1932

Abstract

Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-042023-093037
2024-01-17
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-042023-093037.html?itemId=/content/journals/10.1146/annurev-marine-042023-093037&mimeType=html&fmt=ahah

Literature Cited

  1. Adam P. 1990. Saltmarsh Ecology Cambridge, UK: Cambridge Univ. Press
  2. Adams JB, Rajkaran A. 2021. Changes in mangroves at their southernmost African distribution limit. Estuar. Coast. Shelf Sci. 248:107158
    [Google Scholar]
  3. Alexandre A, Quintã R, Hill PW, Jones DL, Santos R. 2020. Ocean warming increases the nitrogen demand and the uptake of organic nitrogen of the globally distributed seagrass Zostera marina. Funct. Ecol. 34:132535
    [Google Scholar]
  4. Amaral V, Cabral HN, Bishop MJ. 2011. Resistance among wild invertebrate populations to recurrent estuarine acidification. Estuar. Coast. Shelf Sci. 93:46067
    [Google Scholar]
  5. Andriana R, van der Ouderaa I, Eriksson BK. 2020. A Pacific oyster invasion transforms shellfish reef structure by changing the development of associated seaweeds. Estuar. Coast. Shelf Sci. 235:106564
    [Google Scholar]
  6. Anton A, Randle JL, Garcia FC, Rossbach S, Ellis JI et al. 2020. Differential thermal tolerance between algae and corals may trigger the proliferation of algae in coral reefs. Glob. Change Biol. 26:431627
    [Google Scholar]
  7. Arias-Ortiz A, Serrano O, Masqué P, Lavery PS, Mueller U et al. 2018. A marine heatwave drives massive losses from the world's largest seagrass carbon stocks. Nat. Clim. Change 8:33844
    [Google Scholar]
  8. Aronson R, Precht W, Toscano M, Koltes K. 2002. The 1998 bleaching event and its aftermath on a coral reef in Belize. Mar. Biol. 141:43547
    [Google Scholar]
  9. Arp WJ, Drake BG, Pockman WT, Curtis PS, Whigham DF. 1993. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Vegetatio 104:13343
    [Google Scholar]
  10. Asbridge E, Lucas R, Rogers K, Accad A. 2018. The extent of mangrove change and potential for recovery following severe Tropical Cyclone Yasi, Hinchinbrook Island, Queensland, Australia. BMC Ecol. Evol. 8:1041634
    [Google Scholar]
  11. Assis J, Serrão EA, Duarte CM, Fragkopoulou E, Krause-Jensen D. 2022. Major expansion of marine forests in a warmer Arctic. Front. Mar. Sci. 9:850368
    [Google Scholar]
  12. Aung TT, Mochida Y, Than MM. 2013. Prediction of recovery pathways of cyclone-disturbed mangroves in the mega delta of Myanmar. For. Ecol. Manag. 293:10313
    [Google Scholar]
  13. Bach LT, Tamsitt V, Gower J, Hurd CL, Raven JA, Boyd PW. 2021. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nat. Commun. 12:2556
    [Google Scholar]
  14. Baird AH, Marshall PA. 1998. Mass bleaching of corals on the Great Barrier Reef. Coral Reefs 17:376
    [Google Scholar]
  15. Baldwin A, Egnotovich M, Ford M, Platt W. 2001. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecol. 157:15164
    [Google Scholar]
  16. Barbier EB, Hacker SD, Kennedy CJ, Koch EW, Stier AC, Silliman BR. 2011. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81:16993
    [Google Scholar]
  17. Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T et al. 2014. Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Change 26:2738
    [Google Scholar]
  18. Baum JK, Claar DC, Tietjen KL, Magel JMT, Maucieri DG et al. 2023. Transformation of coral communities subjected to an unprecedented heatwave is modulated by local disturbance. Sci. Adv. 9:eabq5615
    [Google Scholar]
  19. Beca-Carretero P, Teichberg M, Winters G, Procaccini G, Reuter H. 2020. Projected rapid habitat expansion of tropical seagrass species in the Mediterranean Sea as climate change progresses. Front. Plant Sci. 11:555376
    [Google Scholar]
  20. Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD et al. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61:10716
    [Google Scholar]
  21. Beck MW, Losada IJ, Menéndez P, Reguero BG, Díaz-Simal P, Fernández F. 2018. The global flood protection savings provided by coral reefs. Nat. Commun. 9:2186
    [Google Scholar]
  22. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15:36577
    [Google Scholar]
  23. Bertness MD. 1984. Ribbed mussels and Spartina alterniflora production in a New England salt marsh. Ecology 65:1794807
    [Google Scholar]
  24. Beukema JJ, Dekker R. 2014. Variability in predator abundance links winter temperatures and bivalve recruitment: correlative evidence from long-term data in a tidal flat. Mar. Ecol. Prog. Ser. 513:115
    [Google Scholar]
  25. Beyer HL, Kennedy EV, Beger M, Chen CA, Cinner JE et al. 2018. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 11:e12587
    [Google Scholar]
  26. Bolton J. 2010. The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol. Mar. Res. 64:26379
    [Google Scholar]
  27. Bonsell C, Dunton KH. 2018. Long-term patterns of benthic irradiance and kelp production in the central Beaufort sea reveal implications of warming for Arctic inner shelves. Prog. Oceanogr. 162:16070
    [Google Scholar]
  28. Bookelaar B, Lynch SA, Culloty SC. 2020. Host plasticity supports spread of an aquaculture introduced virus to an ecosystem engineer. Parasites Vectors 13:498
    [Google Scholar]
  29. Borges FO, Santos CP, Paula JR, Mateos-Naranjo E, Redondo-Gomez S et al. 2021. Invasion and extirpation potential of native and invasive Spartina species under climate change. Front. Mar. Sci. 8:696333
    [Google Scholar]
  30. Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP et al. 2018. Declining oxygen in the global ocean and coastal waters. Science 359:eaam7240
    [Google Scholar]
  31. Bruno JF, Bertness MD 2001. Habitat modification and facilitation in benthic marine communities. Marine Community Ecology MD Bertness, ME Hay, SD Gaines 20118. Sunderland, MA: Sinauer
    [Google Scholar]
  32. Bruno JF, Côté IM, Toth LT. 2019. Climate change, coral loss, and the curious case of the parrotfish paradigm: Why don't marine protected areas improve reef resilience?. Annu. Rev. Mar. Sci. 11:30734
    [Google Scholar]
  33. Bruno JF, Siddon C, Witman J, Colin P, Toscano M. 2001. El Niño related coral bleaching in Palau, Western Caroline Islands. Coral Reefs 20:12736
    [Google Scholar]
  34. Bunting P, Rosenqvist A, Hilarides L, Lucas RM, Thomas N. 2022. Global Mangrove Watch: updated 2010 mangrove forest extent (v2.5). Remote Sens. 14:1034
    [Google Scholar]
  35. Buñuel X, Alcoverro T, Romero J, Arthur R, Ruiz JM et al. 2021. Warming intensifies the interaction between the temperate seagrass Posidonia oceanica and its dominant fish herbivore Sarpa salpa. Mar. Environ. Res. 165:105237
    [Google Scholar]
  36. Burkholz C, Garcias-Bonet N, Duarte CM. 2020. Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (Halophila stipulacea) sediments. Biogeosciences 17:171730
    [Google Scholar]
  37. Bushek D, Ford SE, Burt I. 2012. Long-term patterns of an estuarine pathogen along a salinity gradient. J. Mar. Res. 70:22551
    [Google Scholar]
  38. Cahoon DR, Hensel P, Rybczyk J, McKee KL, Proffitt CE, Perez BC. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91:1093105
    [Google Scholar]
  39. Campbell AD, Fatoyinbo L, Goldberg L, Lagomasino D. 2022. Global hotspots of salt marsh change and carbon emissions. Nature 612:7016
    [Google Scholar]
  40. Carr JA, D'Odorico P, McGlathery KJ, Wiberg PL 2012. Modeling the effects of climate change on eelgrass stability and resilience: future scenarios and leading indicators of collapse. Mar. Ecol. Prog. Ser. 448:289301
    [Google Scholar]
  41. Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD et al. 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. PNAS 111:72327
    [Google Scholar]
  42. Cerrano C, Bavestrello G. 2008. Medium-term effects of die-off of rocky benthos in the Ligurian Sea. What can we learn from gorgonians?. Chem. Ecol. 24:7382
    [Google Scholar]
  43. Chefaoui RM, Duarte CM, Serrão EA. 2018. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Change Biol. 24:491928
    [Google Scholar]
  44. Chimienti G, De Padova D, Adamo M, Mossa M, Bottalico A et al. 2021. Effects of global warming on Mediterranean coral forests. Sci. Rep. 11:20703
    [Google Scholar]
  45. Clark HR, Gobler CJ. 2016. Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves. Mar. Ecol. Prog. Ser. 558:114
    [Google Scholar]
  46. Clemente KJE, Thomsen MS, Zimmerman RC. 2023. The vulnerability and resilience of seagrass ecosystems to marine heatwaves in New Zealand: a remote sensing analysis of seascape metrics using PlanetScope imagery. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.343
    [Google Scholar]
  47. Cleves PA, Tinoco AI, Bradford J, Perrin D, Bay LK, Pringle JR. 2020. Reduced thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-shock transcription factor. PNAS 117:28899905
    [Google Scholar]
  48. Coldren GA, Langley JA, Feller IC, Chapman SK. 2019. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. J. Ecol. 107:7990
    [Google Scholar]
  49. Cole VJ, Parker LM, Scanes E, Wright J, Barnett L, Ross PM. 2021. Climate change alters shellfish reef communities: a temperate mesocosm experiment. Mar. Pollut. Bull. 173:113113
    [Google Scholar]
  50. Coleman MA, Minne AJP, Vranken S, Wernberg T. 2020a. Genetic tropicalisation following a marine heatwave. Sci. Rep. 10:12726
    [Google Scholar]
  51. Coleman MA, Reddy M, Nimbs MJ, Marshell A, Al-Ghassani SA et al. 2022. Loss of a globally unique kelp forest from Oman. Sci. Rep. 12:5020
    [Google Scholar]
  52. Coleman MA, Wernberg T. 2020. The silver lining of extreme events. Trends Ecol. Evol. 35:106567
    [Google Scholar]
  53. Coleman MA, Wood G, Filbee-Dexter K, Minne AJP, Goold HD et al. 2020b. Restore or redefine: future trajectories for restoration. Front. Mar. Sci. 7:237
    [Google Scholar]
  54. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T et al. 2013. Long-term climate change: projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.1029136. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  55. Cooley SR, Schoeman DS, Bopp L, Boyd P, Donner S et al. 2022a. Ocean and coastal ecosystems and their services. See IPCC 2022 379550
  56. Cooley SR, Schoeman DS, Bopp L, Boyd P, Donner S et al. 2022b. Ocean and coastal ecosystems and their services supplementary material. See IPCC 2022 3SM–168 Available at https://www.ipcc.ch/report/ar6/wg2/downloads
  57. Correia-Martins A, Tremblay R, Bec B, Roques C, Atteia A et al. 2022. Failure of bivalve foundation species recruitment related to trophic changes during an extreme heatwave event. Mar. Ecol. Prog. Ser. 691:6982
    [Google Scholar]
  58. Crain CM, Kroeker K, Halpern BS. 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11:130415
    [Google Scholar]
  59. Crosby SC, Angermeyer A, Adler JM, Bertness MD, Deegan LA et al. 2017. Spartina alterniflora biomass allocation and temperature: implications for salt marsh persistence with sea-level rise. Estuaries Coasts 40:21323
    [Google Scholar]
  60. Darling ES, Côté IM. 2008. Quantifying the evidence for ecological synergies. Ecol. Lett. 11:127886
    [Google Scholar]
  61. Davidson NC, Van Dam AA, Finlayson CM, McInnes RJ. 2019. Worth of wetlands: revised global monetary values of coastal and inland wetland ecosystem services. Mar. Freshw. Res. 70:118994
    [Google Scholar]
  62. Dayton PK. 1972.. Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. Proceedings of the Colloquium on Conservation Problems in Antarctica BC Parker 8196. Lawrence, KS: Allen
    [Google Scholar]
  63. de Fouw J, Rehlmeyer K, van der Geest M, Smolders AJP, van der Heide T. 2022. Increased temperature reduces the positive effect of sulfide-detoxification mutualism on Zostera noltii nutrient uptake and growth. Mar. Ecol. Prog. Ser. 692:4352
    [Google Scholar]
  64. de Kantzow M, Hick P, Becker JA, Whittington RJ. 2016. Effect of water temperature on mortality of Pacific oysters Crassostrea gigas associated with microvariant ostreid herpesvirus 1 (OsHV-1 μVar). Aquac. Environ. Interact. 8:41928
    [Google Scholar]
  65. Dewsbury BM, Bhat M, Fourqurean JW. 2016. A review of seagrass economic valuations: gaps and progress in valuation approaches. Ecosyst. Serv. 18:6877
    [Google Scholar]
  66. Diederich S, Nehls G, Van Beusekom JEE, Reise K. 2005. Introduced Pacific oysters (Crassostrea gigas) in the northern Wadden Sea: invasion accelerated by warm summers?. Helgol. Mar. Res. 59:97106
    [Google Scholar]
  67. Dixon AM, Forster PM, Heron SF, Stoner AMK, Beger M. 2022. Future loss of local-scale thermal refugia in coral reef ecosystems. PLOS Clim. 1:e0000004
    [Google Scholar]
  68. Donelan SC, Ogburn MB, Breitburg D. 2023. Legacy of past exposure to hypoxia and warming regulates an ecosystem service provided by oysters. Glob. Change Biol. 29:132839
    [Google Scholar]
  69. Doney SC, Busch DS, Cooley SR, Kroeker KJ. 2020. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45:83112
    [Google Scholar]
  70. Donovan MK, Burkepile DE, Kratochwill C, Shlesinger T, Sully S et al. 2021. Local conditions magnify coral loss after marine heatwaves. Science 372:97780
    [Google Scholar]
  71. Doody JP. 2004. ‘Coastal squeeze’—an historical perspective. J. Coast. Conserv. 10:12938
    [Google Scholar]
  72. Duarte B, Martins I, Rosa R, Matos AR, Roleda MY et al. 2018. Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptation potential. Front. . Mar. Sci. 5:190
    [Google Scholar]
  73. Duarte CM. 2014. Global change and the future ocean: a grand challenge for marine sciences. Front. . Mar. Sci. 1:63
    [Google Scholar]
  74. Duke NC, Ball MC, Ellison JC. 1998. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7:2747
    [Google Scholar]
  75. Duke NC, Hutley LB, Mackenzie JR, Burrows D. 2021. Processes and factors driving change in mangrove forests: an evaluation based on the mass dieback event in Australia's Gulf of Carpentaria. Ecosystem Collapse and Climate Change JG Canadell, RB Jackson 22164. Cham, Switz.: Springer
    [Google Scholar]
  76. Dunic JC, Brown CJ, Connolly RM, Turschwell MP, Côté IM. 2021. Long-term declines and recovery of meadow area across the world's seagrass bioregions. Glob. Change Biol. 27:4096109
    [Google Scholar]
  77. Eddy TD, Lam VWY, Reygondeau G, Cisneros-Montemayor AM, Greer K et al. 2021. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4:127885
    [Google Scholar]
  78. Ellison AM, Farnsworth EJ. 1997. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.). Oecologia 112:43546
    [Google Scholar]
  79. Emanuel K. 2020. Evidence that hurricanes are getting stronger. PNAS 117:1319495
    [Google Scholar]
  80. Eslami-Andargoli L, Dale P, Sipe N, Chaseling J. 2009. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuar. Coast. Shelf Sci. 85:29298
    [Google Scholar]
  81. Fagherazzi S, Mariotti G, Leonardi N, Canestrelli A, Nardin W, Kearney WS. 2020. Salt marsh dynamics in a period of accelerated sea level rise. J. Geophys. Res. 125:e2019JF005200
    [Google Scholar]
  82. Farnsworth EJ, Ellison AM, Gong WK. 1996. Elevated CO2 alters anatomy, physiology, growth and reproduction of red mangroves (Rhizophora mangle L.). Oecologia 108:599609
    [Google Scholar]
  83. Fazlioglu F, Wan JSH, Chen L. 2020. Latitudinal shifts in mangrove species worldwide: evidence from historical occurrence records. Hydrobiologia 847:411123
    [Google Scholar]
  84. Feher LC, Osland MJ, Anderson GH, Vervaeke WC, Krauss KW et al. 2020. The long-term effects of hurricanes Wilma and Irma on soil elevation change in Everglades mangrove forests. Ecosystems 23:91731
    [Google Scholar]
  85. Filbee-Dexter K, Feehan C, Smale D, Krumhansl K, Augustine S et al. 2022a. Kelp carbon sink potential decreases with warming due to accelerating decomposition. PLOS Biol. 20:e3001702
    [Google Scholar]
  86. Filbee-Dexter K, Scheibling RE. 2014. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495:125
    [Google Scholar]
  87. Filbee-Dexter K, Wernberg T. 2018. Rise of turfs: a new battlefront for globally declining kelp forests. BioScience 68:6476
    [Google Scholar]
  88. Filbee-Dexter K, Wernberg T, Barreiro R, Coleman MA, de Bettignies T et al. 2022b. Leveraging the blue economy to transform marine forest restoration. J. Phycol. 58:198207
    [Google Scholar]
  89. Filbee-Dexter K, Wernberg T, Fredriksen S, Norderhaug KM, Pedersen MF. 2019. Arctic kelp forests: diversity, resilience and future. Glob. Planet. Change 172:114
    [Google Scholar]
  90. Filbee-Dexter K, Wernberg T, Grace SP, Thormar J, Fredriksen S et al. 2020. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10:13388
    [Google Scholar]
  91. Firth LB, Knights AM, Bridger D, Evans AJ, Mieszkowska N et al. 2016. Ocean sprawl: challenges and opportunities for biodiversity management in a changing world. Oceanography and Marine Biology: An Annual Review, Vol. 54 RN Hughes, DJ Hughes, IP Smith, AC Dale 189262. Boca Raton, FL: CRC
    [Google Scholar]
  92. Fodrie FJ, Heck KL Jr., Powers SP, Graham WM, Robinson KL. 2010. Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Glob. Change Biol. 16:4859
    [Google Scholar]
  93. Fragkopoulou E, Serrão EA, De Clerck O, Costello MJ, Araújo MB et al. 2022. Global biodiversity patterns of marine forests of brown macroalgae. Glob. Ecol. Biogeogr. 31:63648
    [Google Scholar]
  94. Fredriksen S, Filbee-Dexter K, Norderhaug KM, Steen H, Bodvin T et al. 2020. Green gravel: a novel restoration tool to combat kelp forests decline. Sci. Rep. 10:3983
    [Google Scholar]
  95. Gabler CA, Osland MJ, Grace JB, Stagg CL, Day RH et al. 2017. Macroclimatic change expected to transform coastal wetland ecosystems this century. Nat. Clim. Change 7:14247
    [Google Scholar]
  96. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P et al. 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15:1090103
    [Google Scholar]
  97. Gedan KB, Bertness MD. 2009. Experimental warming causes rapid loss of plant diversity in New England salt marshes. Ecol. Lett. 12:84248
    [Google Scholar]
  98. George R, Gullström M, Mtolera MSP, Lyimo TJ, Björk M. 2020. Methane emission and sulfide levels increase in tropical seagrass sediments during temperature stress: a mesocosm experiment. BMC Ecol. Evol. 10:191728
    [Google Scholar]
  99. Glasby TM, Gibson PT, Laird R, Swadling DS, West G. 2023. Black summer bushfires caused extensive damage to estuarine wetlands in New South Wales, Australia. Ecol. Manag. Restor. Ecol. 24:2735
    [Google Scholar]
  100. Gledhill JH, Barnett AF, Slattery M, Willett KL, Easson GL et al. 2020. Mass mortality of the eastern oyster Crassostrea virginica in the western Mississippi Sound following unprecedented Mississippi River flooding in 2019. J. Shellfish Res. 39:23544
    [Google Scholar]
  101. Glynn PW. 1993. Coral reef bleaching: ecological perspectives. Coral Reefs 12:117
    [Google Scholar]
  102. Grabowski JH, Brumbaugh RD, Conrad RF, Keeler AG, Opaluch JJ et al. 2012. Economic valuation of ecosystem services provided by oyster reefs. BioScience 62:9009
    [Google Scholar]
  103. Groner ML, Eisenlord ME, Yoshioka RM, Fiorenza EA, Dawkins PD et al. 2021. Warming sea surface temperatures fuel summer epidemics of eelgrass wasting disease. Mar. Ecol. Prog. Ser. 679:4758
    [Google Scholar]
  104. Guerrero-Meseguer L, Cox TE, Sanz-Lázaro C, Schmid S, Enzor LA et al. 2020. Does ocean acidification benefit seagrasses in a mesohaline environment? A mesocosm experiment in the northern Gulf of Mexico. Estuaries Coasts 43:137793
    [Google Scholar]
  105. Gundersen H, Bryan T, Chen W, Moy FE, Sandman ANS et al. 2017. Ecosystem services in the coastal zone of the Nordic countries Rep. Nordic Counc. Minist. Copenhagen, Den.:
  106. Gurgel CFD, Camacho O, Minne AJP, Wernberg T, Coleman MA. 2020. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30:1199206.e2
    [Google Scholar]
  107. Harley CDG. 2008. Tidal dynamics, topographic orientation, and temperature-mediated mass mortalities on rocky shores. Mar. Ecol. Prog. Ser. 371:3746
    [Google Scholar]
  108. Harris DL, Rovere A, Casella E, Power H, Canavesio R et al. 2018. Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Sci. Adv. 4:eaao4350
    [Google Scholar]
  109. He Q, Silliman BR. 2019. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29:R102135
    [Google Scholar]
  110. He Q, Silliman BR, Liu Z, Cui B. 2017. Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecol. Lett. 20:194201
    [Google Scholar]
  111. Helmuth B, Harley CDG, Halpin PM, O'Donnell M, Hofmann GE, Blanchette CA 2002. Climate change and latitudinal patterns of intertidal thermal stress. Science 298:101517
    [Google Scholar]
  112. Hesketh AV, Harley CDG. 2023. Extreme heatwave drives topography-dependent patterns of mortality in a bed-forming intertidal barnacle, with implications for associated community structure. Glob. Change Biol. 29:16578
    [Google Scholar]
  113. Hoegh-Guldberg O. 2011. Coral reef ecosystems and anthropogenic climate change. Reg. Environ. Change 11:21527
    [Google Scholar]
  114. Hudson CJ, Agostini S, Wada S, Hall-Spencer JM, Connell SD, Harvey BP. 2023. Ocean acidification increases the impact of typhoons on algal communities. Sci. Total Environ. 865:161269
    [Google Scholar]
  115. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT et al. 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:8083
    [Google Scholar]
  116. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD et al. 2017. Global warming and recurrent mass bleaching of corals. Nature 543:37377
    [Google Scholar]
  117. Huston MA. 1994. Biological Diversity: The Coexistence of Species on Changing Landscapes Cambridge, UK: Cambridge Univ. Press
  118. Hyndes GA, Heck KL, Vergés A, Harvey ES, Kendrick GA et al. 2016. Accelerating tropicalization and the transformation of temperate seagrass meadows. BioScience 66:93848
    [Google Scholar]
  119. IPCC (Intergov. Panel Clim. Change) 2021. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan et al. Cambridge, UK: Cambridge Univ. Press
  120. IPCC (Intergov. Panel Clim. Change) 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change H-O Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck et al. Cambridge, UK: Cambridge Univ. Press
  121. Jacotot A, Marchand C, Gensous S, Allenbach M. 2018. Effects of elevated atmospheric CO2 and increased tidal flooding on leaf gas-exchange parameters of two common mangrove species: Avicennia marina and Rhizophora stylosa. Photosynth. Res. 138:24960
    [Google Scholar]
  122. Jayathilake DRM, Costello MJ. 2018. A modelled global distribution of the seagrass biome. Biol. Conserv. 226:12026
    [Google Scholar]
  123. Jayathilake DRM, Costello MJ. 2021. Version 2 of the world map of laminarian kelp benefits from more Arctic data and makes it the largest marine biome. Biol. Conserv. 257:109099
    [Google Scholar]
  124. Jones CG, Lawton JH, Shachak M. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:194657
    [Google Scholar]
  125. Keith DA, Ferrer-Paris JR, Nicholson E, Bishop MJ, Polidoro BA et al. 2022. A function-based typology for Earth's ecosystems. Nature 610:51318
    [Google Scholar]
  126. Kendrick GA, Nowicki RJ, Olsen YS, Strydom S, Fraser MW et al. 2019. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6:455
    [Google Scholar]
  127. Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P et al. 2015. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci. Total Environ. 534:97109
    [Google Scholar]
  128. Kirwan ML, Gedan KB. 2019. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9:45057
    [Google Scholar]
  129. Kitchel ZJ, Conrad HM, Selden RL, Pinsky ML. 2022. The role of continental shelf bathymetry in shaping marine range shifts in the face of climate change. Glob. Change Biol. 28:518599
    [Google Scholar]
  130. Koch M, Bowes G, Ross C, Zhang XH. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19:10332
    [Google Scholar]
  131. Kochmann J, Buschbaum C, Volkenborn N, Reise K. 2008. Shift from native mussels to alien oysters: differential effects of ecosystem engineers. J. Exp. Mar. Biol. Ecol. 364:110
    [Google Scholar]
  132. Kordas RL, Harley CDG, O'Connor MI 2011. Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400:21826
    [Google Scholar]
  133. Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N et al. 2014. How mangrove forests adjust to rising sea level. New Phytol. 202:1934
    [Google Scholar]
  134. Krauss KW, Osland MJ. 2020. Tropical cyclones and the organization of mangrove forests: a review. Ann. Bot. 125:21334
    [Google Scholar]
  135. Krumhansl KA, Okamoto DK, Rassweiler A, Novak M, Bolton JJ et al. 2016. Global patterns of kelp forest change over the past half-century. PNAS 113:1378590
    [Google Scholar]
  136. Lagomasino D, Fatoyinbo T, Castañeda-Moya E, Cook BD, Montesano PM et al. 2021. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nat. Commun. 12:4003
    [Google Scholar]
  137. Langston AK, Kaplan DA, Angelini C. 2017. Predation restricts black mangrove (Avicennia germinans) colonization at its northern range limit along Florida's Gulf Coast. Hydrobiologia 803:31731
    [Google Scholar]
  138. Lenihan HS, Peterson CH. 1998. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Ecol. Appl. 8:12840
    [Google Scholar]
  139. Leo KL, Gillies CL, Fitzsimons JA, Hale LZ, Beck MW. 2019. Coastal habitat squeeze: a review of adaptation solutions for saltmarsh, mangrove and beach habitats. Ocean Coast. Manag. 175:18090
    [Google Scholar]
  140. Leung JYS, Zhang S, Connell SD. 2022. Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades. Small 18:2107407
    [Google Scholar]
  141. Li J, Knapp DE, Fabina NS, Kennedy EV, Larsen K et al. 2020. A global coral reef probability map generated using convolutional neural networks. Coral Reefs 39:180515
    [Google Scholar]
  142. Li S-H, Ge Z-M, Xie L-N, Chen W, Yuan L et al. 2018. Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity: implications for the effects of sea-level rise. Sci. Rep. 8:2441
    [Google Scholar]
  143. Lindahl U, Öhman MC, Schelten CK. 2001. The 1997/1998 mass mortality of corals: effects on fish communities on a Tanzanian coral reef. Mar. Pollut. Bull. 42:12731
    [Google Scholar]
  144. Ling SD. 2008. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156:88394
    [Google Scholar]
  145. Ling SD, Johnson CR, Ridgway K, Hobday AJ, Haddon M. 2009. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15:71931
    [Google Scholar]
  146. Logan CA, Dunne JP, Ryan JS, Baskett ML, Donner SD. 2021. Quantifying global potential for coral evolutionary response to climate change. Nat. Clim. Change 11:53742
    [Google Scholar]
  147. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R. 2001. Coral bleaching: the winners and the losers. Ecol. Lett. 4:12231
    [Google Scholar]
  148. Lugo AE, Snedaker SC. 1974. The ecology of mangroves. Annu. Rev. Ecol. Syst. 5:3964
    [Google Scholar]
  149. Madden I, Mariwala A, Lindhart M, Narayan S, Arkema K et al. 2023. Quantifying the fragility of the coral reefs to hurricane impacts: a case study of the Florida Keys and Puerto Rico. Environ. Res. Lett. 18:024034
    [Google Scholar]
  150. Madin JS, Allen AP, Baird AH, Pandolfi JM, Sommer B. 2016. Scope for latitudinal extension of reef corals is species specific. Front. Biogeogr. 8:e29328
    [Google Scholar]
  151. Magalhães L, de Montaudouin X, Figueira E, Freitas R. 2018. Trematode infection modulates cockles biochemical response to climate change. Sci. Total Environ. 637:3040
    [Google Scholar]
  152. Magel CL, Chan F, Hessing-Lewis M, Hacker SD. 2022. Differential responses of eelgrass and macroalgae in Pacific Northwest estuaries following an unprecedented NE Pacific Ocean marine heatwave. Front. Mar. Sci. 9:838967
    [Google Scholar]
  153. Magel JMT, Dimoff SA, Baum JK. 2020. Direct and indirect effects of climate change-amplified pulse heat stress events on coral reef fish communities. Bull. Ecol. Soc. Am. 101:e01706
    [Google Scholar]
  154. Manea A, Geedicke I, Leishman MR. 2020. Elevated carbon dioxide and reduced salinity enhance mangrove seedling establishment in an artificial saltmarsh community. Oecologia 192:27380
    [Google Scholar]
  155. Marbà N, Duarte CM. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16:236675
    [Google Scholar]
  156. Markert A, Esser W, Frank D, Wehrmann A, Exo K-M. 2013. Habitat change by the formation of alien Crassostrea-reefs in the Wadden Sea and its role as feeding sites for waterbirds. Estuar. Coast. Shelf Sci. 131:4151
    [Google Scholar]
  157. Markert A, Wehrmann A, Kröncke I. 2010. Recently established Crassostrea-reefs versus native Mytilus-beds: differences in ecosystem engineering affects the macrofaunal communities (Wadden Sea of Lower Saxony, southern German Bight). Biol. Invasions 12:1532
    [Google Scholar]
  158. Marois DE, Mitsch WJ. 2015. Coastal protection from tsunamis and cyclones provided by mangrove wetlands – a review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 11:7183
    [Google Scholar]
  159. Martin S, Hall-Spencer JM 2017. Effects of ocean warming and acidification on rhodolith/maërl beds. Rhodolith/Maërl Beds: A Global Perspective R Riosmena-Rodríguez, W Nelson, J Aguirre 5585. Cham, Switz.: Springer
    [Google Scholar]
  160. McAfee D, Bishop MJ, Yu T-N, Williams GA. 2018. Structural traits dictate abiotic stress amelioration by intertidal oysters. Funct. Ecol. 32:266677
    [Google Scholar]
  161. McClenachan G, Witt M, Walters LJ. 2021. Replacement of oyster reefs by mangroves: unexpected climate-driven ecosystem shifts. Glob. Change Biol. 27:122638
    [Google Scholar]
  162. McKee KL. 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar. Coast. Shelf Sci. 91:47583
    [Google Scholar]
  163. McKee KL, Rogers K, Saintilan N. 2012. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea level. Global Change and the Function and Distribution of Wetlands BA Middleton 6396. Dordrecht, Neth.: Springer
    [Google Scholar]
  164. McKenzie LJ, Nordlund LM, Jones BL, Cullen-Unsworth LC, Roelfsema C, Unsworth RKF. 2020. The global distribution of seagrass meadows. Environ. Res. Lett. 15:074041
    [Google Scholar]
  165. McOwen CJ, Weatherdon LV, Van Bochove J-W, Sullivan E, Blyth S et al. 2017. A global map of saltmarshes. Biodivers. Data J. 5:e11764
    [Google Scholar]
  166. Medina E, Francisco M. 1997. Osmolality and δ13C of leaf tissues of mangrove species from environments of contrasting rainfall and salinity. Estuar. Coast. Shelf Sci. 45:33744
    [Google Scholar]
  167. Mislan KAS, Wethey DS. 2015. A biophysical basis for patchy mortality during heat waves. Ecology 96:9027
    [Google Scholar]
  168. Möbius K. 1877. Die Auster und die Austernwirtschaft Berlin: Wiegundt, Hempel & Parey
  169. Moon I-J, Kim S-H, Chan JCL. 2019. Climate change and tropical cyclone trend. Nature 570:E35
    [Google Scholar]
  170. Mora-Soto A, Capsey A, Friedlander AM, Palacios M, Brewin PE et al. 2021. One of the least disturbed marine coastal ecosystems on Earth: spatial and temporal persistence of Darwin's sub-Antarctic giant kelp forests. J. Biogeogr. 48:256277
    [Google Scholar]
  171. Muir PR, Pichon M 2019. Biodiversity of reef-building, scleractinian corals. Mesophotic Coral Ecosystems Y Loya, K Puglise, T Bridge 589620. Cham, Switz.: Springer
    [Google Scholar]
  172. Nowicki RJ, Thomson JA, Fourqurean JW, Wirsing AJ, Heithaus MR. 2021. Loss of predation risk from apex predators can exacerbate marine tropicalization caused by extreme climatic events. J. Anim. Ecol. 90:204152
    [Google Scholar]
  173. Oliver ECJ, Burrows MT, Donat MG, Sen Gupta A, Alexander LV et al. 2019. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6:734
    [Google Scholar]
  174. Ong EZ, Briffa M, Moens T, Van Colen C. 2017. Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule. Mar. Environ. Res. 130:3847
    [Google Scholar]
  175. Osland M, Enwright N, Day R, Doyle T. 2013. Winter climate change and coastal wetland foundation species: salt marshes versus mangrove forests in the southeastern U.S.. Glob. Change Biol. 19:148294
    [Google Scholar]
  176. Paine RT. 1966. Food web complexity and species diversity. Am. Nat. 100:6575
    [Google Scholar]
  177. Paling EI, Kobryn HT, Humphreys G. 2008. Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia. Estuar. Coast. Shelf Sci. 77:60313
    [Google Scholar]
  178. Parker LM, Ross PM, O'Connor WA. 2009. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob. Change Biol. 15:212336
    [Google Scholar]
  179. Paul M, Bischoff C, Koop-Jakobsen K. 2022. Biomechanical traits of salt marsh vegetation are insensitive to future climate scenarios. Sci. Rep. 12:21272
    [Google Scholar]
  180. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS ONE 7:e43542
    [Google Scholar]
  181. Pérez-Romero JA, Duarte B, Barcia-Piedras J-M, Matos AR, Redondo-Gómez S et al. 2019. Investigating the physiological mechanisms underlying Salicornia ramosissima response to atmospheric CO2 enrichment under coexistence of prolonged soil flooding and saline excess. Plant Physiol. Biogeochem. 135:14959
    [Google Scholar]
  182. Pessarrodona A, Assis J, Filbee-Dexter K, Burrows MT, Gattuso J-P et al. 2022. Global seaweed productivity. Sci. Adv. 8:eabn2465
    [Google Scholar]
  183. Pessarrodona A, Moore PJ, Sayer MDJ, Smale DA. 2018. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate. Glob. Change Biol. 24:438698
    [Google Scholar]
  184. Phan LK, van Thiel de Vries JS, Stive MJ. 2014. Coastal mangrove squeeze in the Mekong Delta. J. Coast. Res. 31:23343
    [Google Scholar]
  185. Pillay D, Waspe C. 2019. Grazer specialisation and temperature effects on epiphytic fouling: conservation implications for a temperate African seagrass (Zostera capensis). Mar. Ecol. Prog. Ser. 629:23541
    [Google Scholar]
  186. Pinsky ML, Selden RL, Kitchel ZJ. 2020. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci. 12:15379
    [Google Scholar]
  187. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS et al. 2013. Global imprint of climate change on marine life. Nat. Clim. Change 3:91925
    [Google Scholar]
  188. Pontee N, Tempest JA, Pye K, Blott SJ. 2022. Defining habitat losses due to coastal squeeze. Challenges in Estuarine and Coastal Science J Humphreys, S Little 11331. London: Pelagic
    [Google Scholar]
  189. Power ME, Tilman D, Estes JA, Menge BA, Bond WJ et al. 1996. Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. BioScience 46:60920
    [Google Scholar]
  190. Precht WF, Aronson RB. 2004. Climate flickers and range shifts of reef corals. Front. Ecol. Environ. 2:30714
    [Google Scholar]
  191. Rasheed MA, Unsworth RKF. 2011. Long-term climate-associated dynamics of a tropical seagrass meadow: implications for the future. Mar. Ecol. Prog. Ser. 422:93103
    [Google Scholar]
  192. Rasquinha DN, Mishra DR. 2021. Tropical cyclones shape mangrove productivity gradients in the Indian subcontinent. Sci. Rep. 11:17355
    [Google Scholar]
  193. Ravaglioli C, Lardicci C, Pusceddu A, Arpe E, Bianchelli S et al. 2020. Ocean acidification alters meiobenthic assemblage composition and organic matter degradation rates in seagrass sediments. Limnol. Oceanogr. 65:3750
    [Google Scholar]
  194. Raw JL, Adams JB, Bornman TG, Riddin T, Vanderklift MA. 2021. Vulnerability to sea-level rise and the potential for restoration to enhance blue carbon storage in salt marshes of an urban estuary. Estuar. Coast. Shelf Sci. 260:107495
    [Google Scholar]
  195. Raw JL, Godbold JA, van Niekerk L, Adams JB. 2019. Drivers of mangrove distribution at the high-energy, wave-dominated, southern African range limit. Estuar. Coast. Shelf Sci. 226:106296
    [Google Scholar]
  196. Raymond WW, Barber JS, Dethier MN, Hayford HA, Harley CDG et al. 2022. Assessment of the impacts of an unprecedented heatwave on intertidal shellfish of the Salish Sea. Ecology 103:e3798
    [Google Scholar]
  197. Reef R, Winter K, Morales J, Adame MF, Reef DL, Lovelock CE. 2015. The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities. Physiol. Plant. 154:35868
    [Google Scholar]
  198. Reguero BG, Storlazzi CD, Gibbs AE, Shope JB, Cole AD et al. 2021. The value of US coral reefs for flood risk reduction. Nat. Sustain. 4:68898
    [Google Scholar]
  199. Ribeiro RDA, Rovai AS, Twilley RR, Castañeda-Moya E. 2019. Spatial variability of mangrove primary productivity in the neotropics. Ecosphere 10:e02841
    [Google Scholar]
  200. Richardson JP, Lefcheck JS, Orth RJ. 2018. Warming temperatures alter the relative abundance and distribution of two co-occurring foundational seagrasses in Chesapeake Bay, USA. Mar. Ecol. Prog. Ser. 599:6574
    [Google Scholar]
  201. Rogers K, Krauss KW. 2019. Moving from generalisations to specificity about mangrove–saltmarsh dynamics. Wetlands 39:115578
    [Google Scholar]
  202. Rogers-Bennett L, Catton CA. 2019. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9:15050
    [Google Scholar]
  203. Ross PM, Harvey K, Vecchio EM, Beckers D. 2019. Impact of fire and the recovery of molluscs in south-east Australian salt marsh. Ecol. Manag. Restor. 20:12635
    [Google Scholar]
  204. Ruesink JL, Lenihan HS, Trimble AC, Heiman KW, Micheli F et al. 2005. Introduction of non-native oysters: ecosystem effects and restoration implications. Annu. Rev. Ecol. Evol. Syst. 36:64389
    [Google Scholar]
  205. Saderne V, Cusack M, Almahasheer H, Serrano O, Masque P et al. 2018. Accumulation of carbonates contributes to coastal vegetated ecosystems keeping pace with sea level rise in an arid region (Arabian Peninsula). J. Geophys. Res. 123:1498510
    [Google Scholar]
  206. Saenger P. 2002. Mangrove Ecology, Silviculture and Conservation Dordrecht, Neth.: Kluwer Acad.
  207. Saintilan N, Khan N, Ashe E, Kelleway J, Rogers K et al. 2020. Thresholds of mangrove survival under rapid sea level rise. Science 368:111821
    [Google Scholar]
  208. Saintilan N, Rogers K. 2015. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. New Phytol. 205:106270
    [Google Scholar]
  209. Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW. 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob. Change Biol. 20:14757
    [Google Scholar]
  210. Sandilyan S, Kathiresan K. 2012. Mangrove conservation: a global perspective. Biodivers. Conserv. 21:352342
    [Google Scholar]
  211. Sanford E. 1999. Regulation of keystone predation by small changes in ocean temperature. Science 283:209597
    [Google Scholar]
  212. Saunders MI, Metaxas A, Filgueira R. 2010. Implications of warming temperatures for population outbreaks of a nonindigenous species (Membranipora membranacea, Bryozoa) in rocky subtidal ecosystems. Limnol. Oceanogr. 55:162742
    [Google Scholar]
  213. Schuerch M, Spencer T, Temmerman S, Kirwan ML, Wolff C et al. 2018. Future response of global coastal wetlands to sea-level rise. Nature 561:23134
    [Google Scholar]
  214. Selig ER, Casey KS, Bruno JF. 2010. New insights into global patterns of ocean temperature anomalies: implications for coral reef health and management. Glob. Ecol. Biogeogr. 19:397411
    [Google Scholar]
  215. Sheppard C, Sheppard A, Fenner D. 2020. Coral mass mortalities in the Chagos Archipelago over 40 years: regional species and assemblage extinctions and indications of positive feedbacks. Mar. Pollut. Bull. 154:111075
    [Google Scholar]
  216. Short F, Carruthers T, Dennison W, Waycott M. 2007. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. 350:320
    [Google Scholar]
  217. Sigwart JD, Wong NLWS, Esa Y. 2021. Global controversy in oyster systematics and a newly described species from SE Asia (Bivalvia: Ostreidae: Crassostreinae). Mar. Biodivers. 51:83
    [Google Scholar]
  218. Silliman BR. 2014. Salt marshes. Curr. Biol. 24:R34850
    [Google Scholar]
  219. Silliman BR, Bertness M. 2002. A trophic cascade regulates salt marsh primary production. PNAS 99:105005
    [Google Scholar]
  220. Silliman BR, Bertness MD, Altieri AH, Griffin JN, Bazterrica MC et al. 2011. Whole-community facilitation regulates biodiversity on Patagonian rocky shores. PLOS ONE 6:e24502
    [Google Scholar]
  221. Silliman BR, van de Koppel J, Bertness MD, Stanton LE, Mendelssohn IA. 2005. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310:18036
    [Google Scholar]
  222. Simard M, Fatoyinbo L, Smetanka C, Rivera-Monroy VH, Castañeda-Moya E et al. 2019. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12:40
    [Google Scholar]
  223. Simonson EJ, Metaxas A, Scheibling RE. 2015. Kelp in hot water: II. Effects of warming seawater temperature on kelp quality as a food source and settlement substrate. Mar. Ecol. Prog. Ser. 537:10519
    [Google Scholar]
  224. Sippo JZ, Lovelock CE, Santos IR, Sanders CJ, Maher DT. 2018. Mangrove mortality in a changing climate: an overview. Estuar. Coast. Shelf Sci. 215:24149
    [Google Scholar]
  225. Smale DA. 2020. Impacts of ocean warming on kelp forest ecosystems. New Phytol. 225:144754
    [Google Scholar]
  226. Smale DA, Teagle H, Hawkins SJ, Jenkins HL, Frontier N et al. 2022. Climate-driven substitution of foundation species causes breakdown of a facilitation cascade with potential implications for higher trophic levels. J. Ecol. 110:213244
    [Google Scholar]
  227. Smale DA, Wernberg T, Oliver EJJ, Thomsen MS, Harvey BP et al. 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9:30612
    [Google Scholar]
  228. Smale DA, Wernberg T, Yunnie ALE, Vance T. 2015. The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Mar. Ecol. 36:103344
    [Google Scholar]
  229. Smith AM, Riedi MA, Winter DJ. 2013. Temperate reefs in a changing ocean: skeletal carbonate mineralogy of serpulids. Mar. Biol. 160:228194
    [Google Scholar]
  230. Smith JN. 2001. Why should we believe 210Pb sediment geochronologies?. J. Environ. Radioact. 55:12123
    [Google Scholar]
  231. Smith KE, Burrows MT, Hobday AJ, Gupta AS, Moore PJ et al. 2021. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374:eabj3593
    [Google Scholar]
  232. Smith KE, Burrows MT, Hobday AJ, King NG, Moore PJ et al. 2023. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15:11945
    [Google Scholar]
  233. Sorte CJ, Williams SL, Carlton JT. 2010. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 19:30316
    [Google Scholar]
  234. Spalding M, Burke L, Wood SA, Ashpole J, Hutchison J, zu Ermgassen P. 2017. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82:10413
    [Google Scholar]
  235. Starko S, Neufeld CJ, Gendall L, Timmer B, Campbell L et al. 2022. Microclimate predicts kelp forest extinction in the face of direct and indirect marine heatwave effects. Ecol. Appl. 32:e2673
    [Google Scholar]
  236. Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan K-S, Lima M. 2002. Ecological effects of climate fluctuations. Science 297:129296
    [Google Scholar]
  237. Strydom S, Murray K, Wilson S, Huntley B, Rule M et al. 2020. Too hot to handle: unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob. Change Biol. 26:352538
    [Google Scholar]
  238. Taillie PJ, Roman-Cuesta R, Lagomasino D, Cifuentes-Jara M, Fatoyinbo T et al. 2020. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 15:064010
    [Google Scholar]
  239. Tait LW, Thoral F, Pinkerton MH, Thomsen MS, Schiel DR. 2021. Loss of giant kelp, Macrocystis pyrifera, driven by marine heatwaves and exacerbated by poor water clarity in New Zealand. Front. Mar. Sci. 8:721087
    [Google Scholar]
  240. Tanaka K, Taino S, Haraguchi H, Prendergast G, Hiraoka M. 2012. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. BMC Ecol. Evol. 2:285465
    [Google Scholar]
  241. Teagle H, Smale DA. 2018. Climate-driven substitution of habitat-forming species leads to reduced biodiversity within a temperate marine community. Divers. Distrib. 24:136780
    [Google Scholar]
  242. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann M et al. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31:7992
    [Google Scholar]
  243. Theuerkauf SJ, Lipcius RN. 2016. Quantitative validation of a habitat suitability index for oyster restoration. Front. Mar. Sci. 3:64
    [Google Scholar]
  244. Thomsen MS, Mondardini L, Alestra T, Gerrity S, Tait L et al. 2019. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6:84
    [Google Scholar]
  245. Thomsen MS, South PM. 2019. Communities and attachment networks associated with primary, secondary and alternative foundation species; a case study of stressed and disturbed stands of southern bull kelp. Diversity 11:56
    [Google Scholar]
  246. Thomsen MS, Wernberg T, Altieri A, Tuya F, Gulbransen D et al. 2010. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr. Comp. Biol. 50:15875
    [Google Scholar]
  247. Thomsen MS, Wernberg T, Engelen AH, Tuya F, Vanderklift MA et al. 2012. A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLOS ONE 7:e28595
    [Google Scholar]
  248. Torio DD, Chmura GL. 2013. Assessing coastal squeeze of tidal wetlands. J. Coast. Res. 29:104961
    [Google Scholar]
  249. Trevathan-Tackett SM, Brodersen KE, Macreadie PI. 2020. Effects of elevated temperature on microbial breakdown of seagrass leaf and tea litter biomass. Biogeochemistry 151:17185
    [Google Scholar]
  250. van Oppen MJH, Oliver JK, Putnam HM, Gates RD. 2015. Building coral reef resilience through assisted evolution. PNAS 112:230713
    [Google Scholar]
  251. Vanderklift MA, Doropoulos C, Gorman D, Leal I, Minne AJP et al. 2020. Using propagules to restore coastal marine ecosystems. Front. Mar. Sci. 7:724
    [Google Scholar]
  252. Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH et al. 2014. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281:20140846
    [Google Scholar]
  253. Viana IG, Siriwardane-de Zoysa R, Willette DA, Gillis LG. 2019. Exploring how non-native seagrass species could provide essential ecosystems services: a perspective on the highly invasive seagrass Halophila stipulacea in the Caribbean Sea. Biol. Invasions 21:146172
    [Google Scholar]
  254. Voolstra CR, Suggett DJ, Peixoto RS, Parkinson JE, Quigley KM et al. 2021. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Microbiol. 2:74762
    [Google Scholar]
  255. Walsh GE. 1974. Mangroves: a review. Ecology of Halophytes RJ Reimold, WH Queen 51174. London: Academic
    [Google Scholar]
  256. Walther G-R, Post E, Convey P, Menzel A, Parmesan C et al. 2002. Ecological responses to recent climate change. Nature 416:38995
    [Google Scholar]
  257. Ward RD, Friess DA, Day RH, Mackenzie RA. 2016. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Health Sustain. 2:e01211
    [Google Scholar]
  258. Watson JC, Hawkes MW, Lee LC, Lamb A. 2021. The dynamics and geographic disjunction of the kelp Eisenia arborea along the west coast of Canada. Bot. Mar. 64:395406
    [Google Scholar]
  259. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106:1237781
    [Google Scholar]
  260. Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K et al. 2016. Climate-driven regime shift of a temperate marine ecosystem. Science 353:16972
    [Google Scholar]
  261. Wernberg T, Filbee-Dexter K. 2019. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612:20915
    [Google Scholar]
  262. Wernberg T, Krumhansl K, Filbee-Dexter K, Pedersen M. 2019. Status and trends for the world's kelp forests. World Seas: An Environmental Evaluation C Sheppard 5778. London: Elsevier
    [Google Scholar]
  263. Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJA et al. 2011. Seaweed communities in retreat from ocean warming. Curr. Biol. 21:182832
    [Google Scholar]
  264. Wesselmann M, Chefaoui RM, Marbà N, Serrao EA, Duarte CM. 2021. Warming threatens to propel the expansion of the exotic seagrass Halophila stipulacea. Front. . Mar. Sci. 8:759676
    [Google Scholar]
  265. Whalen MA, Starko S, Lindstrom SC, Martone PT 2023. Heatwave restructures marine intertidal communities across a stress gradient. Ecology 104(5):e4027
    [Google Scholar]
  266. Williams-Jara GM, Espinoza-Tenorio A, Monzón-Alvarado C, Posada-Vanegas G, Infante-Mata D. 2022. Fires in coastal wetlands: a review of research trends and management opportunities. Wetlands 42:56
    [Google Scholar]
  267. Wilson KL, Lotze HK. 2019. Climate change projections reveal range shifts of eelgrass Zostera marina in the Northwest Atlantic. Mar. Ecol. Prog. Ser. 620:4762
    [Google Scholar]
  268. Wismer S, Tebbett SB, Streit RP, Bellwood DR. 2019. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650:148798
    [Google Scholar]
  269. Woodroffe CD, Rogers K, McKee KL, Lovelock CE, Mendelssohn I, Saintilan N. 2016. Mangrove sedimentation and response to relative sea-level rise. Annu. Rev. Mar. Sci. 8:24366
    [Google Scholar]
  270. WoRMS Ed. Board 2023. World Register of Marine Species https://www.marinespecies.org
  271. Wright LS, Pessarrodona A, Foggo A. 2022. Climate-driven shifts in kelp forest composition reduce carbon sequestration potential. Glob. Change Biol. 28:551431
    [Google Scholar]
  272. Xiao X, de Bettignies T, Olsen YS, Agusti S, Duarte CM, Wernberg T. 2015. Sensitivity and acclimation of three canopy-forming seaweeds to UVB radiation and warming. PLOS ONE 10:e0143031
    [Google Scholar]
  273. Zarco-Perello S, Carroll G, Vanderklift M, Holmes T, Langlois TJ, Wernberg T. 2020. Range-extending tropical herbivores increase diversity, intensity and extent of herbivory functions in temperate marine ecosystems. Funct. Ecol. 34:241121
    [Google Scholar]
  274. Zardi GI, Nicastro KR, McQuaid CD, Ng TPT, Lathlean J, Seuront L. 2016. Enemies with benefits: parasitic endoliths protect mussels against heat stress. Sci. Rep. 6:31413
    [Google Scholar]
  275. Zhu C, Langley JA, Ziska LH, Cahoon DR, Megonigal JP. 2022. Accelerated sea-level rise is suppressing CO2 stimulation of tidal marsh productivity: a 33-year study. Sci. Adv. 8:eabn0054
    [Google Scholar]
  276. Zippay ML, Helmuth B. 2012. Effects of temperature change on mussel. Mytilus. Integr. Zool. 7:31227
    [Google Scholar]
/content/journals/10.1146/annurev-marine-042023-093037
Loading
/content/journals/10.1146/annurev-marine-042023-093037
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error