys. Res. Lett. 49:11e2021GL097560
    [Google Scholar]
  45. Fogt RL, Jones JM, Renwick J. 2012. Seasonal zonal asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J. Clim. 25:186253–70
    [Google Scholar]
  46. Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. 2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28:2862–86
    [Google Scholar]
  47. Gallego MA, Timmermann A, Friedrich T, Zeebe RE. 2020. Anthropogenic. intensification of surface ocean interannual pCO2 variability. Geophys. Res. Lett. 47:e2020GL087104
    [Google Scholar]
  48. Garabato AC, MacGilchrist GA, Brown PJ, Evans DG, Meijers AJ, Zika JD. 2017. High-latitude ocean ventilation and its role in Earth's climate transitions. Philos. Trans. R. Soc. A 375:210220160324
    [Google Scholar]
  49. Gille ST, Sheen KL, Swart S, Thompson AF 2022. Mixing in the Southern Ocean. Ocean Mixing: Drivers, Mechanisms and Impacts M Meredith, A Naveira Garabato 301–27. Amsterdam: Elsevier
    [Google Scholar]
  50. Gloege L, McKinley GA, Landschützer P, Fay AR, Frölicher TL et al. 2021. Quantifying errors in observationally based estimates of ocean carbon sink variability. Glob. Biogeochem. Cycles 35:4e2020GB006788
    [Google Scholar]
  51. Gloege L, Yan M, Zheng T, McKinley GA. 2022. Improved quantification of ocean carbon uptake by using machine learning to merge global models and pCO2 data. J. Adv. Model. Earth Syst. 14:2e2021MS002620
    [Google Scholar]
  52. Gray AR, Johnson KS, Bushinsky SM, Riser SC, Russell JL et al. 2018. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophys. Res. Lett. 45:179049–57
    [Google Scholar]
  53. Gregor L, Gruber N. 2021. OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification. Earth Syst. Sci. Data 13:2777–808
    [Google Scholar]
  54. Gregor L, Lebehot AD, Kok S, Scheel Monteiro PM 2019. A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the wall?. Geosci. Model Dev. 12:125113–36
    [Google Scholar]
  55. Gruber N, Bakker DC, DeVries T, Gregor L, Hauck J et al. 2023. Trends and variability in the ocean carbon sink. Nat. Rev. Earth Environ. 4:2119–34
    [Google Scholar]
  56. Gruber N, Clement D, Carter BR, Feely RA, van Heuven et al. 2019a. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363:64321193–99
    [Google Scholar]
  57. Gruber N, Landschützer P, Lovenduski NS. 2019b. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11:159–86
    [Google Scholar]
  58. Harrison CS, Long MC, Lovenduski NS, Moore JK. 2018. Mesoscale effects on carbon export: a global perspective. Glob. Biogeochem. Cycles 32:4680–703
    [Google Scholar]
  59. Hauck J, Zeising M, Le Quéré C, Gruber N, Bakker DCE et al. 2020. Consistency and challenges in the ocean carbon sink estimate for the global carbon budget. Front. Mar. Sci. 7:571720
    [Google Scholar]
  60. Haumann FA, Gruber N, Münnich M, Frenger I, Kern S. 2016. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537:761889–92
    [Google Scholar]
  61. Hausmann U, McGillicuddy DJ Jr., Marshall J. 2017. Observed mesoscale eddy signatures in Southern Ocean surface mixed-layer depth. J. Geophys. Res. Oceans 122:1617–35
    [Google Scholar]
  62. Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A et al. 2023. ERA5 monthly averaged data on single levels from 1940 to present Dataset Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) https://doi.org/10.24381/cds.f17050d7
    [Crossref]
  63. Holzer M, DeVries T. 2022. Source-labeled anthropogenic carbon reveals a large shift of preindustrial carbon from the ocean to the atmosphere. Glob. Biogeochem. Cycles 36:10e2022GB007405
    [Google Scholar]
  64. Hoskins BJ, Hodges KI. 2005. A new perspective on Southern Hemisphere storm tracks. J. Clim. 18:204108–29
    [Google Scholar]
  65. Inatsu M, Hoskins BJ. 2004. The zonal asymmetry of the Southern Hemisphere winter storm track. J. Clim. 17:244882–92
    [Google Scholar]
  66. Iudicone D, Rodgers KB, Plancherel Y, Aumont O, Ito T et al. 2016. The formation of the ocean's anthropogenic carbon reservoir. Sci. Rep. 6:35473
    [Google Scholar]
  67. Iversen MH. 2023. Carbon export in the ocean: a biologist's perspective. Annu. Rev. Mar. Sci. 15:357–81
    [Google Scholar]
  68. Jersild A, Delawalla S, Ito T. 2021. Mesoscale eddies regulate seasonal iron supply and carbon drawdown in the Drake Passage. Geophys. Res. Lett. 48:24)
    [Google Scholar]
  69. Johnson GC, Hosoda S, Jayne SR, Oke PR, Riser SC et al. 2022. Argo—two decades: global oceanography, revolutionized. Annu. Rev. Mar. Sci. 14:379–403
    [Google Scholar]
  70. Johnson GC, Lyman JM. 2022. GOSML: a global ocean surface mixed layer statistical monthly climatology: means, percentiles, skewness, and kurtosis. J. Geophys. Res. Oceans 127:1e2021JC018219
    [Google Scholar]
  71. Jones EM, Hoppema M, Strass V, Hauck J, Salt L et al. 2017. Mesoscale features create hotspots of carbon uptake in the Antarctic Circumpolar Current. Deep-Sea Res. II 138:39–51
    [Google Scholar]
  72. Joy-Warren HL, Dijken GL, Alderkamp A, Leventer A, Lewis KM et al. 2019. Light is the primary driver of early season phytoplankton production along the western Antarctic Peninsula. J. Geophys. Res. Oceans 124:117375–99
    [Google Scholar]
  73. Keppler L, Landschützer P. 2019. Regional wind variability modulates the Southern Ocean carbon sink. Sci. Rep. 9:7384
    [Google Scholar]
  74. Keppler L, Landschützer P, Gruber N, Lauvset SK, Stemmler I. 2020. Seasonal carbon dynamics in the near-global ocean. Glob. Biogeochem. Cycles 34:12e2020GB006571
    [Google Scholar]
  75. Key RM, Olsen A, van Heuven S, Lauvset SK, Velo A et al. 2015. Global Ocean Data Analysis Project, version 2 (GLODAPv2) Rep. ORNL/CDIAC-162, NDP-093, Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab. Oak Ridge, TN:
  76. Kim YS, Orsi AH. 2014. On the variability of Antarctic Circumpolar Current fronts inferred from 1992–2011 altimetry. J. Phys. Oceanogr. 44:123054–71
    [Google Scholar]
  77. Krumhardt KM, Long MC, Lindsay K, Levy MN. 2020. Southern Ocean calcification controls the global distribution of alkalinity. Glob. Biogeochem. Cycles 34:12e2020GB006727
    [Google Scholar]
  78. Landschützer P, Bushinsky S, Gray AR. 2019a. A combined globally mapped CO2 flux estimate based on the Surface Ocean CO2 Atlas Database (SOCAT) and Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemistry floats from 1982 to 2017 (NCEI Accession 0191304) Dataset Version 2.2 Natl. Cent. Environ. Inf., Natl. Ocean. Atmos. Adm. https://doi.org/10.25921/9hsn-xq82
  79. Landschützer P, Gruber N, Bakker DCE. 2016. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 30:101396–417
    [Google Scholar]
  80. Landschützer P, Gruber N, Bakker DCE. 2021. An observation-based global monthly gridded sea surface p CO2 product from 1982 onward and its monthly climatology (NCEI Accession 0160558) Dataset Version 5.5 Natl. Cent. Environ. Inf., Natl. Ocean. Atmos. Adm. https://doi.org/10.7289/v5z899n6
  81. Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DCE et al. 2015. The reinvigoration of the Southern Ocean carbon sink. Science 349:62531221–24
    [Google Scholar]
  82. Landschützer P, Ilyina T, Lovenduski NS. 2019b. Detecting regional modes of variability in observation-based surface ocean pCO2. Geophys. Res. Lett. 46:52670–79
    [Google Scholar]
  83. Lauvset SK, Key RM, Olsen A, van Heuven S, Velo A et al. 2016. A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2. Earth Syst. Sci. Data 8:2325–40
    [Google Scholar]
  84. Le Quéré C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R et al. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:58321735–38
    [Google Scholar]
  85. Lévy M, Resplandy L, Lengaigne M. 2014. Oceanic mesoscale turbulence drives large biogeochemical interannual variability at middle and high latitudes. Geophys. Res. Lett. 41:72467–74
    [Google Scholar]
  86. Li H, Ilyina T. 2018. Current and future decadal trends in the oceanic carbon uptake are dominated by internal variability. Geophys. Res. Lett. 45:916–25
    [Google Scholar]
  87. Llort J, Langlais C, Matear R, Moreau S, Lenton A, Strutton PG. 2018. Evaluating Southern Ocean carbon eddy-pump from Biogeochemical-Argo floats. J. Geophys. Res. Oceans 123:2971–84
    [Google Scholar]
  88. Long MC, Stephens BB, McKain K, Sweeney C, Keeling RF et al. 2021. Strong Southern Ocean carbon uptake evident in airborne observations. Science 374:65721275–80
    [Google Scholar]
  89. MacGilchrist GA, Naveira Garabato AC, Brown PJ, Jullion L, Bacon S et al. 2019. Reframing the carbon cycle of the subpolar Southern Ocean. Sci. Adv. 5:8eaav6410
    [Google Scholar]
  90. Marshall D. 1995. Topographic steering of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 25:71636–50
    [Google Scholar]
  91. Marshall J, Speer K. 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5:3171–80
    [Google Scholar]
  92. McKinley GA, Fay AR, Eddebbar YA, Gloege L, Lovenduski NS. 2020. External forcing explains recent decadal variability of the ocean carbon sink. AGU Adv. 1:2e2019AV000149
    [Google Scholar]
  93. Meier WN, Fetterer F, Windnagel AK, Stewart JS. 2021. NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 4 Dataset G02202 Natl. Snow Ice Data Cent. https://doi.org/10.7265/efmz-2t65
  94. Mongwe NP, Vichi M, Monteiro PMS. 2018. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models. Biogeosciences 15:92851–72
    [Google Scholar]
  95. Moreau S, Della Penna A, Llort J, Patel R, Langlais C et al. 2017. Eddy-induced carbon transport across the Antarctic Circumpolar Current. Glob. Biogeochem. Cycles 31:91368–86
    [Google Scholar]
  96. Morrison AK, Frölicher TL, Sarmiento JL. 2014. Upwelling in the Southern Ocean. Phys. Today 68:127–32
    [Google Scholar]
  97. Morrison AK, Waugh DW, Hogg AM, Jones DC, Abernathey RP. 2022. Ventilation of the Southern Ocean pycnocline. Annu. Rev. Mar. Sci. 14:405–30
    [Google Scholar]
  98. Munday DR, Johnson HL, Marshall DP. 2014. Impacts and effects of mesoscale ocean eddies on ocean carbon storage and atmospheric pCO2. Glob. Biogeochem. Cycles 28:8877–96
    [Google Scholar]
  99. Munk WH, Palmén E. 1951. Note on the dynamics of the Antarctic Circumpolar Current. Tellus 3:153–55
    [Google Scholar]
  100. NASA Ocean Biol. Process. Group 2022. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Level-3 Mapped Chlorophyll Data, version R2022 Dataset NASA Ocean Biol. Distrib. Active Arch. Cent.
  101. Nevison CD, Munro DR, Lovenduski NS, Keeling RF, Manizza M et al. 2020. Southern Annular Mode influence on wintertime ventilation of the Southern Ocean detected in atmospheric O2 and CO2 measurements. Geophys. Res. Lett. 47:4e2019GL085667
    [Google Scholar]
  102. Nicholson SA, Lévy M, Jouanno J, Capet X, Swart S, Monteiro PMS. 2019. Iron supply pathways between the surface and subsurface waters of the Southern Ocean: from winter entrainment to summer storms. Geophys. Res. Lett. 46:2414567–75
    [Google Scholar]
  103. Nicholson SA, Whitt DB, Fer I, du Plessis MD, Lebéhot AD et al. 2022. Storms drive outgassing of CO2 in the subpolar Southern Ocean. Nat. Commun. 13:158
    [Google Scholar]
  104. Noh KM, Lim HG, Kug JS. 2021. Zonally asymmetric phytoplankton response to the Southern Annular Mode in the marginal sea of the Southern Ocean. Sci. Rep. 11:10266
    [Google Scholar]
  105. Nowlin WD, Klinck JM. 1986. The physics of the Antarctic Circumpolar Current. Rev. Geophys. 24:3469–91
    [Google Scholar]
  106. Ohshima KI, Nihashi S, Iwamoto K. 2016. Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation. Geosci. Lett. 3:13
    [Google Scholar]
  107. Olsen A, Key RM, van Heuven S, Lauvset SK, Velo A et al. 2016. The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8:2297–323
    [Google Scholar]
  108. Orsi AH, Whitworth T, Nowlin WD. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I 42:5641–73
    [Google Scholar]
  109. Patel RS, Llort J, Strutton PG, Phillips HE, Moreau S et al. 2020. The biogeochemical structure of Southern Ocean mesoscale eddies. J. Geophys. Res. Oceans 125:8e2020JC016115
    [Google Scholar]
  110. Person R, Aumont O, Lévy M. 2018. The biological pump and seasonal variability of pCO2 in the Southern Ocean: exploring the role of diatom adaptation to low iron. J. Geophys. Res. Oceans 123:53204–26
    [Google Scholar]
  111. Pezzi LP, de Souza RB, Santini MF, Miller AJ, Carvalho JT et al. 2021. Oceanic eddy-induced modifications to air–sea heat and CO2 fluxes in the Brazil-Malvinas Confluence. Sci. Rep. 11:10648
    [Google Scholar]
  112. Prend CJ, Gray AR, Talley LD, Gille ST, Haumann FA et al. 2022a. Indo-Pacific sector dominates Southern Ocean carbon outgassing. Glob. Biogeochem. Cycles 36:7e2021GB007226
    [Google Scholar]
  113. Prend CJ, Hunt JM, Mazloff MR, Gille ST, Talley LD. 2022b. Controls on the boundary between thermally and non-thermally driven pCO2 regimes in the South Pacific. Geophys. Res. Lett. 49:9e2021GL095797
    [Google Scholar]
  114. Prend CJ, Keerthi MG, Lévy M, Aumont O, Gille ST, Talley LD. 2022c. Sub-seasonal forcing drives year-to-year variations of Southern Ocean primary productivity. Glob. Biogeochem. Cycles 36:7e2022GB007329
    [Google Scholar]
  115. Priestley MD, Ackerley D, Catto JL, Hodges KI, McDonald RE, Lee RW. 2020. An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Clim. 33:156315–43
    [Google Scholar]
  116. Rae JWB, Burke A, Robinson LF, Adkins JF, Chen T et al. 2018. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562:7728569–73
    [Google Scholar]
  117. Resplandy L, Boutin J, Merlivat L. 2014. Observed small spatial scale and seasonal variability of the CO2 system in the Southern Ocean. Biogeosciences 11:175–90
    [Google Scholar]
  118. Resplandy L, Keeling RF, Rödenbeck C, Stephens BB, Khatiwala S et al. 2018. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11:7504–9
    [Google Scholar]
  119. Rintoul SR. 2018. The global influence of localized dynamics in the Southern Ocean. Nature 558:7709209–18
    [Google Scholar]
  120. Risien CM, Chelton DB. 2008. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr. 38:2379–413
    [Google Scholar]
  121. Rödenbeck C, Bakker DC, Metzl N, Olsen A, Sabine C et al. 2014. Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences 11:174599–613
    [Google Scholar]
  122. Rödenbeck C, DeVries T, Hauck J, Le Quéré C, Keeling RF 2022. Data-based estimates of interannual sea–air CO2 flux variations 1957–2020 and their relation to environmental drivers. Biogeosciences 19:102627–52
    [Google Scholar]
  123. Sallée JB, Matear RJ, Rintoul SR, Lenton A. 2012. Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci. 5:8579–84
    [Google Scholar]
  124. Sallée JB, Speer KG, Rintoul SR. 2010. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci. 3:4273–79
    [Google Scholar]
  125. Sallée JB, Speer KG, Rintoul SR. 2011. Mean-flow and topographic control on surface eddy-mixing in the Southern Ocean. J. Mar. Res. 69:4753–77
    [Google Scholar]
  126. Sarmiento JL, Gruber N. 2006. Ocean Biogeochemical Dynamics Princeton, NJ: Princeton Univ. Press
  127. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP. 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:696956–60
    [Google Scholar]
  128. Sarmiento JL, Johnson KS, Arteaga LA, Bushinsky SM, Cullen HM et al. 2023. The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project: a review. Prog. Oceanogr. 219:103130
    [Google Scholar]
  129. Schroeter S, O'Kane TJ, Sandery PA. 2023. Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode. Cryosphere 17:2701–17
    [Google Scholar]
  130. Shadwick EH, Trull TW, Tilbrook B, Sutton AJ, Schulz E, Sabine CL. 2015. Seasonality of biological and physical controls on surface ocean CO2 from hourly observations at the Southern Ocean Time Series site south of Australia. Glob. Biogeochem. Cycles 29:2223–38
    [Google Scholar]
  131. Siegel DA, DeVries T, Cetinić I, Bisson KM. 2023. Quantifying the ocean's biological pump and its carbon cycle impacts on global scales. Annu. Rev. Mar. Sci. 15:329–56
    [Google Scholar]
  132. Smith KM, Hamlington PE, Niemeyer KE, Fox-Kemper B, Lovenduski NS. 2018. Effects of Langmuir turbulence on upper ocean carbonate chemistry. J. Adv. Model. Earth Syst. 10:123030–48
    [Google Scholar]
  133. Song H, Marshall J, Campin J, McGillicuddy DJ Jr. 2019. Impact of near-inertial waves on vertical mixing and air-sea CO2 fluxes in the Southern Ocean. J. Geophys. Res. Oceans 124:74605–17
    [Google Scholar]
  134. Song H, Marshall J, McGillicuddy DJ Jr., Seo H. 2020. Impact of current-wind interaction on vertical processes in the Southern Ocean. J. Geophys. Res. Oceans 125:4e2020JC016046
    [Google Scholar]
  135. Song H, Marshall J, Munro DR, Dutkiewicz S, Sweeney C et al. 2016. Mesoscale modulation of air-sea CO2 flux in Drake Passage. J. Geophys. Res. Oceans 121:96635–49
    [Google Scholar]
  136. Studer AS, Sigman DM, Martínez-García A, Thöle LM, Michel E et al. 2018. Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise. Nat. Geosci. 11:10756–60
    [Google Scholar]
  137. Stukel MR, Ducklow HW. 2017. Stirring up the biological pump: vertical mixing and carbon export in the Southern Ocean. Glob. Biogeochem. Cycles 31:91420–34
    [Google Scholar]
  138. Su Z, Wang J, Klein P, Thompson AF, Menemenlis D. 2018. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 9:775
    [Google Scholar]
  139. Sutton AJ, Williams NL, Tilbrook B. 2021. Constraining Southern Ocean CO2 flux uncertainty using uncrewed surface vehicle observations. Geophys. Res. Lett. 48:3e2020GL091748
    [Google Scholar]
  140. Swart S, Gille ST, Delille B, Josey S, Mazloff M et al. 2019. Constraining Southern Ocean air-sea-ice fluxes through enhanced observations. Front. Mar. Sci. 6:421
    [Google Scholar]
  141. Tagliabue A, Sallée JB, Bowie AR, Lévy M, Swart S, Boyd PW. 2014. Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nat. Geosci. 7:4314–20
    [Google Scholar]
  142. Tak YJ, Song H, Noh Y, Choi Y. 2023. Physical and biogeochemical responses in the Southern Ocean to a simple parameterization of Langmuir circulation. Ocean Model. 181:102152
    [Google Scholar]
  143. Takahashi T, Olafsson J, Goddard JG, Chipman DW, Sutherland SC. 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Glob. Biogeochem. Cycles 7:4843–78
    [Google Scholar]
  144. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N et al. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II 49:9–101601–22
    [Google Scholar]
  145. Talley L. 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26:180–97
    [Google Scholar]
  146. Talley L, Feely R, Sloyan B, Wanninkhof R, Baringer M et al. 2016. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8:185–215
    [Google Scholar]
  147. Tamsitt V, Drake HF, Morrison AK, Talley LD, Dufour CO et al. 2017. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun. 8:172
    [Google Scholar]
  148. Tamsitt V, Talley LD, Mazloff MR, Cerovečki I. 2016. Zonal variations in the Southern Ocean heat budget. J. Clim. 29:186563–79
    [Google Scholar]
  149. Taylor JR, Bachman S, Stamper M, Hosegood P, Adams K et al. 2018. Submesoscale Rossby waves on the Antarctic circumpolar current. Sci. Adv. 4:3eaao2824
    [Google Scholar]
  150. Taylor JR, Thompson AF. 2023. Submesoscale dynamics in the upper ocean. Annu. Rev. Fluid Mech. 55:103–27
    [Google Scholar]
  151. Thompson AF, Sallée JB. 2012. Jets and topography: jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 42:6956–72
    [Google Scholar]
  152. Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M et al. 2018. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11:27–37
    [Google Scholar]
  153. Uchida T, Balwada D, Abernathey RP, McKinley GA, Smith SK, Lévy M. 2019. The contribution of submesoscale over mesoscale eddy iron transport in the open Southern Ocean. J. Adv. Model. Earth Syst. 11:123934–58
    [Google Scholar]
  154. Uchida T, Balwada D, Abernathey RP, McKinley GA, Smith SK, Lévy M. 2020. Vertical eddy iron fluxes support primary production in the open Southern Ocean. Nat. Commun. 11:1125
    [Google Scholar]
  155. Verdy A, Mazloff MR. 2017. A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. Oceans 122:96968–88
    [Google Scholar]
  156. Viglione GA, Thompson AF. 2016. Lagrangian pathways of upwelling in the Southern Ocean. J. Geophys. Res. Oceans 121:86295–309
    [Google Scholar]
  157. Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR. 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1:213–44
    [Google Scholar]
  158. Watson AJ, Ledwell JR, Messias MJ, King BA, Mackay N et al. 2013. Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature 501:7467408–11
    [Google Scholar]
  159. Watts J, Bell TG, Anderson K, Butterworth BJ, Miller S et al. 2022. Impact of sea ice on air-sea CO2 exchange – a critical review of polar eddy covariance studies. Prog. Oceanogr. 201:102741
    [Google Scholar]
  160. Williams NL, Juranek LW, Feely RA, Johnson KS, Sarmiento JL et al. 2017. Calculating surface ocean pCO2 from Biogeochemical Argo floats equipped with pH: an uncertainty analysis. Glob. Biogeochem. Cycles 31:3591–604
    [Google Scholar]
  161. Williams RG, Follows MJ. 2011. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms Cambridge, UK: Cambridge Univ. Press
  162. Woolf DK, Shutler JD, Goddijn-Murphy L, Watson AJ, Chapron B et al. 2019. Key uncertainties in the recent air-sea flux of CO2. Glob. Biogeochem. Cycles 33:121548–63
    [Google Scholar]
  163. Wu Y, Hain MP, Humphreys MP, Hartman S, Tyrrell T. 2019. What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?. Biogeosciences 16:132661–81
    [Google Scholar]
  164. Yang B, Shadwick EH, Schultz C, Doney SC. 2021. Annual mixed layer carbon budget for the West Antarctic Peninsula continental shelf: insights from year-round mooring measurements. J. Geophys. Res. Oceans 126:4e2020JC016920
    [Google Scholar]
  165. Yang M, Bell TG, Bidlot JR, Blomquist BW, Butterworth BJ et al. 2022. Global synthesis of air-sea CO2 transfer velocity estimates from ship-based eddy covariance measurements. Front. Mar. Sci. 9:1107
    [Google Scholar]
  166. Yang M, Smyth TJ, Kitidis V, Brown IJ, Wohl C et al. 2021. Natural variability in air–sea gas transfer efficiency of CO2. Sci. Rep. 11:13584
    [Google Scholar]
  167. Young IR, Fontaine E, Liu Q, Babanin AV. 2020. The wave climate of the Southern Ocean. J. Phys. Oceanogr. 50:51417–33
    [Google Scholar]
  168. Yung CK, Morrison AK, Hogg AMC. 2022. Topographic hotspots of Southern Ocean eddy upwelling. Front. Mar. Sci. 9:769
    [Google Scholar]
  169. Zemskova VE, He TL, Wan Z, Grisouard N. 2022. A deep-learning estimate of the decadal trends in the Southern Ocean carbon storage. Nat. Commun. 13:4056
    [Google Scholar]
  170. Zhang Z, Liu Y, Qiu B, Luo Y, Cai W et al. 2023. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport. Nat. Commun. 14:1335
    [Google Scholar]
  171. Zilberman NV, Scanderbeg M, Gray AR, Oke PR. 2023. Scripps Argo trajectory-based velocity product: global estimates of absolute velocity derived from Core, Biogeochemical, and Deep Argo float trajectories at parking depth. J. Atmos. Ocean. Technol. 40:3361–74
    [Google Scholar]
/content/journals/10.1146/annurev-marine-041923-104057
Loading
/content/journals/10.1146/annurev-marine-041923-104057
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error