1932

Abstract

To thrive in nutrient-poor waters, coral reefs must retain and recycle materials efficiently. This review centers microbial processes in facilitating the persistence and stability of coral reefs, specifically the role of these processes in transforming and recycling the dissolved organic matter (DOM) that acts as an invisible currency in reef production, nutrient exchange, and organismal interactions. The defining characteristics of coral reefs, including high productivity, balanced metabolism, high biodiversity, nutrient retention, and structural complexity, are inextricably linked to microbial processing of DOM. The composition of microbes and DOM in reefs is summarized, and the spatial and temporal dynamics of biogeochemical processes carried out by microorganisms in diverse reef habitats are explored in a variety of key reef processes, including decomposition, accretion, trophictransfer, and macronutrient recycling. Finally, we examine how widespread habitat degradation of reefs is altering these important microbe–DOM interactions, creating feedbacks that reduce reef resilience to global change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-042121-080917
2023-01-16
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-042121-080917.html?itemId=/content/journals/10.1146/annurev-marine-042121-080917&mimeType=html&fmt=ahah

Literature Cited

  1. Allers E, Niesner C, Wild C, Pernthaler J. 2008. Microbes enriched in seawater after addition of coral mucus. Appl. Environ. Microbiol. 74:3274–78
    [Google Scholar]
  2. Alongi DM 1988. Detritus in coral reef ecosystems: fluxes and fates. Proceedings of the Sixth International Coral Reef Symposium, Vol. 1: Plenary Addresses and Status Review JH Choat, D Barnes, MA Borowitzka, JC Coll, PJ Davies et al.29–36 Townsville, Aust: Sixth Int. Coral Reef Symp. Exec. Comm.
    [Google Scholar]
  3. Alongi DM, Trott LA, Pfitzner J. 2007. Deposition, mineralization, and storage of carbon and nitrogen in sediments of the far northern and northern Great Barrier Reef shelf. Cont. Shelf Res. 27:2595622
    [Google Scholar]
  4. Altieri AH, Harrison SB, Seemann J, Collin R, Diaz RJ, Knowlton N 2017. Tropical dead zones and mass mortalities on coral reefs. PNAS 114:3660–65
    [Google Scholar]
  5. Aluwihare LI, Repeta DJ. 1999. A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae. Mar. Ecol. Prog. Ser. 186:105–17
    [Google Scholar]
  6. Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR. 2009. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B 276:3019–25
    [Google Scholar]
  7. Andersson AJ. 2015. A fundamental paradigm for coral reef carbonate sediment dissolution. Front. Mar. Sci. 2:52
    [Google Scholar]
  8. Andersson AJ, Gledhill D. 2013. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu. Rev. Mar. Sci. 5:321–48
    [Google Scholar]
  9. Andrews JC, Müller H. 1983. Space-time variability of nutrients in a lagoonal patch reef. Limnol. Oceanogr. 28:215–27
    [Google Scholar]
  10. Apprill A. 2020. The role of symbioses in the adaptation and stress responses of marine organisms. Annu. Rev. Mar. Sci. 12:291–314
    [Google Scholar]
  11. Apprill A, Holm H, Santoro A, Becker C, Neave M et al. 2021. Microbial ecology of coral-dominated reefs in the Federated States of Micronesia. Aquat. Microb. Ecol. 86:115–36
    [Google Scholar]
  12. Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3:401–25
    [Google Scholar]
  13. Atkinson MJ 2011. Biogeochemistry of nutrients. Coral Reefs: An Ecosystem in Transition Z Dubinsky, N Stambler 199–206 Dordrecht, Neth: SpringerProvides a thorough review of coral reef nutrient biogeochemistry, recognizing the critical potential role of DOM.
    [Google Scholar]
  14. Ayukai T. 1995. Retention of phytoplankton and planktonic microbes on coral reefs within the Great Barrier Reef, Australia. Coral Reefs 14:141–47
    [Google Scholar]
  15. Azam F, Ammerman JW. 1984. Cycling of organic matter by bacterioplankton in pelagic marine ecosystems: microenvironmental considerations. Flows of Energy and Materials in Marine Ecosystems MJR Fasham 345–60 New York: Plenum
    [Google Scholar]
  16. Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257–63
    [Google Scholar]
  17. Babbin AR, Tamasi T, Dumit D, Weber L, Rodríguez MVI et al. 2021. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical Cuban stony corals. ISME J. 15:1222–35
    [Google Scholar]
  18. Bak R, Joenje M, De Jong I, Lambrechts D, Nieuwland G. 1998. Bacterial suspension feeding by coral reef benthic organisms. Mar. Ecol. Prog. Ser. 175:285–88
    [Google Scholar]
  19. Barott KL, Rohwer FL. 2012. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20:621–28Reviews the role of microbes in coral–algae competition and proposes DOM as a key mechanism.
    [Google Scholar]
  20. Bertilsson S, Jones JB 2003. Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. Aquatic Ecosystems: Interactivity of Dissolved Organic Matter SEG Findlay, RL Sinsabaugh 3–24 San Diego, CA: Academic
    [Google Scholar]
  21. Brainard RE, Acoba T, Asher M, Asher J, Ayotte PM et al. 2019. Coral reef ecosystem monitoring report for the Pacific Remote Islands Marine National Monument 2000–2017 Spec. Publ. SP-19-006, Pac. Isl. Fish. Sci. Cent. Honolulu, HI:
    [Google Scholar]
  22. Breitbart M. 2012. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4:425–48
    [Google Scholar]
  23. Brocke HJ, Wenzhoefer F, de Beer D, Mueller B, van Duyl FC, Nugues MM. 2015. High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Sci. Rep. 5:8852
    [Google Scholar]
  24. Brown A. 2012. The influence of water flow on mechanisms underlying coral-algal interactions MS Thesis, Calif. State Univ. Northridge:
    [Google Scholar]
  25. Buchan A, González JM, Moran MA. 2005. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. 71:5665–77
    [Google Scholar]
  26. Cardini U, Bednarz VN, Foster RA, Wild C. 2014. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol. Evol. 4:1706–27
    [Google Scholar]
  27. Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L et al. 2015. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. R. Soc. B 282:20152257
    [Google Scholar]
  28. Carlson CA, Hansell DA 2015. DOM sources, sinks, reactivity, and budgets. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 65–126 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  29. Cavalcanti GS, Alker AT, Delherbe N, Malter KE, Shikuma NJ. 2020. The influence of bacteria on animal metamorphosis. Annu. Rev. Microbiol. 74:137–58
    [Google Scholar]
  30. Cebrian J. 2002. Variability and control of carbon consumption, export, and accumulation in marine communities. Limnol. Oceanogr. 47:11–22
    [Google Scholar]
  31. Charpy-Roubaud C, Charpy L, Cremoux JL. 1990. Nutrient budget of the lagoonal waters in an open central South-Pacific atoll (Tikehau, Tuamotu, French-Polynesia). Mar. Biol. 107:67–73
    [Google Scholar]
  32. Cole JJ. 1982. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 13:291–314
    [Google Scholar]
  33. Cole JJ, Findlay S, Pace ML. 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43:1–10
    [Google Scholar]
  34. Connell JH. 1978. Diversity in tropical rain forests and coral reefs. Science 199:1302–10
    [Google Scholar]
  35. Courtney TA, Lebrato M, Bates NR, Collins A, de Putron SJ et al. 2017. Environmental controls on modern scleractinian coral and reef-scale calcification. Sci. Adv. 3:e1701356
    [Google Scholar]
  36. Crossland C, Barnes D. 1983. Dissolved nutrients and organic particulates in water flowing over coral reefs at Lizard Island. Mar. Freshw. Res. 34:835–44
    [Google Scholar]
  37. Crossland C, Hatcher B, Smith S. 1991. Role of coral reefs in global ocean production. Coral Reefs 10:55–64
    [Google Scholar]
  38. Dalton H, Stirling DI. 1982. Co-metabolism. Philos. Trans. R. Soc. B 297:481–96
    [Google Scholar]
  39. Darwin C. 1889. The Structure and Distribution of Coral Reefs Boston: Appleton. , 3rd ed..
    [Google Scholar]
  40. Davis KA, Pawlak G, Monismith SG. 2021. Turbulence and coral reefs. Annu. Rev. Mar. Sci. 13:343–73
    [Google Scholar]
  41. de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ et al. 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–10
    [Google Scholar]
  42. del Giorgio PA, Cole JJ. 1998. Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Syst. 29:503–41
    [Google Scholar]
  43. D'Elia CF. 1977. The uptake and release of dissolved phosphorus by reef corals. Limnol. Oceanogr. 22:301–15
    [Google Scholar]
  44. D'Elia CF, Wiebe WJ 1990. Biogeochemical nutrient cycles in coral-reef ecosystems. Coral Reefs Z Dubinsky 49–74 Ecosyst. World Vol. 25 Amsterdam: Elsevier
    [Google Scholar]
  45. DeMartini EE, Friedlander AM, Sandin SA, Sala E. 2008. Differences in fish-assemblage structure between fished and unfished atolls in the northern Line Islands, central Pacific. Mar. Ecol. Prog. Ser. 365:199–215
    [Google Scholar]
  46. Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F et al. 2008. Microbial ecology of four coral atolls in the northern Line Islands. PLOS ONE 3:e1584
    [Google Scholar]
  47. Duarte CM, Cebrián J. 1996. The fate of marine autotrophic production. Limnol. Oceanogr. 41:1758–66
    [Google Scholar]
  48. Dubinsky Z, Stambler N. 1996. Marine pollution and coral reefs. Glob. Change Biol. 2:511–26
    [Google Scholar]
  49. Eyre BD, Andersson AJ, Cyronak T. 2014. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4:969–76Summarizes evidence that ocean acidification will decrease net ecosystem calcification primarily through increased dissolution.
    [Google Scholar]
  50. Falkowski PG, Fenchel T, DeLong EF. 2008. The microbial engines that drive Earth's biogeochemical cycles. Science 320:1034–39
    [Google Scholar]
  51. Falter JL, Atkinson MJ, Merrifield MA. 2004. Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol. Oceanogr. 49:1820–31
    [Google Scholar]
  52. Ferrier-Pagès C, Gattuso J. 1998. Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan). Microb. Ecol. 35:46–57
    [Google Scholar]
  53. Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP. 2003. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–40
    [Google Scholar]
  54. Fiore CL, Freeman CJ, Kujawinski EB. 2017. Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter. PeerJ 5:e2870
    [Google Scholar]
  55. Frade PR, Glasl B, Matthews SA, Mellin C, Serrão EA et al. 2020. Spatial patterns of microbial communities across surface waters of the Great Barrier Reef. Commun. Biol. 3:442
    [Google Scholar]
  56. Freeman CJ, Easson CG. 2016. Sponge distribution and the presence of photosymbionts in Moorea, French Polynesia. PeerJ 4:e1816
    [Google Scholar]
  57. Furnas MJ, Mitchell AW, Skuza M. 1995. Nitrogen and Phosphorus Budgets for the Central Great Barrier Reef Shelf Townsville, Aust: Great Barrier Reef Mar. Park Auth.
    [Google Scholar]
  58. Garren M, Son K, Raina J-B, Rusconi R, Menolascina F et al. 2014. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J 8:999–1007
    [Google Scholar]
  59. Gast G, Wiegman S, Wieringa E, van Duyl F, Bak R. 1998. Bacteria in coral reef water types: removal of cells, stimulation of growth and mineralization. Mar. Ecol. Prog. Ser. 167:37–45
    [Google Scholar]
  60. Glasl B, Bourne DG, Frade PR, Thomas T, Schaffelke B, Webster NS 2019. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome 7:94
    [Google Scholar]
  61. Glasl B, Webster NS, Bourne DG. 2017. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Mar. Biol. 164:91
    [Google Scholar]
  62. Gounand I, Little CJ, Harvey E, Altermatt F 2018. Cross-ecosystem carbon flows connecting ecosystems worldwide. Nat. Commun. 9:4825
    [Google Scholar]
  63. Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson J et al. 2007. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21:1291–300
    [Google Scholar]
  64. Gratwicke B, Speight MR. 2005. Effects of habitat complexity on Caribbean marine fish assemblages. Mar. Ecol. Prog. Ser. 292:301–10
    [Google Scholar]
  65. Gruber RK, Lowe RJ, Falter JL. 2018. Benthic uptake of phytoplankton and ocean-reef exchange of particulate nutrients on a tide-dominated reef. Limnol. Oceanogr. 63:1545–61
    [Google Scholar]
  66. Guibert I, Bourdreux F, Bonnard I, Pochon X, Dubousquet V et al. 2020. Dimethylsulfoniopropionate concentration in coral reef invertebrates varies according to species assemblages. Sci. Rep. 10:9922
    [Google Scholar]
  67. Haas AF, Fairoz MFM, Wegley Kelly L, Nelson CE, Dinsdale EA et al. 2016. Global microbialization of coral reefs. Nat. Microbiol. 1:16042
    [Google Scholar]
  68. Haas AF, Jantzen C, Naumann MS, Iglesias-Prieto R, Wild C. 2010. Organic matter release by the dominant primary producers in a Caribbean reef lagoon: implication for in situ O2 availability. Mar. Ecol. Prog. Ser. 409:27–39
    [Google Scholar]
  69. Haas AF, Nelson CE, Rohwer F, Wegley Kelly L, Quistad SD et al. 2013. Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 1:e108
    [Google Scholar]
  70. Haas AF, Nelson CE, Wegley Kelly L, Carlson CA, Rohwer F et al. 2011. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLOS ONE 6:e27973
    [Google Scholar]
  71. Haas AF, Smith JE, Thompson M, Deheyn DD 2014. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae. PeerJ 2:e235
    [Google Scholar]
  72. Haas AF, Wild C. 2010. Composition analysis of organic matter released by cosmopolitan coral reef-associated green algae. Aquat. Biol. 10:131–38
    [Google Scholar]
  73. Hamner WM, Wolanski E 1988. Hydrodynamic forcing functions and biological processes on coral reefs: a status review. Proceedings of the Sixth International Coral Reef Symposium, Vol. 1: Plenary Addresses and Status Review JH Choat, D Barnes, MA Borowitzka, JC Coll, PJ Davies et al.103–13 Townsville, Aust: Sixth Int. Coral Reef Symp. Exec. Comm.
    [Google Scholar]
  74. Harvey BJ, Nash KL, Blanchard JL, Edwards DP. 2018. Ecosystem-based management of coral reefs under climate change. Ecol. Evol. 8:6354–68
    [Google Scholar]
  75. Hatcher BG. 1988. Coral reef primary productivity: a beggar's banquet. Trends Ecol. Evol. 3:106–11
    [Google Scholar]
  76. Hatcher BG. 1997. Coral reef ecosystems: How much greater is the whole than the sum of the parts?. Coral Reefs 16:S77–91Reviews research on ecosystem processes in coral reefs, emphasizing materials flux and oceanic subsidies.
    [Google Scholar]
  77. Heenan A, Williams GJ, Williams ID. 2020. Natural variation in coral reef trophic structure across environmental gradients. Front. Ecol. Environ. 18:69–75
    [Google Scholar]
  78. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:1737–42
    [Google Scholar]
  79. Houlbrèque F, Ferrier-Pagès C. 2009. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84:1–17
    [Google Scholar]
  80. Hughes DJ, Alderdice R, Cooney C, Kühl M, Pernice M et al. 2020. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10:296–307
    [Google Scholar]
  81. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O et al. 2007. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17:360–65
    [Google Scholar]
  82. Hütsch BW, Augustin J, Merbach W 2002. Plant rhizodeposition – an important source for carbon turnover in soils. J. Plant Nutr. Soil Sci. 165:397–407
    [Google Scholar]
  83. Jackson JBC. 2008. Ecological extinction and evolution in the brave new ocean. PNAS 105:Suppl. 111458–65
    [Google Scholar]
  84. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–37
    [Google Scholar]
  85. James AK, Washburn L, Gotschalk C, Maritorena S, Alldredge A et al. 2020. An island mass effect resolved near Mo'orea, French Polynesia. Front. Mar. Sci. 7:16
    [Google Scholar]
  86. Johnson MD, Scott JJ, Leray M, Lucey N, Bravo LMR et al. 2021. Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Nat. Commun. 12:4522
    [Google Scholar]
  87. Jorissen H, Skinner C, Osinga R, de Beer D, Nugues MM. 2016. Evidence for water-mediated mechanisms in coral-algal interactions. Proc. R. Soc. B 283:20161137Describes field and flume experiments demonstrating how interactions among flow, algae, and corals regulate reef oxygen dynamics.
    [Google Scholar]
  88. Kido Soule MC, Longnecker K, Johnson WM, Kujawinski EB 2015. Environmental metabolomics: analytical strategies. Mar. Chem. 1772:374–87
    [Google Scholar]
  89. Kinsey D 1985. Metabolism, calcification, and carbon production: part I—systems level studies. Proceedings of the Fifth International Coral Reef Congress, Vol. 4: Symposia and Seminars C Gabrie, B Salvat 505–26 Moorea, French Polyn.: Antenne Mus.–EPHE
    [Google Scholar]
  90. Kirchman DL. 2016. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8:285–309
    [Google Scholar]
  91. Knowlton N. 2001. Coral reef biodiversity—habitat size matters. Science 292:1493–95
    [Google Scholar]
  92. Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-Williams R, Beach KS. 2006. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323:107–17
    [Google Scholar]
  93. Lapointe BE. 1997. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol. Oceanogr. 42:1119–31
    [Google Scholar]
  94. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S et al. 2009. The genomic basis of trophic strategy in marine bacteria. PNAS 106:15527–33
    [Google Scholar]
  95. Legendre L, Demers S, Delesalle B, Harnois C. 1988. Biomass and photosynthetic activity of phototrophic picoplankton in coral reef waters (Moorea Island, French Polynesia). Mar. Ecol. Prog. Ser. 47:153–60
    [Google Scholar]
  96. Leichter J, Alldredge A, Bernardi G, Brooks A, Carlson C et al. 2013. Biological and physical interactions on a tropical island coral reef: transport and retention processes on Moorea, French Polynesia. Oceanography 26:352–63
    [Google Scholar]
  97. Lesser MP, Slattery M, Mobley CD. 2018. Biodiversity and functional ecology of mesophotic coral reefs. Annu. Rev. Ecol. Evol. Syst. 49:49–71
    [Google Scholar]
  98. Lowe RJ, Falter JL. 2015. Oceanic forcing of coral reefs. Annu. Rev. Mar. Sci. 7:43–66
    [Google Scholar]
  99. Machado D, Maistrenko OM, Andrejev S, Kim Y, Bork P et al. 2021. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5:195–203
    [Google Scholar]
  100. McCauley DJ, Gellner G, Martinez ND, Williams RJ, Sandin SA et al. 2018. On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities. Ecol. Lett. 21:439–54
    [Google Scholar]
  101. McCliment EA, Nelson CE, Carlson CA, Alldredge AL, Witting J, Amaral-Zettler LA. 2012. An all-taxon microbial inventory of the Moorea coral reef ecosystem. ISME J. 6:309–19
    [Google Scholar]
  102. McCook L, Jompa J, Diaz-Pulido G. 2001. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417
    [Google Scholar]
  103. McDole T, Nulton J, Barott KL, Felts B, Hand C et al. 2012. Assessing coral reefs on a Pacific-wide scale using the microbialization score. PLOS ONE 7:e43233
    [Google Scholar]
  104. Mcleod E, Anthony KRN, Mumby PJ, Maynard J, Beeden R et al. 2019. The future of resilience-based management in coral reef ecosystems. J. Environ. Manag. 233:291–301
    [Google Scholar]
  105. McLeod K, Leslie H, eds. 2012. Ecosystem-Based Management for the Oceans Washington, DC: Island
    [Google Scholar]
  106. McNally SP, Parsons RJ, Santoro AE, Apprill A. 2017. Multifaceted impacts of the stony coral Porites astreoides on picoplankton abundance and community composition. Limnol. Oceanogr. 62:217–34Provides an experimental demonstration of the influence of selective removal of bacterioplankton by corals on nutrient cycling.
    [Google Scholar]
  107. Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI et al. 2016. Deciphering ocean carbon in a changing world. PNAS 113:3143–51
    [Google Scholar]
  108. Moriarty D. 1979. Biomass of suspended bacteria over coral reefs. Mar. Biol. 53:193–200
    [Google Scholar]
  109. Moriarty D, Pollard P, Hunt W. 1985. Temporal and spatial variation in bacterial production in the water column over a coral reef. Mar. Biol. 85:285–92
    [Google Scholar]
  110. Mueller B, den Haan J, Visser PM, Vermeij MJA, van Duyl FC. 2016. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae. Sci. Rep. 6:23248
    [Google Scholar]
  111. Mueller B, van der Zande R, van Leent P, Meesters E, Vermeij M, van Duyl F. 2014. Effect of light availability on dissolved organic carbon release by Caribbean reef algae and corals. Bull. Mar. Sci. 90:875–93
    [Google Scholar]
  112. Mumby PJ, Steneck RS. 2018. Paradigm lost: dynamic nutrients and missing detritus on coral reefs. BioScience 68:487–95
    [Google Scholar]
  113. Nakajima R, Tanaka Y, Yoshida T, Fujisawa T, Nakayama A et al. 2015. High inorganic phosphate concentration in coral mucus and its utilization by heterotrophic bacteria in a Malaysian coral reef. Mar. Ecol. 36:835–41
    [Google Scholar]
  114. Nakajima R, Yoshida T, Azman BAR, Zaleha K, Othman BHR, Toda T. 2008. In situ release of coral mucus by Acropora and its influence on the heterotrophic bacteria. Aquat. Ecol. 43:815–23
    [Google Scholar]
  115. Nelson CE, Alldredge AL, McCliment EA, Amaral-Zettler LA, Carlson CA. 2011. Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem. ISME J. 5:1374–87
    [Google Scholar]
  116. Nelson CE, Carlson CA. 2012. Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton. Environ. Microbiol. 14:1500–16
    [Google Scholar]
  117. Nelson CE, Goldberg SJ, Wegley Kelly L, Haas AF, Smith JE et al. 2013. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J 7:962–79
    [Google Scholar]
  118. Nelson CE, Wear EK. 2014. Microbial diversity and the lability of dissolved organic carbon. PNAS 111:7166–67
    [Google Scholar]
  119. Nelson HR, Altieri AH. 2019. Oxygen: the universal currency on coral reefs. Coral Reefs 38:177–98Reviews how oxygen concentration dynamics influence the function and resilience of coral reefs.
    [Google Scholar]
  120. Newman SP, Meesters EH, Dryden CS, Williams SM, Sanchez C et al. 2015. Reef flattening effects on total richness and species responses in the Caribbean. J. Anim. Ecol. 84:1678–89
    [Google Scholar]
  121. Nicol D. 1979. A survey of suspension-feeding animals. Fla. Sci. 42:177–82
    [Google Scholar]
  122. Nitschke MR, Fidalgo C, Simões J, Brandão C, Alves A et al. 2020. Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites. ISME J. 14:1533–46
    [Google Scholar]
  123. Nyström M, Norström AV, Blenckner T, de la Torre-Castro M, Eklöf JS et al. 2012. Confronting feedbacks of degraded marine ecosystems. Ecosystems 15:695–710
    [Google Scholar]
  124. Odum HT, Odum EP. 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok atoll. Ecol. Monogr. 25:291–320
    [Google Scholar]
  125. Pandolfi JM, Jackson JBC, Baron N, Bradbury RH, Guzman HM et al. 2005. Are U.S. coral reefs on the slippery slope to slime?. Science 307:1725–26
    [Google Scholar]
  126. Petras D, Koester I, Da Silva R, Stephens BM, Haas AF et al. 2017. High-resolution liquid chromatography tandem mass spectrometry enables large scale molecular characterization of dissolved organic matter. Front. Mar. Sci. 4:405
    [Google Scholar]
  127. Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. 2017. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob. Change Biol. 23:3838–48
    [Google Scholar]
  128. Price WS. 1999. The influence of tentacle shape, soft-tissue polyp, and corallite morphology, on microscale currents over corals, and implications for particle feeding: a physical model approach PhD Thesis, Univ. Calif. Davis:
    [Google Scholar]
  129. Quinlan ZA, Remple K, Fox MD, Silbiger NJ, Oliver TA et al. 2018. Fluorescent organic exudates of corals and algae in tropical reefs are compositionally distinct and increase with nutrient enrichment. Limnol. Oceanogr. Lett. 3:331–40
    [Google Scholar]
  130. Quinlan ZA, Ritson-Williams R, Carroll BJ, Carlson CA, Nelson CE. 2019. Species-specific differences in the microbiomes and organic exudates of crustose coralline algae influence bacterioplankton communities. Front. Microbiol. 10:2397
    [Google Scholar]
  131. Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. 2015. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol. 23:490–97
    [Google Scholar]
  132. Raina J-B, Tapiolas D, Willis BL, Bourne DG. 2009. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl. Environ. Microbiol. 75:3492–501
    [Google Scholar]
  133. Reidenbach MA, Monismith SG, Koseff JR, Yahel G, Genin A. 2006. Boundary layer turbulence and flow structure over a fringing coral reef. Limnol. Oceanogr. 51:1956–68
    [Google Scholar]
  134. Remple KL, Silbiger NJ, Quinlan ZA, Fox MD, Wegley Kelly L et al. 2021. Coral reef biofilm bacterial diversity and successional trajectories are structured by reef benthic organisms and shift under chronic nutrient enrichment. npj Biofilms Microbiomes 7:84
    [Google Scholar]
  135. Richter C, Wunsch M, Rasheed M, Kötter I, Badran M. 2001. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726–30
    [Google Scholar]
  136. Rix L, de Goeij JM, van Oevelen D, Struck U, Al-Horani FA et al. 2018. Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Mar. Ecol. Prog. Ser. 589:85–96
    [Google Scholar]
  137. Robinson C 2008. Heterotrophic bacterial respiration. Microbial Ecology of the Oceans DL Kirchman 299–334 New York: Wiley & Sons. , 2nd ed..
    [Google Scholar]
  138. Rougerie F 1998. The functioning of coral reefs and atolls: from paradox to paradigm. The French-Speaking Pacific: Population, Environment, and Development Issues C Jost 163–71 Mt. Nebo, Aust: Boombana
    [Google Scholar]
  139. Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD et al. 2008. Baselines and degradation of coral reefs in the northern Line Islands. PLOS ONE 3:e1548
    [Google Scholar]
  140. Sañudo-Wilhelmy SA, Gómez-Consarnau L, Suffridge C, Webb EA. 2014. The role of B vitamins in marine biogeochemistry. Annu. Rev. Mar. Sci. 6:339–67
    [Google Scholar]
  141. Seifan M, Berenjian A. 2019. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Appl. Microbiol. Biotechnol. 103:4693–708
    [Google Scholar]
  142. Seymour JR, Simó R, Ahmed T, Stocker R 2010. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329:342–45
    [Google Scholar]
  143. Shantz AA, Ladd MC, Schrack E, Burkepile DE. 2015. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25:2142–52
    [Google Scholar]
  144. Shashar N, Cohen Y, Loya Y. 1993. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol. Bull. 185:455–61
    [Google Scholar]
  145. Shashar N, Kinane S, Jokiel PL, Patterson MR. 1996. Hydromechanical boundary layers over a coral reef. J. Exp. Mar. Biol. Ecol. 199:17–28
    [Google Scholar]
  146. Sievert S, Kiene R, Schulz-Vogt H. 2007. The sulfur cycle. Oceanography 20:2117–23
    [Google Scholar]
  147. Silbiger NJ, Nelson CE, Remple K, Sevilla JK, Quinlan ZA et al. 2018. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc. R. Soc. B 285:20172718
    [Google Scholar]
  148. Silveira CB, Cavalcanti GS, Walter JM, Silva-Lima AW, Dinsdale EA et al. 2017. Microbial processes driving coral reef organic carbon flow. FEMS Microbiol. Rev. 41:575–95
    [Google Scholar]
  149. Smith JE, Brainard R, Carter A, Grillo S, Edwards C et al. 2016. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B 283:20151985
    [Google Scholar]
  150. Smith JE, Price NN, Nelson CE, Haas AF. 2013. Coupled changes in oxygen concentration and pH caused by metabolism of benthic coral reef organisms. Mar. Biol. 160:2437–47
    [Google Scholar]
  151. Smith JE, Shaw M, Edwards RA, Obura D, Pantos O et al. 2006. Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol. Lett. 9:835–45Describes a seminal experiment demonstrating the indirect role of microbial metabolism of DOM in coral–algae interactions.
    [Google Scholar]
  152. Sorokin YI. 1995. Role of plankton in the turnover of organic-matter on the Great Barrier Reef, Australia. Hydrobiologia 308:35–44
    [Google Scholar]
  153. Suzuki Y, Casareto B, Kurosawa K 2001. Import and export fluxes of HMW-DOC and LMW-DOC in coral reef at Miyako Island, Okinawa. Proceedings of the Ninth International Coral Reef Symposium, Vol. 1 MK Moosa, S Soemodihardjo, A Soegiarto, K Romimohtarto, A Nontji et al.555–59 Jakarta, Indones: State Minist. Environ.
    [Google Scholar]
  154. Suzumura M, Miyajima T, Hata H, Umezawa Y, Kayanne H, Koike I. 2002. Cycling of phosphorus maintains the production of microphytobenthic communities in carbonate sediments of a coral reef. Limnol. Oceanogr. 47:771–81
    [Google Scholar]
  155. Sweet MJ, Bythell JC, Nugues MM. 2013. Algae as reservoirs for coral pathogens. PLOS ONE 8:e69717
    [Google Scholar]
  156. Tanaka Y, Miyajima T, Watanabe A, Nadaoka K, Yamamoto T, Ogawa H. 2011. Distribution of dissolved organic carbon and nitrogen in a coral reef. Coral Reefs 30:533–41
    [Google Scholar]
  157. Tanaka Y, Nakajima R 2018. Dissolved organic matter in coral reefs: distribution, production, and bacterial consumption. Coral Reef Studies of Japan A Iguchi, C Hongo 7–27 Singapore: SpringerProvides a detailed review of current literature on stocks and fluxes of both DOM and microbes in coral reefs.
    [Google Scholar]
  158. Torréton J, Dufour P. 1996. Temporal and spatial stability of bacterioplankton biomass and productivity in an atoll lagoon. Aquat. Microb. Ecol. 11:251–61
    [Google Scholar]
  159. Tout J, Jeffries TC, Petrou K, Tyson GW, Webster NS et al. 2015. Chemotaxis by natural populations of coral reef bacteria. ISME J 9:1764–77
    [Google Scholar]
  160. Tout J, Jeffries TC, Webster NS, Stocker R, Ralph PJ, Seymour JR. 2014. Variability in microbial community composition and function between different niches within a coral reef. Microb. Ecol. 67:540–52
    [Google Scholar]
  161. Tribble GW, Atkinson MJ, Sansone FJ, Smith SV 1994. Reef metabolism and endo-upwelling in perspective. Coral Reefs 13:199–201
    [Google Scholar]
  162. Vanwonterghem I, Webster NS 2020. Coral reef microorganisms in a changing climate. iScience 23:100972
    [Google Scholar]
  163. Vaughan EJ, Wilson SK, Howlett SJ, Parravicini V, Williams GJ, Graham NAJ. 2021. Nitrogen enrichment in macroalgae following mass coral mortality. Coral Reefs 40:767–76
    [Google Scholar]
  164. Vorobev A, Sharma S, Yu M, Lee J, Washington BJ et al. 2018. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environ. Microbiol. 20:3012–30
    [Google Scholar]
  165. Wagner-Döbler I, Biebl H. 2006. Environmental biology of the marine Roseobacter lineage. Annu. Rev. Microbiol. 60:255–80
    [Google Scholar]
  166. Walsh K, Haggerty JM, Doane MP, Hansen JJ, Morris MM et al. 2017. Aura-biomes are present in the water layer above coral reef benthic macro-organisms. PeerJ 5:e3666
    [Google Scholar]
  167. Wear EK, Wilbanks EG, Nelson CE, Carlson CA. 2018. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environ. Microbiol. 20:2709–26
    [Google Scholar]
  168. Webb KL, Wiebe WJ. 2011. Nitrification on a coral reef. Can. J. Microbiol. 21:1427–31
    [Google Scholar]
  169. Weber L, Apprill A. 2020. Diel, daily, and spatial variation of coral reef seawater microbial communities. PLOS ONE 15:e0229442
    [Google Scholar]
  170. Weber L, Armenteros M, Kido Soule M, Longnecker K, Kujawinski EB, Apprill A 2020a. Extracellular reef metabolites across the protected Jardines de la Reina, Cuba reef system. Front. Mar. Sci. 7:1063
    [Google Scholar]
  171. Weber L, González-Díaz P, Armenteros M, Apprill A 2019. The coral ecosphere: a unique coral reef habitat that fosters coral-microbial interactions. Limnol. Oceanogr. 64:2373–88
    [Google Scholar]
  172. Weber L, González-Díaz P, Armenteros M, Ferrer VM, Bretos F et al. 2020b. Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida Keys. Environ. Microbiol. 22:499–519
    [Google Scholar]
  173. Webster NS, Smith LD, Heyward AJ, Watts JEM, Webb RI et al. 2004. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70:1213–21
    [Google Scholar]
  174. Wegley Kelly L, Barott KL, Dinsdale E, Friedlander AM, Nosrat B et al. 2012. Black reefs: iron-induced phase shifts on coral reefs. ISME J 6:638–49
    [Google Scholar]
  175. Wegley Kelly L, Haas AF, Nelson CE 2018. Ecosystem microbiology of coral reefs: linking genomic, metabolomic, and biogeochemical dynamics from animal symbioses to reefscape processes. mSystems 3:e00162–17
    [Google Scholar]
  176. Wegley Kelly L, Nelson CE, Aluwihare LI, Arts MGI, Dorrestein PC et al. 2021. Molecular commerce on coral reefs: using metabolomics to reveal biochemical exchanges underlying holobiont biology and the ecology of coastal ecosystems. Front. Mar. Sci. 8:969
    [Google Scholar]
  177. Wegley Kelly L, Nelson CE, Haas AF, Naliboff DS, Calhoun S et al. 2019. Diel population and functional synchrony of microbial communities on coral reefs. Nat. Commun. 10:1691
    [Google Scholar]
  178. Wegley Kelly L, Nelson CE, Petras D, Koester I, Quinlan ZA et al. 2022. Distinguishing the molecular diversity, nutrient content, and energetic potential of exometabolomes produced by macroalgae and reef-building corals. PNAS 119:e2110283119
    [Google Scholar]
  179. Wegley Kelly L, Williams GJ, Barott KL, Carlson CA, Dinsdale EA et al. 2014. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. PNAS 111:10227–32
    [Google Scholar]
  180. Weijerman M, Fulton EA, Brainard RE. 2016. Management strategy evaluation applied to coral reef ecosystems in support of ecosystem-based management. PLOS ONE 11:e0152577
    [Google Scholar]
  181. Weijerman M, Gove JM, Williams ID, Walsh WJ, Minton D, Polovina JJ. 2018. Evaluating management strategies to optimise coral reef ecosystem services. J. Appl. Ecol. 55:1823–33
    [Google Scholar]
  182. Werner U, Bird P, Wild C, Ferdelman T, Polerecky L et al. 2006. Spatial patterns of aerobic and anaerobic mineralization rates and oxygen penetration dynamics in coral reef sediments. Mar. Ecol. Prog. Ser. 309:93–105
    [Google Scholar]
  183. Wiebe W, Johannes R, Webb K 1975. Nitrogen fixation in a coral reef community. Science 188:257–59
    [Google Scholar]
  184. Wijgerde T, Silva CIF, Scherders V, van Bleijswijk J, Osinga R. 2014. Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen. Biol. Open 3:489–93
    [Google Scholar]
  185. Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jorgensen BB. 2004a. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70
    [Google Scholar]
  186. Wild C, Laforsch C, Huettel M. 2006. Detection and enumeration of microbial cells within highly porous calcareous reef sands. Mar. Freshw. Res. 57:415–20
    [Google Scholar]
  187. Wild C, Rasheed M, Werner U, Franke U, Johnstone R, Huettel M. 2004b. Degradation and mineralization of coral mucus in reef environments. Mar. Ecol. Prog. Ser. 267:159–71
    [Google Scholar]
  188. Wilkins LGE, Leray M, O'Dea A, Yuen B, Peixoto RS et al. 2019. Host-associated microbiomes drive structure and function of marine ecosystems. PLOS Biol. 17:e3000533
    [Google Scholar]
  189. Williamson JE, Duce S, Joyce KE, Raoult V. 2021. Putting sea cucumbers on the map: projected holothurian bioturbation rates on a coral reef scale. Coral Reefs 40:559–69
    [Google Scholar]
  190. Woodson CB, Schramski JR, Joye SB 2018. A unifying theory for top-heavy ecosystem structure in the ocean. Nat. Commun. 9:23
    [Google Scholar]
  191. Wooldridge S. 2013. A new conceptual model of coral biomineralisation: hypoxia as the physiological driver of skeletal extension. Biogeosciences 10:2867–84
    [Google Scholar]
  192. Worm B, Lotze HK, Hillebrand H, Sommer U. 2002. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417:848–51
    [Google Scholar]
  193. Wyatt ASJ, Lowe RJ, Humphries S, Waite AM. 2010. Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar. Ecol. Prog. Ser. 405:113–30Provides a detailed field demonstration of mass-transfer processes regulating coral reef consumption of particulate organic matter.
    [Google Scholar]
  194. Wyatt ASJ, Lowe RJ, Humphries S, Waite AM. 2013. Particulate nutrient fluxes over a fringing coral reef: source-sink dynamics inferred from carbon to nitrogen ratios and stable isotopes. Limnol. Oceanogr. 58:409–27
    [Google Scholar]
  195. Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL et al. 2010. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468:60–66
    [Google Scholar]
  196. Zgliczynski BJ, Williams GJ, Hamilton SL, Cordner EG, Fox MD et al. 2019. Foraging consistency of coral reef fishes across environmental gradients in the central Pacific. Oecologia 191:433–45
    [Google Scholar]
/content/journals/10.1146/annurev-marine-042121-080917
Loading
/content/journals/10.1146/annurev-marine-042121-080917
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error