1932

Abstract

Surface temperature documents our changing climate, and the marine record represents one of the longest widely distributed, observation-based estimates. Measurements of near-surface marine air temperature and sea-surface temperature have been recorded on platforms ranging from sailing ships to autonomous drifting buoys. The raw observations show an imprint of differing measurement methods and are sparse in certain periods and regions. This review describes how the real signal of global climate change can be determined from these sparse and noisy observations, including the quantification of measurement method–dependent biases and the reduction of spurious signals. Recent progress has come from analysis of the observations at increasing levels of granularity and from accounting for artifacts in the data that depend on platform types, measurement methods, and environmental conditions. Cutting across these effects are others caused by how the data were recorded, transcribed, and archived. These insights will be integrated into the next generation of global products quantified with validated estimates of uncertainty and the dependencies of its correlation structure. Further analysis of these records using improved data, metadata, and methods will certainly uncover more idiosyncrasies and new ways to improve the record.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-042120-111807
2021-01-03
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-042120-111807.html?itemId=/content/journals/10.1146/annurev-marine-042120-111807&mimeType=html&fmt=ahah

Literature Cited

  1. Allan R, Endfield G, Damodaran V, Adamson G, Hannaford M et al. 2016. Toward integrated historical climate research: the example of Atmospheric Circulation Reconstructions over the Earth. Wiley Interdiscip. Rev. Clim. Change 7:164–74
    [Google Scholar]
  2. Argo 2020. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE https://doi.org/10.17882/42182
    [Crossref] [Google Scholar]
  3. Ashford OM. 1948. A new bucket for measurement of sea surface temperature. Q. J. R. Meteorol. Soc. 74:99–104
    [Google Scholar]
  4. Atkinson CP, Rayner NA, Kennedy JJ, Good SA 2014. An integrated database of ocean temperature and salinity observations. J. Geophys. Res. Oceans 119:7139–63
    [Google Scholar]
  5. Atkinson CP, Rayner NA, Roberts-Jones J, Smith RO 2013. Assessing the quality of sea surface temperature observations from drifting buoys and ships on a platform-by-platform basis: assessing buoy and ship SST observations. J. Geophys. Res. Oceans 118:3507–29
    [Google Scholar]
  6. Banzon V, Smith TM, Steele M, Huang B, Zhang HM 2020. Improved estimation of proxy sea surface temperature in the arctic. J. Atmos. Ocean. Technol. 37:341–49
    [Google Scholar]
  7. Barnett TP. 1984. Long-term trends in surface temperature over the oceans. Mon. Weather Rev. 112:303–12
    [Google Scholar]
  8. Berry DI, Kent EC. 2005. The effect of instrument exposure on marine air temperatures: an assessment using VOSClim data. Int. J. Climatol. 25:1007–22
    [Google Scholar]
  9. Berry DI, Kent EC. 2009. A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Am. Meteorol. Soc. 90:645–56
    [Google Scholar]
  10. Berry DI, Kent EC. 2017. Assessing the health of the in situ global surface marine climate observing system. Int. J. Climatol. 37:2248–59
    [Google Scholar]
  11. Berry DI, Kent EC, Taylor PK 2004. An analytical model of heating errors in marine air temperatures from ships. J. Atmos. Ocean. Technol. 21:1198–215
    [Google Scholar]
  12. Bottomley M, Folland C, Hsiung J, Newell R, Parker D 1990. Global Ocean Surface Temperature Atlas “GOSTA.” Bracknell, UK/Cambridge, MA: Meteorol. Off./Mass. Inst. Technol.
    [Google Scholar]
  13. Bowditch N. 1802. The American Practical Navigator Washington, DC: US Navy Hydrogr. Off.
    [Google Scholar]
  14. Boyer TP, Antonov JI, Baranova OK, Coleman C, Garcia HE et al. 2016. World Ocean Database 2013 (NCEI accession 0117075) Data Set, Natl. Cent. Environ. Inf., Natl. Ocean. Atmos. Adm Silver Spring, MD: https://doi.org/10.7289/v54q7s16
    [Crossref] [Google Scholar]
  15. Brohan P, Allan R, Freeman JE, Waple AM, Wheeler D et al. 2009. Marine observations of old weather. Bull. Am. Meteorol. Soc. 90:219–30
    [Google Scholar]
  16. Brohan P, Allan R, Freeman JE, Wheeler D, Wilkinson C, Williamson F 2012. Constraining the temperature history of the past millennium using early instrumental observations. Clim. Past 8:1551–63
    [Google Scholar]
  17. Brooks C. 1928. Problems related to surface-water temperature: reliability of different methods of measuring sea-surface temperatures. J. Wash. Acad. Sci. 18:525–45
    [Google Scholar]
  18. Budyko MI, Yefimova NA, Aubenok LI, Strokina LA 1962. The heat balance of the surface of the earth. Soviet Geogr 3:3–16
    [Google Scholar]
  19. Bulgin C, Embury O, Corlett GK, Merchant C 2016. Independent uncertainty estimates for coefficient based sea surface temperature retrieval from the Along-Track Scanning Radiometer instruments. Remote Sens. Environ. 178:213–22
    [Google Scholar]
  20. Bunker AF. 1976. Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic Ocean. Mon. Weather Rev. 104:1122–40
    [Google Scholar]
  21. Businger JA, Wyngaard JC, Izumi Y, Bradley EF 1971. Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28:181–89
    [Google Scholar]
  22. Carella G. 2017. New estimates of uncertainty in the marine surface temperature record PhD Thesis, Univ. Southampton Southampton, UK:
    [Google Scholar]
  23. Carella G, Kennedy JJ, Berry DI, Hirahara S, Merchant CJ et al. 2018. Estimating sea surface temperature measurement methods using characteristic differences in the diurnal cycle. Geophys. Res. Lett. 45:363–71
    [Google Scholar]
  24. Carella G, Kent EC, Berry DI 2017a. A probabilistic approach to ship voyage reconstruction in ICOADS. Int. J. Climatol. 37:2233–47
    [Google Scholar]
  25. Carella G, Morris AKR, Pascal RW, Yelland MJ, Berry DI et al. 2017b. Measurements and models of the temperature change of water samples in sea-surface temperature buckets. Q. J. R. Meteorol. Soc. 143:2198–209
    [Google Scholar]
  26. Centurioni LR, Turton J, Lumpkin R, Braasch L, Brassington G et al. 2019. Global in situ observations of essential climate and ocean variables at the air–sea interface. Front. Mar. Sci. 6:419
    [Google Scholar]
  27. Chan D, Huybers P. 2019. Systematic differences in bucket sea surface temperature measurements among nations identified using a linear-mixed-effect method. J. Clim. 32:2569–89
    [Google Scholar]
  28. Chan D, Huybers P. 2020. Systematic differences in bucket sea surface temperature measurements caused by misclassification of engine room intake measurements. J. Clim. 33:773553
    [Google Scholar]
  29. Chan D, Kent EC, Berry DI, Huybers P 2019. Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming. Nature 571:393–97
    [Google Scholar]
  30. Chenoweth M. 1996. Nineteenth-century marine temperature data: comments on observing practices and potential biases in marine datasets. Weather 51:280–85
    [Google Scholar]
  31. Chenoweth M. 2000. A new methodology for homogenization of 19th century marine air temperature data. J. Geophys. Res. Atmos. 105:29145–54
    [Google Scholar]
  32. Chenoweth M. 2001. Two major volcanic cooling episodes derived from global marine air temperature, AD 1807–1827. Geophys. Res. Lett. 28:2963–66
    [Google Scholar]
  33. Christy JR. 2001. Differential trends in tropical sea surface and atmospheric temperatures since 1979. Geophys. Res. Lett. 28:183–86
    [Google Scholar]
  34. CIMO (Comm. Instr. Methods Obs.) 2017. Guide to Meteorological Instruments and Methods of Observation Geneva: World Meteorol. Organ.
    [Google Scholar]
  35. Cornes RC, Kent EC, Berry DI, Kennedy JJ 2020. CLASSnmat: a global night marine air temperature data set, 1880–2018. Geosci. Data J. https://doi.org/10.1002/gdj3.100
    [Crossref] [Google Scholar]
  36. Cowtan K, Hausfather Z, Hawkins E, Jacobs P, Mann ME et al. 2015. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 42:6526–34
    [Google Scholar]
  37. Cowtan K, Rohde R, Hausfather Z 2018. Evaluating biases in sea surface temperature records using coastal weather stations. Q. J. R. Meteorol. Soc. 144:670–81
    [Google Scholar]
  38. Cowtan K, Way RG. 2014. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140:1935–44
    [Google Scholar]
  39. Davis LLB, Thompson DWJ, Kennedy JJ, Kent EC 2019. The importance of unresolved biases in twentieth-century sea surface temperature observations. Bull. Am. Meteorol. Soc. 100:621–29
    [Google Scholar]
  40. Davis RE, Talley LD, Roemmich D, Owens WB, Rudnick DL et al. 2018. 100 years of progress in ocean observing systems. Meteorol. Monogr. 59:3.1–3.46
    [Google Scholar]
  41. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137:553–97
    [Google Scholar]
  42. Farmer G, Wigley TML, Jones PD, Salmon M 1989. Documenting and explaining recent global-mean temperature changes Rep., Clim. Res. Unit Norwich, UK:
    [Google Scholar]
  43. Folger T. 1787. Chart of the Gulf Stream. Philosophical and Miscellaneous Papers B Franklin, facing 122 London: C. Dilly
    [Google Scholar]
  44. Folland CK, Parker DE. 1995. Correction of instrumental biases in historical sea surface temperature data. Q. J. R. Meteorol. Soc. 121:319–67
    [Google Scholar]
  45. Folland CK, Parker DE, Kates FE 1984. Worldwide marine temperature fluctuations 1856–1981. Nature 310:670–73
    [Google Scholar]
  46. Folland CK, Rayner NA, Brown SJ, Smith TM, Shen SSP et al. 2001. Global temperature change and its uncertainties since 1861. Geophys. Res. Lett. 28:2621–24
    [Google Scholar]
  47. Folland CK, Salinger MJ. 1995. Surface temperature trends and variations in New Zealand and the surrounding ocean, 1871–1993. Int. J. Climatol. 15:1195–218
    [Google Scholar]
  48. Franklin B. 1786. A Letter from Dr. Benjamin Franklin, to Mr. Alphonsus le Roy, member of several academies, at Paris. Containing sundry maritime observations. Trans. Am. Philos. Soc. 2:294–329
    [Google Scholar]
  49. Freeman E, Kent EC, Brohan P, Cram T, Gates L et al. 2019. The International Comprehensive Ocean-Atmosphere Data Set – meeting users needs and future priorities. Front. Mar. Sci. 6:435
    [Google Scholar]
  50. Freeman E, Woodruff SD, Worley SJ, Lubker SJ, Kent EC et al. 2017. ICOADS release 3.0: a major update to the historical marine climate record. Int. J. Climatol. 37:2211–32
    [Google Scholar]
  51. Gu Z, Gu L, Eils R, Schlesner M, Brors B 2014. circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–12
    [Google Scholar]
  52. Hanawa K, Yasunaka S, Manabe T, Iwasaka N 2000. Examination of correction to historical SST data using long-term coastal SST data taken around Japan. J. Meteorol. Soc. Jpn. II 78:187–95
    [Google Scholar]
  53. Hausfather Z, Cowtan K, Clarke DC, Jacobs P, Richardson M, Rohde R 2017. Assessing recent warming using instrumentally homogeneous sea surface temperature records. Sci. Adv. 3:e1601207
    [Google Scholar]
  54. Hawkins E, Ortega P, Suckling E, Schurer A, Hegerl G et al. 2017. Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 98:1841–56
    [Google Scholar]
  55. Hegerl GC, Brönnimann S, Cowan T, Friedman AR, Hawkins E et al. 2019. Causes of climate change over the historical record. Environ. Res. Lett. 14:123006
    [Google Scholar]
  56. Hegerl GC, Brönnimann S, Schurer A, Cowan T 2018. The early 20th century warming: anomalies, causes, and consequences. Wiley Interdiscip. Rev. Clim. Change 9:e522
    [Google Scholar]
  57. Hirahara S, Ishii M, Fukuda Y 2014. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27:57–75
    [Google Scholar]
  58. Houghton JT, Jenkins GJ, Ephraums J 1990. Climate Change: the IPCC Scientific Assessment Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  59. Huang B, Angel W, Boyer T, Cheng L, Chepurin G et al. 2018. Evaluating SST analyses with independent ocean profile observations. J. Clim. 31:5015–30
    [Google Scholar]
  60. Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G et al. 2017. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30:8179–205
    [Google Scholar]
  61. James RW, Fox PT. 1972. Comparative sea surface temperature measurements Rep. Mar. Sci. Aff. 5, WMO Rep. 336 World Meteorol Organ., Geneva:
    [Google Scholar]
  62. Jones GS, Stott PA, Mitchell JFB 2016. Uncertainties in the attribution of greenhouse gas warming and implications for climate prediction. J. Geophys. Res. Atmos. 121:6969–92
    [Google Scholar]
  63. Jones P, Wigley T, Folland C, Parker D, Angell J et al. 1988. Evidence for global warming in the past decade. Nature 332:790
    [Google Scholar]
  64. Josey SA, Kent EC, Taylor PK 1999. New insights into the ocean heat budget closure problem from analysis of the SOC air-sea flux climatology. J. Clim. 12:2856–80
    [Google Scholar]
  65. Junod RA, Christy JR. 2020. A new compilation of globally gridded night-time marine air temperatures: the UAHNMATv1 dataset. Int. J. Climatol. 40:2609–23
    [Google Scholar]
  66. Kaplan A, Kushnir Y, Cane MA, Blumenthal MB 1997. Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J. Geophys. Res. Oceans 102:27835–60
    [Google Scholar]
  67. Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR et al. 2015. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348:1469–72
    [Google Scholar]
  68. Karspeck AR, Kaplan A, Sain SR 2012. Bayesian modelling and ensemble reconstruction of mid-scale spatial variability in North Atlantic sea-surface temperatures for 1850–2008. Q. J. R. Meteorol. Soc. 138:234–48
    [Google Scholar]
  69. Kennedy JJ. 2014. A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys. 52:1–32
    [Google Scholar]
  70. Kennedy JJ, Rayner NA, Atkinson CP, Killick RE 2019. An ensemble data set of sea surface temperature change from 1850: the Met Office Hadley Centre HadSST.4.0.0.0 data set. J. Geophys. Res. Atmos. 124:7719–63
    [Google Scholar]
  71. Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M 2011a. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res. Atmos. 116:D14103
    [Google Scholar]
  72. Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M 2011b. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res. Atmos. 116:D14104
    [Google Scholar]
  73. Kent EC, Kaplan A. 2006. Toward estimating climatic trends in SST. Part III: systematic biases. J. Atmos. Ocean. Technol. 23:487500
    [Google Scholar]
  74. Kent EC, Kennedy JJ, Berry DI, Smith RO 2010. Effects of instrumentation changes on sea surface temperature measured in situ. Wiley Interdiscip. Rev. Clim. Change 1:71828
    [Google Scholar]
  75. Kent EC, Kennedy JJ, Smith TM, Hirahara S, Huang B et al. 2017. A call for new approaches to quantifying biases in observations of sea surface temperature. Bull. Am. Meteorol. Soc. 98:160116
    [Google Scholar]
  76. Kent EC, Rayner NA, Berry DI, Eastman R, Grigorieva VG et al. 2019. Observing requirements for long-term climate records at the ocean surface. Front. Mar. Sci. 6:441
    [Google Scholar]
  77. Kent EC, Rayner NA, Berry DI, Saunby M, Moat BI et al. 2013. Global analysis of night marine air temperature and its uncertainty since 1880: the HadNMAT2 data set. J. Geophys. Res. Atmos. 118:128198
    [Google Scholar]
  78. Kent EC, Taylor PK. 2006. Toward estimating climatic trends in SST. Part I: methods of measurement. J. Atmos. Ocean. Technol. 23:46475
    [Google Scholar]
  79. Kent EC, Taylor PK, Truscott BS, Hopkins JS 1993. The accuracy of voluntary observing ships meteorological observations—results of the VSOP-NA.. J. Atmos. Ocean. Technol. 10:591608
    [Google Scholar]
  80. Kent EC, Woodruff SD, Berry DI 2007. Metadata from WMO Publication No. 47 and an assessment of voluntary observing ship observation heights in ICOADS. J. Atmos. Ocean. Technol. 24:21434
    [Google Scholar]
  81. Lenssen NJL, Schmidt GA, Hansen JE, Menne MJ, Persin A et al. 2019. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124:630726
    [Google Scholar]
  82. Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J et al. 2018. Global warming of 1.5°C: an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty Rep., World Meteorol. Organ Geneva:
    [Google Scholar]
  83. Matthews JBR. 2013. Comparing historical and modern methods of sea surface temperature measurement – part 1: review of methods, field comparisons and dataset adjustments. Ocean Sci 9:68394
    [Google Scholar]
  84. Maury MF. 1854. Maritime Conference Held at Brussels for Devising an Uniform System of Meteorological Observations at Sea, August and September 1853 Philadelphia: E.C. & J. Biddle
    [Google Scholar]
  85. Medhaug I, Stolpe MB, Fischer EM, Knutti R 2017. Reconciling controversies about the ‘global warming hiatus’. Nature 545:4147
    [Google Scholar]
  86. Merchant CJ, Embury O, Roberts-Jones J, Fiedler E, Bulgin CE et al. 2014. Sea surface temperature datasets for climate applications from phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci. Data J. 1:17991
    [Google Scholar]
  87. Minnett PJ, Alvera-Azcárate A, Chin T, Corlett G, Gentemann C et al. 2019. Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 233:111366
    [Google Scholar]
  88. Morak-Bozzo S, Merchant CJ, Kent EC, Berry DI, Carella G 2016. Climatological diurnal variability in sea surface temperature characterized from drifting buoy data. Geosci. Data J. 3:2028
    [Google Scholar]
  89. Morice CP, Kennedy JJ, Rayner NA, Jones PD 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos. 117:D08101
    [Google Scholar]
  90. Paltridge G, Woodruff S. 1981. Changes in global surface temperature from 1880 to 1977 derived from historical records of sea surface temperature. Mon. Weather Rev. 109:242734
    [Google Scholar]
  91. Parker DE, Folland CK, Jackson M 1995. Marine surface temperature: observed variations and data requirements. Clim. Change 31:559600
    [Google Scholar]
  92. Rayner NA, Auchmann R, Bessembinder J, Brönnimann S, Brugnara Y et al. 2020. The EUSTACE project: delivering global daily information on surface air temperature. Bull. Am. Meteorol. Soc. In press. https://doi.org/10.1175/BAMS-D-19-0095.1
    [Crossref] [Google Scholar]
  93. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ et al. 2006. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J. Clim. 19:44669
    [Google Scholar]
  94. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108:4407
    [Google Scholar]
  95. Rennell J. 1832. An Investigation of the Currents of the Atlantic Ocean, and of Those Which Prevail Between the Indian Ocean and the Atlantic London: J.G. & F. Rivington
    [Google Scholar]
  96. Reynolds RW. 1988. A real-time global sea surface temperature analysis. J. Clim. 1:7587
    [Google Scholar]
  97. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W 2002. An improved in situ and satellite SST analysis for climate. J. Clim. 15:160925
    [Google Scholar]
  98. Richardson M, Cowtan K, Hawkins E, Stolpe MB 2016. Reconciled climate response estimates from climate models and the energy budget of earth. Nat. Clim. Change 6:93135
    [Google Scholar]
  99. Rohde RA, Hausfather Z. 2020. The Berkeley Earth land/ocean temperature record. Earth Syst. Sci. Data Discuss. In review. https://doi.org/10.5194/essd-2019-259
    [Crossref] [Google Scholar]
  100. Rohde RA, Muller R, Jacobsen R, Perlmutter S, Rosenfeld A et al. 2013. Berkeley Earth temperature averaging process. Geoinform. Geostat. Overview 1: https://doi.org/10.4172/2327-4581.1000103
    [Crossref] [Google Scholar]
  101. Roll H. 1951. The accuracy of measuring water temperature with the water scoop thermometer (Marinepütz–German scoop thermometer). Ann. Meteorol. 10–12:48082
    [Google Scholar]
  102. Saur JFT. 1963. A study of the quality of sea water temperatures reported in logs of ships’ weather observations. J. Appl. Meteorol. 2:41725
    [Google Scholar]
  103. Schurer AP, Cowtan K, Hawkins E, Mann ME, Scott V, Tett SFB 2018. Interpretations of the Paris climate target. Nat. Geosci. 11:22021
    [Google Scholar]
  104. Slutz RJ, Lubker SJ, Hiscox JD, Woodruff SD, Jenne RL et al. 1985. Comprehensive Ocean-Atmosphere Data Set: Release 1 Boulder, CO: Clim. Res. Program, Environ. Res. Lab., Natl. Ocean. Atmos. Adm.
    [Google Scholar]
  105. Smith SR, Briggs K, Bourassa MA, Elya J, Paver CR 2018. Shipboard automated meteorological and oceanographic system data archive: 2005–2017. Geosci. Data J. 5:7386
    [Google Scholar]
  106. Smith TM, Reynolds RW. 2002. Bias corrections for historical sea surface temperatures based on marine air temperatures. J. Clim. 15:7387
    [Google Scholar]
  107. Stocker TF, Qin D, Plattner G, Tignor M, Allen S et al. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  108. Strickland W. 1802. On the use of the thermometer in navigation. Trans. Am. Philos. Soc. 5:90103
    [Google Scholar]
  109. Thompson DW, Kennedy JJ, Wallace JM, Jones PD 2008. A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453:64649
    [Google Scholar]
  110. Titchner HA, Rayner NA. 2014. The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2. J. Geophys. Res. Atmos. 119:286489
    [Google Scholar]
  111. Tokarska KB, Schleussner CF, Rogelj J, Stolpe MB, Matthews HD et al. 2019. Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy. Nat. Geosci. 12:96471
    [Google Scholar]
  112. Viglione G. 2020. How COVID-19 could ruin weather forecasts and climate records. Nature Apr. 13. https://www.nature.com/articles/d41586-020-00924-6
    [Google Scholar]
  113. Vose RS, Arndt D, Banzon VF, Easterling DR, Gleason B et al. 2012. NOAA merged land-ocean surface temperature analysis. Bull. Am. Meteorol. Soc. 93:167785
    [Google Scholar]
  114. Walker M. 2006. The weather observations of Surgeon Menzies. Weather 61:31519
    [Google Scholar]
  115. Wallbrink H, Koek F, Brandsma T 2009. The US Maury collection metadata 1796–1861 Rep. 225, HISKLIM-11 K. Ned. Meteorol. Inst De Bilt, Neth:.
    [Google Scholar]
  116. Wang J, Yang B, Ljungqvist FC, Luterbacher J, Osborn TJ et al. 2017. Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years. Nat. Geosci. 10:51217
    [Google Scholar]
  117. Wilkinson C, Woodruff SD, Brohan P, Claesson S, Freeman E et al. 2011. Recovery of logbooks and international marine data: the RECLAIM project. Int. J. Climatol. 31:96879
    [Google Scholar]
  118. Williams SPD, Berry DI. 2020. ACSIS Atlantic Ocean medium resolution SST dataset: reconstructed 5-day, half degree, Atlantic Ocean SST (1950–2014). Geosci. Data J. https://doi.org/10.1002/gdj3.94
    [Crossref] [Google Scholar]
  119. WMO (World Meteorol. Organ.) 1957. Abridged Final Report of the Second Session: Paris, 18th June - 6th July 1957 Geneva: World Meteorol. Organ.
    [Google Scholar]
  120. WMO (World Meteorol. Organ.) 1968. Abridged Final Report of the Fourth Session: Geneva, 23 November - 8 December 1964 Geneva: World Meteorol. Organ.
    [Google Scholar]
  121. WMO (World Meteorol. Organ.) 2018. Manual on the Global Telecommunication System: Annex III to the WMO Technical Regulations Geneva: World Meteorol. Organ.
    [Google Scholar]
  122. Woodruff SD, Diaz HF, Worley SJ, Reynolds RW, Lubker SJ 2005. Early ship observational data and ICOADS. Clim. Change 73:16994
    [Google Scholar]
  123. Woodruff SD, Worley SJ, Lubker SJ, Ji Z, Freeman JE et al. 2011. ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol. 31:95167
    [Google Scholar]
  124. Wright PB. 1986. Problems in the use of ship observations for the study of interdecadal climate changes. Mon. Weather Rev. 114:102834
    [Google Scholar]
/content/journals/10.1146/annurev-marine-042120-111807
Loading
/content/journals/10.1146/annurev-marine-042120-111807
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error