1932

Abstract

Aquatic eddy covariance (AEC) is increasingly being used to study benthic oxygen (O) flux dynamics, organic carbon cycling, and ecosystem health in marine and freshwater environments. Because it is a noninvasive technique, has a high temporal resolution (∼15 min), and integrates over a large area of the seafloor (typically 10–100 m2), it has provided new insights on the functioning of aquatic ecosystems under naturally varying in situ conditions and has given us more accurate assessments of their metabolism. In this review, we summarize biogeochemical, ecological, and biological insightsgained from AEC studies of marine ecosystems. A general finding for all substrates is that benthic O exchange is far more dynamic than earlier recognized, and thus accurate mean values can only be obtained from measurements that integrate over all timescales that affect the local O exchange. Finally, we highlight new developments of the technique, including measurements of air–water gas exchange and long-term deployments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-042121-012329
2022-01-03
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-042121-012329.html?itemId=/content/journals/10.1146/annurev-marine-042121-012329&mimeType=html&fmt=ahah

Literature Cited

  1. Amo-Seco M, Castro CG, Villacieros-Robineau N, Alonso-Pérez F, Graña R et al. 2021. Benthic oxygen fluxes in a coastal upwelling system (Ria de Vigo, NW Iberia) measured by aquatic eddy covariance. Mar. Ecol. Prog. Ser. 670:15–31
    [Google Scholar]
  2. Apple JK, Del Giorgio PA, Kemp WM. 2006. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 43:243–54
    [Google Scholar]
  3. Attard KM, Glud RN, McGinnis DF, Rysgaard S. 2014. Seasonal rates of benthic primary production in a Greenland fjord measured by aquatic eddy correlation. Limnol. Oceanogr. 59:1555–69
    [Google Scholar]
  4. Attard KM, Hancke K, Sejr MK, Glud RN. 2016. Benthic primary production and mineralization in a High Arctic fjord: in situ assessments by aquatic eddy covariance. Mar. Ecol. Prog. Ser. 554:35–50
    [Google Scholar]
  5. Attard KM, Rodil IF, Berg P, Mogg AO, Westerbom M et al. 2020. Metabolism of a subtidal rocky mussel reef in a high-temperate setting: pathways of organic C flow. Mar. Ecol. Prog. Ser. 645:41–54
    [Google Scholar]
  6. Attard KM, Rodil IF, Berg P, Norkko J, Norkko A, Glud RN. 2019. Seasonal metabolism and carbon export potential of a key coastal habitat: the perennial canopy-forming macroalga Fucus vesiculosus. Limnol. Oceanogr. 64:149–64
    [Google Scholar]
  7. Attard KM, Søgaard DH, Piontek J, Lange BA, Katlein C et al. 2018. Oxygen fluxes beneath Arctic land-fast ice and pack ice: towards estimates of ice productivity. Polar Biol 41:2119–34
    [Google Scholar]
  8. Attard KM, Stahl H, Kamenos NA, Turner G, Burdett HL, Glud RN. 2015. Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: an eddy covariance study. Mar. Ecol. Prog. Ser. 535:99–115
    [Google Scholar]
  9. Aubinet M, Vesala T, Papale D. 2012. Eddy Covariance: A Practical Guide to Measurement and Data Analysis Dordrecht, Neth: Springer
    [Google Scholar]
  10. Baldocchi DD. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Change Biol. 9:479–92
    [Google Scholar]
  11. Baldocchi DD. 2013. A brief history on eddy covariance flux measurements: a personal perspective. FluxLetter March 1–8
    [Google Scholar]
  12. Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD et al. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61:107–16
    [Google Scholar]
  13. Berg P, Delgard ML, Glud RN, Huettel M, Reimers CE, Pace ML. 2017. Non-invasive flux measurements at the benthic interface: the aquatic eddy covariance technique. Limnol. Oceanogr. e-Lect. 7:1–50
    [Google Scholar]
  14. Berg P, Delgard ML, Polsenaere P, McGlathery KJ, Doney SC, Berger AC. 2019. Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow. Limnol. Oceanogr. 64:2586–604
    [Google Scholar]
  15. Berg P, Glud RN, Hume A, Stahl H, Oguri K et al. 2009. Eddy correlation measurements of oxygen uptake in deep ocean sediments. Limnol. Oceanogr. Methods 7:576–84
    [Google Scholar]
  16. Berg P, Huettel M. 2008. Monitoring the seafloor using the noninvasive eddy correlation technique: integrated benthic exchange dynamics. Oceanography 21:4164–67
    [Google Scholar]
  17. Berg P, Koopmans D, Huettel M, Li H, Mori K, Wüest A. 2016. A new robust dual oxygen-temperature sensor for aquatic eddy covariance measurements. Limnol. Oceanogr. Methods 14:151–67
    [Google Scholar]
  18. Berg P, Long MH, Huettel M, Rheuban JE, McGlathery KJ et al. 2013. Eddy correlation measurements of oxygen fluxes in permeable sediments exposed to varying current flow and light. Limnol. Oceanogr. 58:1329–43
    [Google Scholar]
  19. Berg P, Pace ML. 2017. Continuous measurement of air-water gas exchange by underwater eddy covariance. Biogeosciences 14:5595–606
    [Google Scholar]
  20. Berg P, Pace ML, Buelo CD. 2020. Air–water gas exchange in lakes and reservoirs measured from a moving platform by underwater eddy covariance. Limnol. Oceanogr. Methods 18:424–36
    [Google Scholar]
  21. Berg P, Reimers CE, Rosman JH, Huettel M, Delgard ML et al. 2015. Technical note: time lag corrections of eddy correlation data measured in presence of waves. Biogeosciences 12:6721–35
    [Google Scholar]
  22. Berg P, Roy H, Janssen F, Meyer V, Jorgensen BB et al. 2003. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar. Ecol. Prog. Ser. 261:75–83
    [Google Scholar]
  23. Berg P, Roy H, Wiberg PL. 2007. Eddy correlation flux measurements: the sediment surface area that contributes to the flux. Limnol. Oceanogr. 52:1672–84
    [Google Scholar]
  24. Berger AC, Berg P, McGlathery KJ, Delgard ML. 2020. Long-term trends and resilience of seagrass metabolism: a decadal aquatic eddy covariance study. Limnol. Oceanogr. 65:1423–38
    [Google Scholar]
  25. Binzer T, Sand-Jensen K, Middelboe A-L. 2006. Community photosynthesis of aquatic macrophytes. Limnol. Oceanogr. 51:2722–33
    [Google Scholar]
  26. Borum J, Pedersen O, Kotula L, Fraser MW, Statton J et al. 2016. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell Environ 39:1240–50
    [Google Scholar]
  27. Buapet P, Rasmusson LM, Gullström M, Björk M. 2013. Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLOS ONE 8:e83804
    [Google Scholar]
  28. Burba G. 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates Lincoln, NE: LI-COR Biosci.
    [Google Scholar]
  29. Camillini N, Attard KM, Eyre BD, Glud RN. 2021. Resolving community metabolism of eelgrass Zostera marina meadows by benthic flume-chambers and eddy covariance in dynamic coastal environments. Mar. Ecol. Prog. Ser. 661:67–114
    [Google Scholar]
  30. Canfield DE, Thamdrup B, Hansen JW. 1993. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57:3867–83
    [Google Scholar]
  31. Cathalot C, Van Oevelen D, Cox T, Kutti T, Lavaleye M et al. 2015. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2:37
    [Google Scholar]
  32. Chipman L, Berg P, Huettel M. 2016. Benthic oxygen fluxes measured by eddy covariance in permeable Gulf of Mexico shallow-water sands. Aquat. Geochem. 22:529–54
    [Google Scholar]
  33. Chipman L, Huettel M, Berg P, Meyer V, Klimant I et al. 2012. Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems. Limnol. Oceanogr. Methods 10:304–16
    [Google Scholar]
  34. Collier CJ, Langlois L, Ow Y, Johansson C, Giammusso M et al. 2018. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses. New Phytol 219:1005–17
    [Google Scholar]
  35. Crawford TL, Dobosy RJ, McMillen RT, Vogel CA, Hicks BB. 1996. Air-surface exchange measurement in heterogeneous regions: extending tower observations with spatial structure observed from small aircraft. Glob. Change Biol. 2:275–85
    [Google Scholar]
  36. Dagg M, Benner R, Lohrenz S, Lawrence D 2004. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes. Cont. Shelf Res. 24:833–58
    [Google Scholar]
  37. Davoult D, Surget G, Stiger-Pouvreau V, Noisette F, Riera P et al. 2017. Multiple effects of a Gracilaria vermiculophylla invasion on estuarine mudflat functioning and diversity. Mar. Environ. Res. 131:227–35
    [Google Scholar]
  38. de Froe E, Rovelli L, Glud RN, Maier SR, Duineveld G et al. 2019. Benthic oxygen and nitrogen exchange on a cold-water coral reef in the north-east Atlantic Ocean. Front. . Mar. Sci. 6:665
    [Google Scholar]
  39. Donis D, McGinnis DF, Holtappels M, Felden J, Wenzhoefer F. 2016. Assessing benthic oxygen fluxes in oligotrophic deep sea sediments (HAUSGARTEN observatory). Deep-Sea Res. I 111:1–10
    [Google Scholar]
  40. Duarte CM, Cebrian J. 1996. The fate of marine autotrophic production. Limnol. Oceanogr. 41:1758–66
    [Google Scholar]
  41. Eyre BD, Cyronak T, Drupp P, De Carlo EH, Sachs JP, Andersson AJ. 2018. Coral reefs will transition to net dissolving before end of century. Science 359:908–11
    [Google Scholar]
  42. Fonseca MS, Kenworthy WJ. 1987. Effects of current on photosynthesis and distribution of seagrasses. Aquat. Bot. 27:59–78
    [Google Scholar]
  43. Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M et al. 2012. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5:505–9
    [Google Scholar]
  44. Gattuso JP, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoine D 2006. Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3:489–513
    [Google Scholar]
  45. Glud RN. 2008. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4:243–89
    [Google Scholar]
  46. Glud RN, Berg P, Fossing H, Jorgensen BB. 2007. Effect of the diffusive boundary layer on benthic mineralization and O2 distribution: a theoretical model analysis. Limnol. Oceanogr. 52:547–57
    [Google Scholar]
  47. Glud RN, Berg P, Hume A, Batty P, Blicher ME et al. 2010. Benthic O2 exchange across hard-bottom substrates quantified by eddy correlation in a sub-Arctic fjord. Mar. Ecol. Prog. Ser. 417:1–12
    [Google Scholar]
  48. Glud RN, Berg P, Stahl H, Hume A, Larsen M et al. 2016. Benthic carbon mineralization and nutrient turnover in a Scottish sea loch: an integrative in situ study. Aquat. Geochem. 22:443–67
    [Google Scholar]
  49. Glud RN, Gundersen JK, Jorgensen BB, Revsbech NP, Schulz HD. 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Res. I 41:1767–88
    [Google Scholar]
  50. Glud RN, Rysgaard S, Turner G, McGinnis DF, Leakey RJ. 2014. Biological-and physical-induced oxygen dynamics in melting sea ice of the Fram Strait. Limnol. Oceanogr. 59:1097–111
    [Google Scholar]
  51. Gulbransen DJ, McGlathery KJ, Marklund M, Norris JN, Gurgel CFD. 2012. Gracilaria vermiculophylla (Rhodophyta, Gracilarias) in the Virginia coastal bays, USA: cox1 analysis reveals high genetic richness of an introduced macroalga. J. Phycol. 48:1278–83
    [Google Scholar]
  52. Gundersen JK, Ramsing NB, Glud RN. 1998. Predicting the signal of O2 microsensors from physical dimensions, temperature, salinity, and O2 concentration. Limnol. Oceanogr. 43:1932–37
    [Google Scholar]
  53. Hansen JC, Reidenbach MA. 2012. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Mar. Ecol. Prog. Ser. 448:271–87
    [Google Scholar]
  54. Haure J, Penisson C, Bougrier S, Baud J. 1998. Influence of temperature on clearance and oxygen consumption rates of the flat oyster Ostrea edulis: determination of allometric coefficients. Aquaculture 169:211–24
    [Google Scholar]
  55. Hayes FR, Macaulay MA. 1959. Lake water and sediment: V. Oxygen consumed in water over sediment cores. Limnol. Oceanogr. 4:291–98
    [Google Scholar]
  56. Holtappels M, Glud RN, Donis D, Liu B, Hume A et al. 2013. Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements. J. Geophys. Res. Oceans 118:1157–69
    [Google Scholar]
  57. Huettel M, Berg P, Kostka JE. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Annu. Rev. Mar. Sci. 6:29–51
    [Google Scholar]
  58. Huettel M, Berg P, Merikhi A. 2020. Technical note: measurements and data analysis of sediment–water oxygen flux using a new dual-optode eddy covariance instrument. Biogeosciences 17:4459–76
    [Google Scholar]
  59. Huettel M, Gust G. 1992. Solute release mechanisms from confined sediment cores in stirred benthic chambers and flume flows. Mar. Ecol. Prog. Ser. 82:187–97
    [Google Scholar]
  60. Hume AC, Berg P, McGlathery KJ. 2011. Dissolved oxygen fluxes and ecosystem metabolism in an eelgrass (Zostera marina) meadow measured with the eddy correlation technique. Limnol. Oceanogr. 56:86–96
    [Google Scholar]
  61. Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–37
    [Google Scholar]
  62. Janssen F, Faerber P, Huettel M, Meyer V, Witte U. 2005a. Pore-water advection and solute fluxes in permeable marine sediments (I): calibration and performance of the novel benthic chamber system Sandy. Limnol. Oceanogr. 50:768–78
    [Google Scholar]
  63. Janssen F, Huettel M, Witte U. 2005b. Pore-water advection and solute fluxes in permeable marine sediments (II): benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea). Limnol. Oceanogr. 50:779–92
    [Google Scholar]
  64. Jørgensen BB. 1982. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–45
    [Google Scholar]
  65. Jørgensen BB, Des Marais DJ. 1990. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. Limnol. Oceanogr. 35:1343–55
    [Google Scholar]
  66. Kittner C, Riisgård HU. 2005. Effect of temperature on filtration rate in the mussel Mytilus edulis: no evidence for temperature compensation. Mar. Ecol. Prog. Ser. 305:147–52
    [Google Scholar]
  67. Koch EW. 1994. Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa. Mar. Biol. 118:767–76
    [Google Scholar]
  68. Koopmans D, Holtappels M, Chennu A, Weber M, de Beer D. 2020. High net primary production of Mediterranean seagrass (Posidonia oceanica) meadows determined with aquatic eddy covariance. Front. Mar. Sci. 7:118
    [Google Scholar]
  69. Krause-Jensen D, Duarte CM. 2016. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9:737–42
    [Google Scholar]
  70. Kuwae T, Kamio K, Inoue T, Miyoshi E, Uchiyama Y. 2006. Oxygen exchange flux between sediment and water in an intertidal sandflat, measured in situ by the eddy-correlation method. Mar. Ecol. Prog. Ser. 307:59–68
    [Google Scholar]
  71. Lee X, Massman W, Law B. 2004. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis Dordrecht, Neth: Kluwer Acad.
    [Google Scholar]
  72. Long MH. 2021. Aquatic biogeochemical eddy covariance fluxes in the presence of waves. J. Geophys. Res. Oceans 126:e2020JC016637
    [Google Scholar]
  73. Long MH, Berg P, de Beer D, Zieman JC. 2013. In situ coral reef oxygen metabolism: an eddy correlation study. PLOS ONE 8:e58581
    [Google Scholar]
  74. Long MH, Berg P, Falter JL. 2015a. Seagrass metabolism across a productivity gradient using the eddy covariance, Eulerian control volume, and biomass addition techniques. J. Geophys. Res. Oceans 120:3624–39
    [Google Scholar]
  75. Long MH, Berg P, McGlathery KJ, Zieman JC. 2015b. Sub-tropical seagrass ecosystem metabolism measured by eddy covariance. Mar. Ecol. Prog. Ser. 529:75–90
    [Google Scholar]
  76. Long MH, Charette MA, Martin WR, McCorkle DC. 2015c. Oxygen metabolism and pH in coastal ecosystems: Eddy Covariance Hydrogen ion and Oxygen Exchange System (ECHOES). Limnol. Oceanogr. Methods 13:438–50
    [Google Scholar]
  77. Long MH, Koopmans D, Berg P, Rysgaard S, Glud RN, Søgaard DH. 2012. Oxygen exchange and ice melt measured at the ice-water interface by eddy correlation. Biogeosciences 9:1957–67
    [Google Scholar]
  78. Long MH, Nicholson DP. 2018. Surface gas exchange determined from an aquatic eddy covariance floating platform. Limnol. Oceanogr. Methods 16:145–59
    [Google Scholar]
  79. Lorke A, McGinnis DF, Maeck A. 2013. Eddy-correlation measurements of benthic fluxes under complex flow conditions: effects of coordinate transformations and averaging time scales. Limnol. Oceanogr. Methods 11:425–37
    [Google Scholar]
  80. Lorrai C, McGinnis DF, Berg P, Brand A, Wüest A. 2010. Application of oxygen eddy correlation in aquatic systems. J. Atmos. Ocean. Technol. 27:1533–46
    [Google Scholar]
  81. Mass T, Genin A, Shavit U, Grinstein M, Tchernov D 2010. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. PNAS 107:2527–31
    [Google Scholar]
  82. McCann-Grosvenor K, Reimers CE, Sanders RD. 2014. Dynamics of the benthic boundary layer and seafloor contributions to oxygen depletion on the Oregon inner shelf. Cont. Shelf Res. 84:93–106
    [Google Scholar]
  83. McGinnis DF, Berg P, Brand A, Lorrai C, Edmonds TJ, Wüest A. 2008. Measurements of eddy correlation oxygen fluxes in shallow freshwaters: towards routine applications and analysis. Geophys. Res. Lett. 35:L04403
    [Google Scholar]
  84. McGinnis DF, Sommer S, Lorke A, Glud RN, Linke P. 2014. Quantifying tidally driven benthic oxygen exchange across permeable sediments: an aquatic eddy correlation study. J. Geophys. Res. Oceans 119:6918–32
    [Google Scholar]
  85. McPhee MG. 1992. Turbulent heat flux in the upper ocean under sea ice. J. Geophys. Res. Oceans 97:5365–79
    [Google Scholar]
  86. Meysman FJR, Galaktionov ES, Gribsholt B, Middelburg JJ. 2006. Bioirrigation in permeable sediments: advective pore-water transport induced by burrow ventilation. Limnol. Oceanogr. 51:142–56
    [Google Scholar]
  87. Moore WS, Sarmiento JL, Key RM. 2008. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nat. Geosci. 1:309–11
    [Google Scholar]
  88. Moore WS, Wilson AM. 2005. Advective flow through the upper continental shelf driven by storms, buoyancy, and submarine groundwater discharge. Earth Planet. Sci. Lett. 235:564–76
    [Google Scholar]
  89. Mortimer CH. 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29:280–329
    [Google Scholar]
  90. Muller-Karger FE, Varela R, Thunell R, Luerssen R, Hu C, Walsh J. 2005. The importance of continental margins in the global carbon cycle. Geophys. Res. Lett. 32:L01602
    [Google Scholar]
  91. Munksby N, Benthien M, Glud RN. 2002. Flow-induced flushing of relict tube structures in the central Skagerrak (Norway). Mar. Biol. 141:939–45
    [Google Scholar]
  92. Naylor E. 1996. Crab clockwork: the case for interactive circatidal and circadian oscillators controlling rhythmic locomotor activity of Carcinus maenas. Chronobiol. Int. 13:153–61
    [Google Scholar]
  93. Odum HT. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr 27:55–112
    [Google Scholar]
  94. Oliver L, Fisher W, Ford S, Calvo LR, Burreson E et al. 1998. Perkinsus marinus tissue distribution and seasonal variation in oysters Crassostrea virginica from Florida, Virginia and New York. Dis. Aquat. Org. 34:51–61
    [Google Scholar]
  95. Packman AI, Brooks NH. 2001. Hyporheic exchange of solutes and colloids with moving bed forms. Water Resour. Res. 37:2591–605
    [Google Scholar]
  96. Palacios SL, Zimmerman RC. 2007. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar. Ecol. Prog. Ser. 344:1–13
    [Google Scholar]
  97. Pamatmat MM. 1971. Oxygen consumption by the sea bed IV. Shipboard and laboratory experiments. Limnol. Oceanogr. 16:536–50
    [Google Scholar]
  98. Pamatmat MM, Fenton D. 1968. An instrument for measuring subtidal benthic metabolism in situ. Limnol. Oceanogr. 13:537–40
    [Google Scholar]
  99. Partch EN, Smith JD. 1978. Time dependent mixing in a salt wedge estuary. Estuar. Coast. Mar. Sci. 6:3–19
    [Google Scholar]
  100. Precht E, Franke U, Polerecky L, Huettel M. 2004. Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnol. Oceanogr. 49:693–705
    [Google Scholar]
  101. Preziosi-Ribero A, Packman AI, Escobar-Vargas JA, Phillips CB, Donado LD, Arnon S. 2020. Fine sediment deposition and filtration under losing and gaining flow conditions: a particle tracking model approach. Water Resour. Res. 56:e2019WR026057
    [Google Scholar]
  102. Priestley CHB, Swinbank WC. 1947. Vertical transport of heat by turbulence in the atmosphere. Proc. R. Soc. A 189:543–61
    [Google Scholar]
  103. Raven J, Larkum A. 2007. Are there ecological implications for the proposed energetic restrictions on photosynthetic oxygen evolution at high oxygen concentrations?. Photosynth. Res. 94:31–42
    [Google Scholar]
  104. Ray AJ, Aller RC. 1985. Physical irrigation of relict burrows: implications for sediment chemistry. Mar. Geol. 62:371–79
    [Google Scholar]
  105. Raymond P, Cole J 2001. Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24:312–17
    [Google Scholar]
  106. Reidenbach MA, Berg P, Hume A, Hansen JC, Whitman ER. 2013. Hydrodynamics of intertidal oyster reefs: the influence of boundary layer flow processes on sediment and oxygen exchange. Limnol. Oceanogr. Fluids Environ. 3:225–39
    [Google Scholar]
  107. Reimers CE, Fischer KM, Merewether R, Smith K, Jahnke RA. 1986. Oxygen microprofiles measured in situ in deep ocean sediments. Nature 320:741–44
    [Google Scholar]
  108. Reimers CE, Fogaren KE. 2021. Bottom boundary layer oxygen fluxes during winter on the Oregon shelf. J. Geophys. Res. Oceans 126:e2020JC016828
    [Google Scholar]
  109. Reimers CE, Özkan-Haller HT, Albright A, Berg P 2016a. Microelectrode velocity effects and aquatic eddy covariance measurements under waves. J. Atmos. Ocean. Technol 33:26382
    [Google Scholar]
  110. Reimers CE, Özkan-Haller HT, Berg P, Devol A, McCann-Grosvenor K, Sanders RD. 2012. Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: evaluation of the eddy correlation method. J. Geophys. Res. 117:C02021
    [Google Scholar]
  111. Reimers CE, Özkan-Haller HT, Sanders RD, McCann-Grosvenor K, Chace PJ, Crowe SA. 2016b. The dynamics of benthic respiration at a mid-shelf station off Oregon. Aquat. Geochem 22:505–27
    [Google Scholar]
  112. Reimers CE, Sanders RD, Dewey R, Noel R 2020. Benthic fluxes of oxygen and heat from a seasonally hypoxic region of Saanich Inlet fjord observed by eddy covariance. Estuar. Coast. Shelf Sci. 243:106815
    [Google Scholar]
  113. Revsbech NP. 1989. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34:474–78
    [Google Scholar]
  114. Reynolds O. 1895. IV. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. A 186:123–64
    [Google Scholar]
  115. Rheuban JE, Berg P. 2013. The effects of spatial and temporal variability at the sediment surface on aquatic eddy correlation flux measurements. Limnol. Oceanogr. Methods 11:351–59
    [Google Scholar]
  116. Rheuban JE, Berg P, McGlathery KJ. 2014a. Ecosystem metabolism along a colonization gradient of eelgrass (Zostera marina) measured by eddy correlation. Limnol. Oceanogr. 59:1376–87
    [Google Scholar]
  117. Rheuban JE, Berg P, McGlathery KJ. 2014b. Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar. Ecol. Prog. Ser. 507:1–13
    [Google Scholar]
  118. Riisgård HU, Lüskow F, Pleissner D, Lundgreen K, López MÁP 2013. Effect of salinity on filtration rates of mussels Mytilus edulis with special emphasis on dwarfed mussels from the low-saline Central Baltic Sea. Helgol. Mar. Res. 67:591–98
    [Google Scholar]
  119. Rovelli L, Attard KM, Bryant LD, Flögel S, Stahl HJ et al. 2015. Benthic O2 uptake of two cold-water coral communities estimated with the non-invasive eddy-correlation technique. Mar. Ecol. Prog. Ser. 525:97–104
    [Google Scholar]
  120. Rusch A, Huettel M. 2000. Advective particle transport into permeable sediments—evidence from experiments in an intertidal sandflat. Limnol. Oceanogr. 45:525–33
    [Google Scholar]
  121. Rusch A, Huettel M, Forster S. 2000. Particulate organic matter in permeable marine sands—dynamics in time and depth. Estuar. Coast. Shelf Sci. 51:399–414
    [Google Scholar]
  122. Scrase FJ. 1930. Some Characteristics of Eddy Motion in the Atmosphere London: Meteorol. Off.
    [Google Scholar]
  123. Short F 1980. A simulation model of the seagrass production system. Handbook of Seagrass Biology: An Ecosystem Perspective RC Phillips, CP McRoy 275–95. New York: Garland STPM
    [Google Scholar]
  124. Shumway SE, Koehn RK. 1982. Oxygen consumption in the American oyster Crassostrea virginica. Mar. Ecol. Prog. Ser. 9:59–68
    [Google Scholar]
  125. Smith SV. 1981. Marine macrophytes as a global carbon sink. Science 211:838–40
    [Google Scholar]
  126. Sorrell B, Dromgoole F. 1986. Errors in measurements of aquatic macrophyte gas exchange due to oxygen storage in internal airspaces. Aquat. Bot. 24:103–14
    [Google Scholar]
  127. Stratmann T, Soetaert K, Wei C-L, Lin Y-S, van Oevelen D. 2019. The SCOC database, a large, open, and global database with sediment community oxygen consumption rates. Sci. Data 6:242
    [Google Scholar]
  128. Swinbank WC. 1951. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteorol. 8:115–45
    [Google Scholar]
  129. Tessmar-Raible K, Raible F, Arboleda E. 2011. Another place, another timer: marine species and the rhythms of life. BioEssays 33:165–72
    [Google Scholar]
  130. Thamdrup B. 2000. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16:41–84
    [Google Scholar]
  131. Thibodeaux LJ, Boyle JD. 1987. Bedform-generated convective transport in bottom sediment. Nature 325:341–43
    [Google Scholar]
  132. Thomsen MS, McGlathery KJ, Tyler AC. 2006. Macroalgal distribution patterns in a shallow, soft-bottom lagoon, with emphasis on the nonnative Gracilaria vermiculophylla and Codium fragile. Estuaries Coasts 29:465–73
    [Google Scholar]
  133. Trowbridge J. 1998. On a technique for measurement of turbulent shear stress in the presence of surface waves. J. Atmos. Ocean. Technol. 15:290–98
    [Google Scholar]
  134. Volaric MP, Berg P, Reidenbach MA. 2018. Oxygen metabolism of intertidal oyster reefs measured by aquatic eddy covariance. Mar. Ecol. Prog. Ser. 599:75–91
    [Google Scholar]
  135. Volaric MP, Berg P, Reidenbach MA. 2019. An invasive macroalga alters ecosystem metabolism and hydrodynamics on a tidal flat. Mar. Ecol. Prog. Ser. 628:1–16
    [Google Scholar]
  136. Volaric MP, Berg P, Reidenbach MA. 2020. Drivers of oyster reef ecosystem metabolism measured across multiple timescales. Estuaries Coasts 43:2034–45
    [Google Scholar]
  137. Wenzhofer F, Glud RN. 2004. Small-scale spatial and temporal variability in coastal benthic O2 dynamics: effects of fauna activity. Limnol. Oceanogr. 49:1471–81
    [Google Scholar]
/content/journals/10.1146/annurev-marine-042121-012329
Loading
/content/journals/10.1146/annurev-marine-042121-012329
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error