1932

Abstract

Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcingand ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-052915-100829
2016-01-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-052915-100829.html?itemId=/content/journals/10.1146/annurev-marine-052915-100829&mimeType=html&fmt=ahah

Literature Cited

  1. Antonov JI, Locarnini RA, Boyer TP, Mishonov AV, Garcia HE. 2006. World Ocean Atlas 2005 2 Salinity Ed. S Levitus. NOAA Atlas NESDIS 62 Washington, DC: US Gov. Print. Off.
  2. Aoki S, Bindoff NL, Church JA. 2005. Interdecadal water mass changes in the Southern Ocean between 30°E and 160°E. Geophys. Res. Lett. 32:L07607 [Google Scholar]
  3. Arístegui J, Duarte CM, Agustí S, Doval M, Álvarez-Salgado XA, Hansell DA. 2002. Dissolved organic carbon support of respiration in the dark ocean. Science 298:1967 [Google Scholar]
  4. Bindoff NL, McDougall TJ. 2000. Decadal changes along an Indian Ocean section at 32°S and their interpretation. J. Phys. Oceanogr. 30:1207–22 [Google Scholar]
  5. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J. et al. 2007. Observations: oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S Solomon, D Qin, M Manning, Z Chen, M Marquis 385–432 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  6. Boyer TP, Levitus S, Antonov JI, Locarnini RA, Garcia HE. 2005. Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett. 32:L01604 [Google Scholar]
  7. Brown PJ, Bakker DCE, Schuster U, Watson AJ. 2010. Anthropogenic carbon accumulation in the subtropical North Atlantic. J. Geophys. Res. 115:C04016 [Google Scholar]
  8. Bryden HL, Longworth HR, Cunningham SA. 2005. Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438:655–57 [Google Scholar]
  9. Bryden HL, McDonagh EL, King BA. 2003. Changes in ocean water mass properties: oscillations or trends?. Science 300:2086–88 [Google Scholar]
  10. Bullister JL. 2015. Atmospheric histories (1765–2015) for CFC-11, CFC-12, CFC-113, CCl4, SF6 and N2O. NDP-095, ORNL/CDIAC-161, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., US Dep. Energy, Oak Ridge, TN. http://cdiac.ornl.gov/oceans/CFC_ATM_Hist2015.html [Google Scholar]
  11. Bullister JL, Wisegarver DP, Menzia FA. 2002. The solubility of sulfur hexafluoride in water and seawater. Deep-Sea Res. I 49:175–87 [Google Scholar]
  12. Byrne RH, Mecking S, Feely RA, Liu X. 2010. Direct observations of basin-wide acidification of the North Pacific. Geophys. Res. Lett. 37:L02601 [Google Scholar]
  13. Carlson CA, Ducklow HW, Michaels AF. 1994. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371:405–8 [Google Scholar]
  14. Carlson CA, Hansell DA. 2015. DOM sources, sinks, reactivity and budgets. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 65–126 New York: Academic, 2nd ed.. [Google Scholar]
  15. Carlson CA, Hansell DA, Nelson NB, Siegel DA, Smethie WM. et al. 2010. Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin. Deep-Sea Res. II 57:1433–45 [Google Scholar]
  16. Carton JA, Cunningham SA, Frajka-Williams E, Kwon Y-O, Marshall DP, Msadek R. 2014. The Atlantic overturning circulation: more evidence of variability and links to climate. Bull. Am. Meteorol. Soc. 95:ES163–66 [Google Scholar]
  17. Carton JA, Hakkinen S. 2011. Introduction to: Atlantic Meridional Overturning Circulation (AMOC). Deep-Sea Res. II 58:1741–43 [Google Scholar]
  18. Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG. et al. 2011. Revisiting the Earth's sea level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38:L18601 [Google Scholar]
  19. Copin-Montgut G, Avril B. 1993. Vertical distribution and temporal variation of dissolved organic carbon in the North-Western Mediterranean Sea. Deep-Sea Res. I 40:1963–72 [Google Scholar]
  20. Curry RG, McCartney MS. 2001. Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr. 31:3374–400 [Google Scholar]
  21. Decloedt T, Luther DS. 2012. Spatially heterogeneous diapycnal mixing in the abyssal ocean: a comparison of two parameterizations to observations. J. Geophys. Res. 117:C11025 [Google Scholar]
  22. Deutsch C, Emerson S, Thompson L. 2005. Fingerprints of climate change in North Pacific oxygen. Geophys. Res. Lett. 32:L16604 [Google Scholar]
  23. Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB. 2015. Climate change tightens a metabolic constraint on marine habitats. Science 348:1132–35 [Google Scholar]
  24. Di Lorenzo E, Fiechter J, Schneider N, Bracco A, Miller AJ. et al. 2009. Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophys. Res. Lett. 36:L14601 [Google Scholar]
  25. Doney SC. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–16 [Google Scholar]
  26. Doney SC, Jenkins WJ. 1994. Ventilation of the deep western boundary current and the abyssal western North Atlantic: estimates from tritium and 3He distributions. J. Phys. Oceanogr. 24:638–59 [Google Scholar]
  27. Doney SC, Jenkins WJ, Bullister JL. 1997. A comparison of ocean tracer dating techniques on a meridional section in the eastern North Atlantic. Deep-Sea Res. I 44:603–26 [Google Scholar]
  28. Durack PJ, Wijffels SE. 2010. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 23:4342–62 [Google Scholar]
  29. Durack PJ, Wijffels SE, Matear RJ. 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–58 [Google Scholar]
  30. Dutay J-C, Bullister JL, Doney SC, Orr JC, Najjar R. et al. 2002. Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Model. 4:89–120 [Google Scholar]
  31. Egleston ES, Sabine CL, Morel FMM. 2010. Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles 24:GB1002 [Google Scholar]
  32. Emerson S, Mecking S, Abell J. 2001. The biological pump in the subtropical North Pacific Ocean: nutrient sources, Redfield ratios, and recent changes. Glob. Biogeochem. Cycles 15:535–54 [Google Scholar]
  33. Emerson S, Watanabe YW, Ono T, Mecking S. 2004. Temporal trends in apparent oxygen utilization in the upper pycnocline of the North Pacific: 1980–2000. J. Oceanogr. 60:139–47 [Google Scholar]
  34. Feely RA, Doney SC, Cooley SR. 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:436–47 doi: 10.5670/oceanog.2009.95 [Google Scholar]
  35. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J. et al. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–66 [Google Scholar]
  36. Fine RA. 2011. Observations of CFCs and SF6 as ocean tracers. Annu. Rev. Mar. Sci. 3:173–95 [Google Scholar]
  37. Fine RA, Peacock S, Maltrud ME, Bryan FO. 2014. A new look at ocean ventilation timescales Presented at Ocean Sci. Meet., Honolulu, HI, Feb. 23–28. http://www.sgmeet.com/osm2014/viewabstract.asp?abstractid=14982
  38. Frajka-Williams E, Cunningham SA, Bryden H, King BA. 2011. Variability of Antarctic Bottom Water at 24.5°N in the Atlantic. J. Geophys. Res. 116:C11026 [Google Scholar]
  39. Friis K, Körtzinger A, Pätsch J, Wallace DWR. 2005. On the temporal increase of anthropogenic CO2 in the subpolar North Atlantic. Deep-Sea Res. I 52:681–98 [Google Scholar]
  40. Frölicher TL, Joos F, Plattner GK, Steinacher M, Doney SC. 2009. Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle-climate model ensemble. Glob. Biogeochem. Cycles 23:GB1003 [Google Scholar]
  41. Frölicher TL, Winton M, Sarmiento JL. 2014. Continued global warming after CO2 emissions stoppage. Nat. Clim. Change 4:40–44 [Google Scholar]
  42. Fukasawa M, Freeland H, Perkin R, Watanabe T, Uchida H, Nishina A. 2004. Bottom water warming in the North Pacific Ocean. Nature 427:825–27 [Google Scholar]
  43. Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–56 [Google Scholar]
  44. Gloor M, Gruber N, Sarmiento JL, Sabine CL, Feely RA, Rödenbeck C. 2003. A first estimate of present and preindustrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models. Geophys. Res. Lett. 30:1010 [Google Scholar]
  45. Goldberg SJ, Carlson CA, Brzezinski M, Nelson NB, Siegel DA. 2011. Systematic removal of neutral sugars within dissolved organic matter across ocean basins. Geophys. Res. Lett. 38:L17606 [Google Scholar]
  46. Graven HD, Gruber N, Key R, Khatiwala S, Giraud X. 2012. Changing controls on oceanic radiocarbon: new insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. J. Geophys. Res. 117:C10005 [Google Scholar]
  47. Gregg MC. 1989. Scaling turbulent dissipation in the thermocline. J. Geophys. Res. 94:9686–98 [Google Scholar]
  48. Gregg MC, Sanford TB, Winkel DP. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature 422:513–15 [Google Scholar]
  49. Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S. et al. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23:GB1005 [Google Scholar]
  50. Gruber N, Sarmiento JL, Stocker TF. 1996. An improved method for detecting anthropogenic CO2 in the oceans. Glob. Biogeochem. Cycles 10:809–37 [Google Scholar]
  51. Hakkinen S, Hatun H, Rhines PB. 2008. Satellite evidence of change in the northern gyre. Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate B Dickson, J Meincke, P Rhines 551–67 Dordrecht, Neth: Springer [Google Scholar]
  52. Hakkinen S, Rhines PB. 2004. Decline of subpolar North Atlantic circulation during the 1990s. Science 302:555–59 [Google Scholar]
  53. Hall TM, Haine TWN, Holzer M, LeBel DA, Terenzi F, Waugh DW. 2007. Ventilation rates estimated from tracers in the presence of mixing. J. Phys. Oceanogr. 37:2599–611 [Google Scholar]
  54. Hansell DA. 2013. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5:421–45 [Google Scholar]
  55. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R. 2009. Dissolved organic matter in the ocean: A controversy stimulates new insights. Oceanography 22:4202–11 doi: 10.5670/oceanog.2009.109 [Google Scholar]
  56. Hansell DA, Carlson CA, Schlitzer R. 2012. Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Glob. Biogeochem. Cycles 26:GB1016 [Google Scholar]
  57. Hansell DA, Olson DB, Dentener F, Zamora LM. 2007. Assessment of excess nitrate development in the subtropical North Atlantic. Mar. Chem. 106:562–79 [Google Scholar]
  58. Hartin CA, Fine RA, Kamenkovich I, Sloyan BM. 2014. Comparison of Subantarctic Mode Water and Antarctic Intermediate Water formation rates in the South Pacific between NCAR-CCSM4 and observations. Geophys. Res. Lett. 41:519–26 [Google Scholar]
  59. Helm KP, Bindoff NL, Church JA. 2010. Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett. 37:L18701 [Google Scholar]
  60. Helm KP, Bindoff NL, Church JA. 2011. Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett. 38:L23602 [Google Scholar]
  61. Henson SA, Sarmiento JL, Dunne JP, Bopp L, Lima I. et al. 2010. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 7:621–40 [Google Scholar]
  62. Henyey FS, Wright JA, Flatté SM. 1986. Energy and action flow through the internal wave field: an eikonal approach. J. Geophys. Res. 91:8487–95 [Google Scholar]
  63. Hernández-Guerra A, Pelegri JL, Fraile-Nuez E, Benítez-Barrios V, Emilianov M. et al. 2014. Meridional overturning transports at 7.5N and 24.5N in the Atlantic Ocean during 1992–93 and 2010–11. Prog. Oceanogr. 128:98–114 [Google Scholar]
  64. Holzer M, Primeau FW, Smethie WM, Khatiwala S, Hall T. 2010. Where and how long ago was water in the western North Atlantic ventilated? Maximum-entropy inversions of bottle data from WOCE line A20. J. Geophys. Res. 115:C07005 [Google Scholar]
  65. Huhn O, Rhein M, Hoppema M, van Heuven S. 2013. Decline of deep and bottom water ventilation and slowing down of anthropogenic carbon storage in the Weddell Sea, 1984–2011. Deep-Sea Res. I 76:66–84 [Google Scholar]
  66. Huussen TN, Naveira-Garabato AC, Bryden HL, McDonagh EL. 2012. Is the deep Indian Ocean MOC sustained by breaking internal waves?. J. Geophys. Res. 117:C08024 [Google Scholar]
  67. Jacobs SS, Giulivi CF. 2010. Large multidecadal salinity trends near the Pacific Antarctic continental margin. J. Clim. 23:4508–24 [Google Scholar]
  68. Jenkins WJ. 1977. Tritium-helium dating in the Sargasso Sea: a measurement of oxygen utilization rates. Science 196:291–92 [Google Scholar]
  69. Jenkins WJ. 1998. Studying thermocline ventilation and circulation using tritium and 3He. J. Geophys. Res. 103:15817–31 [Google Scholar]
  70. Johnson GC. 2008. Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res. 113:C05027 [Google Scholar]
  71. Johnson GC, Gruber N. 2007. Decadal water mass variations along 20°W in the northeastern Atlantic Ocean. Prog. Oceanogr. 73:277–95 [Google Scholar]
  72. Johnson GC, McTaggart KE, Wanninkhof R. 2014. Antarctic Bottom Water temperature changes in the western South Atlantic from 1989 to 2014. J. Geophys. Res. 119:8567–77 [Google Scholar]
  73. Johnson GC, Purkey SG, Toole JM. 2008. Reduced Antarctic meridional overturning circulation reaches the North Atlantic Ocean. Geophys. Res. Lett. 35: L22601. doi: 10.1029/2008GL035619 [Google Scholar]
  74. Katsumata K, Masuda S. 2013. Variability in Southern Hemisphere ocean circulation from the 1980s to the 2000s. J. Phys. Oceanogr. 43:1981–2007 [Google Scholar]
  75. Katsumata K, Nakano H, Kumamoto Y. 2015. Dissolved oxygen change and freshening of Antarctic Bottom water along 62°S in the Australian-Antarctic Basin between 1995/1996 and 2012/2013. Deep-Sea Res. II 114:27–38 [Google Scholar]
  76. Keeling RF, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2:199–229 [Google Scholar]
  77. Keeling RF, Manning AC. 2014. Studies of recent changes in atmospheric O2 content. Treatise on Geochemistry 5 The Atmosphere HD Holland, KK Turekian 385–404 Amsterdam: Elsevier, 2nd. ed. [Google Scholar]
  78. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R. et al. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 19:GB4031 [Google Scholar]
  79. Key RM, van Heuven S, Lauvset K, Olsen A, Kozyr A. et al. 2015. Global Ocean Data Analysis Project, Version 2 (GLODAPv2). ORNL/CDIAC-159, NDP-093, Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab., US Dep. Energy, Oak Ridge, TN. doi: 10.3334/CDIAC/OTG.NDP093_GLODAPv2.
  80. Khatiwala S, Primeau F, Hall T. 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–49 [Google Scholar]
  81. Khatiwala S, Tanhua T, Mikaloff Fletcher SE, Gerber M, Doney SC. et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–91 [Google Scholar]
  82. Kieke D, Rhein M, Stramma L, Smethie WM, Bullister JL, LeBel DA. 2007. Changes in the pool of Labrador Sea Water in the subpolar North Atlantic. Geophys. Res. Lett. 34:L06605 [Google Scholar]
  83. Kieke D, Rhein M, Stramma L, Smethie WM, LeBel DA, Zenk W. 2006. Changes in the CFC inventories and formation rates of Upper Labrador Sea Water, 1997–2001. J. Phys. Oceanogr. 36:64–86 [Google Scholar]
  84. Kim IN, Lee K, Gruber N, Karl DM, Bullister JL. et al. 2014. Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346:1102–6 [Google Scholar]
  85. Kobayashi T, Mizuno K, Suga T. 2012. Long-term variations of surface and intermediate waters in the southern Indian Ocean along 32°S. J. Oceanogr. 68:243–65 [Google Scholar]
  86. Körtzinger A, Rhein M, Mintrop L. 1999. Anthropogenic CO2 and CFCs in the North Atlantic Ocean—a comparison of man-made tracers. Geophys. Res. Lett. 26:2065–68 [Google Scholar]
  87. Kouketsu S, Doi T, Kawano T, Masuda S, Sugiura N. et al. 2011. Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res. 116:C03012 [Google Scholar]
  88. Kouketsu S, Fukasawa M, Kaneko I, Kawano T, Uchida H. et al. 2009. Changes in water properties and transports along 24°N in the North Pacific between 1985 and 2005. J. Geophys. Res. 114:C01008 [Google Scholar]
  89. Kouketsu S, Fukasawa M, Sasano D, Kumamoto Y, Kawano T. et al. 2010. Changes in water properties around North Pacific intermediate water between the 1980s, 1990s and 2000s. Deep-Sea Res. II 57:1177–87 [Google Scholar]
  90. Kouketsu S, Murata AM. 2014. Detecting decadal scale increases in anthropogenic CO2 in the ocean. Geophys. Res. Lett. 41:4594–600 [Google Scholar]
  91. Kunze E, Firing E, Hummon JM, Chereskin TK, Thurnherr AM. 2006. Global abyssal mixing from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr. 36:1553–76 [Google Scholar]
  92. LaCasce JH, Ferrari R, Marshall J, Tulloch R, Balwada D, Speer K. 2014. Float-derived isopycnal diffusivities in the DIMES experiment. J. Phys. Oceanogr. 44:764–80 [Google Scholar]
  93. Landschützer P, Gruber N, Bakker DCE, Schuster U. 2014. Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycles 28:927–49 [Google Scholar]
  94. LeBel DA, Smethie WM, Rhein M, Kieke D, Fine RA. et al. 2008. The formation rate of North Atlantic Deep Water and Eighteen Degree Water calculated from CFC-11 inventories observed during WOCE. Deep-Sea Res. I 55:891–910 [Google Scholar]
  95. Levine NM, Doney SC, Lima I, Wanninkhof R, Bates NR, Feely RA. 2011. The impact of the North Atlantic Oscillation on the uptake and accumulation of anthropogenic CO2 by North Atlantic Ocean mode waters. Glob. Biogeochem. Cycles 25:GB3022 [Google Scholar]
  96. Levine NM, Doney SC, Wanninkhof R, Lindsay K, Fung I. 2008. Impact of ocean carbon system variability on the detection of temporal increases in anthropogenic CO2. J. Geophys. Res. 113:C03019 [Google Scholar]
  97. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE. 2006. World Ocean Atlas 2005 1 Temperature Ed. S Levitus. NOAA Atlas NESDIS 61 Washington, DC: US Gov. Print. Off.
  98. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE. et al. 2013. World Ocean Atlas 2013 1 Temperature. Ed. S Levitus, Tech. Ed. A Mishonov. NOAA Atlas NESDIS 73 Washington, DC: US Gov. Print. Off.
  99. Loeb NG, Lyman JM, Johnson GC, Doelling DR, Wong T. et al. 2012. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci. 5:110–13 [Google Scholar]
  100. Long MC, Lindsay K, Peacock S, Moore JK, Doney SC. 2013. Twentieth-century ocean carbon uptake and storage in CESM1(BGC). J. Clim. 26:6775–800 [Google Scholar]
  101. Longworth HR, Bryden HL, Baringer MO. 2011. Historical variability in Atlantic meridional baroclinic transport at 26.5°N from boundary dynamic height observations. Deep-Sea Res. II 58:1754–67 [Google Scholar]
  102. Lozier MS. 2010. Deconstructing the conveyor belt. Science 328:1507–11 [Google Scholar]
  103. Lumpkin R, Speer K. 2007. Global ocean meridional overturning. J. Phys. Oceanogr. 37:2550–62 [Google Scholar]
  104. Macdonald AM, Mecking S, Robbins PE, Toole JM, Johnson GC. et al. 2009. The WOCE-Era 3-D Pacific Ocean circulation and heat budget. Prog. Oceanogr. 82:281–325 [Google Scholar]
  105. Masuda S, Awaji T, Sugiura N, Matthews JP, Toyoda T. et al. 2010. Simulated rapid warming of abyssal North Pacific water. Science 329:319–22 [Google Scholar]
  106. Matear RJ, Hirst AC. 2003. Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Glob. Biogeochem. Cycles 17:1125 [Google Scholar]
  107. Matsumoto K, Sarmiento JL, Key RM, Bullister JL, Caldeira K. et al. 2004. Evaluation of ocean carbon cycle models with data-based metrics. Geophys. Res. Lett. 31:L07303 [Google Scholar]
  108. Mauritzen C, Melsom A, Sutton RT. 2012. Importance of density-compensated temperature change for deep North Atlantic Ocean heat uptake. Nat. Geosci. 5:905–10 [Google Scholar]
  109. McCarthy G, Smeed DA, Johns WE, Frajka-Williams E, Moat BI. et al. 2015. Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr. 130:91–111 [Google Scholar]
  110. McDonagh EL, Bryden HL, King BA, Sanders RJ. 2008. The circulation of the Indian Ocean at 32°S. Prog. Oceanogr. 79:20–36 [Google Scholar]
  111. McDonagh EL, Bryden HL, King BA, Sanders RJ, Cunningham SA, Marsh R. 2005. Decadal changes in the South Indian Ocean thermocline. J. Clim. 18:1575–90 [Google Scholar]
  112. Mecking S, Johnson GC, Bullister JL, Macdonald AM. 2012. Decadal changes in oxygen and temperature-salinity relations along 32°S in the Indian Ocean through 2009 Presented at Ocean Sci. Meet., Salt Lake City, UT, Feb. 20–24. https://www.sgmeet.com/osm2012/viewabstract2.asp?AbstractID=10467
  113. Mecking S, Langdon C, Feely RA, Sabine CL, Deutsch CA, Min D-H. 2008. Climate variability in the North Pacific thermocline diagnosed from oxygen measurements: an update based on the U.S. CLIVAR/CO2 Repeat Hydrography cruises. Glob. Biogeochem. Cycles 22:GB3015 [Google Scholar]
  114. Mecking S, Warner MJ, Bullister JL. 2006. Temporal changes in pCFC-12 ages and AOU along two hydrographic sections in the eastern subtropical North Pacific. Deep-Sea Res. I 53:169–87 [Google Scholar]
  115. Melet A, Hallberg R, Legg S, Polzin KL. 2013. Sensitivity of the Pacific Ocean state to the vertical distribution of internal-tide driven mixing. J. Phys. Oceanogr. 43:602–15 [Google Scholar]
  116. Moore JK, Doney SC. 2007. Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation. Glob. Biogeochem. Cycles 21:GB2001 [Google Scholar]
  117. Munk W. 1966. Abyssal recipes. Deep-Sea Res. 13:707–30 [Google Scholar]
  118. Murata A, Kumamoto Y, Sasaki K, Watanabe S, Fukasawa M. 2008. Decadal increases of anthropogenic CO in the subtropical South Atlantic Ocean along 30°S. J. Geophys. Res. 113:C06007 [Google Scholar]
  119. Murata A, Kumamoto Y, Sasaki K, Watanabe S, Fukasawa M. 2010. Decadal increases in anthropogenic CO2 along 20°S in the South Indian Ocean. J. Geophys. Res. 115:C12055 [Google Scholar]
  120. Murata A, Kumamoto Y, Watanabe S, Fukasawa M. 2007. Decadal increases of anthropogenic CO2 in the South Pacific subtropical ocean along 32°S. J. Geophys. Res. 112:C05033 [Google Scholar]
  121. Naegler T, Ciais P, Rodgers KB, Levin I. 2006. Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans. Geophys. Res. Lett. 33:L11802 [Google Scholar]
  122. Nakano T, Kitamura T, Sugimoto S, Suga T, Kamachi M. 2015. Long-term variations of North Pacific Tropical Water along the 137°E repeat hydrographic section. J. Oceanogr. 71:229–38 [Google Scholar]
  123. Natl. Res. Counc 2002. Chemical Reference Materials: Setting the Standards for Ocean Science. Washington, DC: Natl. Acad. Press
  124. Naveira Garabato AC, Polzin KL, King BA, Heywood KJ, Visbeck M. 2004. Widespread intense turbulent mixing in the Southern Ocean. Science 303:210–13 [Google Scholar]
  125. Olsen A, Key RM, Lauvset SK, Lin X, Tanhua T. et al. 2014. Release! Global Ocean Data Analysis Version 2 (GLODAPv.2) Presented at Ocean Sci. Meet., Honolulu, HI, Feb. 23–28. http://www.sgmeet.com/osm2014/viewabstract.asp?abstractid=15764 [Google Scholar]
  126. Olsen A, Key RM, Lauvset SK, van Heuven S, Lin X. et al. 2015. GLODAPv.2: GLobal Ocean Data Analysis Project Version 2 NDP, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., US Dep. Energy, Oak Ridge, TN. In review
  127. Ono T, Midorikawa T, Watanabe Y, Tadokoro K, Saino T. 2001. Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 to 1998. Geophys. Res. Lett. 28:3285–88 [Google Scholar]
  128. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC. et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–86 [Google Scholar]
  129. Orsi AH, Smethie WM, Bullister JL. 2002. On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. 107:31–114 [Google Scholar]
  130. Orsi AH, Whitworth T, Nowlin WD. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I. 42:641–73 [Google Scholar]
  131. Palmer MD, Bryden HL, Hirschi J, Marotzke J. 2004. Observed changes in the South Indian Ocean gyre circulation, 1987–2002. Geophys. Res. Lett. 31:L15303 [Google Scholar]
  132. Pardo PC, Pérez FF, Khatiwala S, Ríos AF. 2014. Anthropogenic CO2 estimates in the Southern Ocean: storage partitioning in the different water masses. Prog. Oceanogr. 120:230–42 [Google Scholar]
  133. Peacock S, Maltrud M, Bleck R. 2005. Putting models to the data test: a case study using Indian Ocean CFC-11 data. Ocean Model. 9:1–22 [Google Scholar]
  134. Pérez FF, Mercier H, Vázquez-Rodríguez M, Lherminier P, Velo A. et al. 2013. Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nat. Geosci. 6:146–52 [Google Scholar]
  135. Pérez FF, Vázquez-Rodríguez M, Mercier H, Velo A, Lherminier P, Ríos AF. 2010. Trends of anthropogenic CO2 storage in North Atlantic water masses. Biogeosciences 7:1789–807 [Google Scholar]
  136. Polzin KL, Garabato ACN, Huussen TN, Sloyan BM, Waterman S. 2014. Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans 119:1383–419 [Google Scholar]
  137. Polzin KL, Toole JM, Schmitt RW. 1995. Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr. 25:306–28 [Google Scholar]
  138. Purkey SG, Johnson GC. 2010. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23:6336–51 [Google Scholar]
  139. Purkey SG, Johnson GC. 2012. Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Clim. 25:5830–44 [Google Scholar]
  140. Purkey SG, Johnson GC. 2013. Antarctic Bottom Water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26:6105–22 [Google Scholar]
  141. Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A. et al. 2015. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5:475–80 [Google Scholar]
  142. Rayner D, Hirschi JMM, Kanzow T, Johns WE, Wright PG. et al. 2011. Monitoring the Atlantic meridional overturning circulation. Deep-Sea Res. II 58:1744–53 [Google Scholar]
  143. Rhein M, Fischer J, Smethie WM, Smythe-Wright D, Min DH. et al. 2002. Labrador Sea Water: pathways, CFC inventory and formation rates. J. Phys. Oceanogr. 32:648–65 [Google Scholar]
  144. Rhein M, Kieke DH, Huttl-Kabus S, Roessler A, Mertens C. et al. 2011. Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep-Sea Res. II 58:1819–32 [Google Scholar]
  145. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D. et al. 2013. Observations: ocean. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen 255–310 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  146. Rignot E, Bamber JL, van Den Broeke MR, Davis C, Li Y. et al. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nat. Geosci. 1:106–10 [Google Scholar]
  147. Roemmich D, Church J, Gilson J, Monselesan D, Sutton P, Wijffels S. 2015. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5:240–45 [Google Scholar]
  148. Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S. 2007. Decadal spinup of the South Pacific subtropical gyre. J. Phys. Oceanogr. 37:162–73 [Google Scholar]
  149. Roemmich D, Wunsch C. 1984. Apparent changes in the climate state of the deep North Atlantic Ocean. Nature 307:447–50 [Google Scholar]
  150. Sabine CL, Feely RA, Gruber N, Key RM, Lee K. et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–71 [Google Scholar]
  151. Sabine CL, Feely RA, Millero FJ, Dickson AG, Langdon C. et al. 2008. Decadal changes in Pacific carbon. J. Geophys. Res. 113:C07021 [Google Scholar]
  152. Sabine CL, Tanhua T. 2010. Estimation of anthropogenic CO2 inventories in the ocean. Annu. Rev. Mar. Sci. 2:175–98 [Google Scholar]
  153. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP. 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60 [Google Scholar]
  154. Sasano D, Takatani Y, Kosugi N, Nakano T, Midorikawa T, Ishii M. 2015. Multidecadal trends of oxygen and their controlling factors in the western North Pacific. Glob. Biogeochem. Cycles 29: 935–56 [Google Scholar]
  155. Sloyan BM. 2005. Spatial variability of mixing in the Southern Ocean. Geophys. Res. Lett. 32:L18603 [Google Scholar]
  156. Sloyan BM, Rintoul SR. 2001. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 31:143–73 [Google Scholar]
  157. Sloyan BM, Wijffels SE, Tilbrook B, Katsumata K, Murata A, Macdonald AM. 2013. Deep ocean changes near the western boundary of the South Pacific Ocean. J. Phys. Oceanogr. 43:2132–41 [Google Scholar]
  158. Smethie WM, Fine RA. 2001. Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res. I 48:189–215 [Google Scholar]
  159. Smethie WM, LeBel DA, Fine RA, Rhein M, Kieke D. 2007. Strength and variability of the deep limb of the North Atlantic meridional overturning circulation from chlorofluorocarbon inventories. Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning A Schmittner, J Chiang, S Hemming 119–30 Geophys. Monogr 173 Washington, DC: Am. Geophys. Union [Google Scholar]
  160. Sonnerup RE, Mecking S, Bullister JL. 2013. Transit time distributions and oxygen utilization rates in the Northeast Pacific Ocean from chlorofluorocarbons and sulfur hexafluoride. Deep-Sea Res. I 72:61–71 [Google Scholar]
  161. Sonnerup RE, Mecking S, Bullister JL, Warner MJ. 2015. Transit time distributions and oxygen utilization rates from chlorofluorocarbons and sulfur hexafluoride in the Southeast Pacific Ocean. J. Geophys. Res. 120:3761–76 [Google Scholar]
  162. Sparrow M, Chapman P, Gould J. 2005–2013. The World Ocean Circulation Experiment (WOCE) Hydrographic Atlas Series Southampton, UK: Int. WOCE Proj. Off http://woceatlas.ucsd.edu [Google Scholar]
  163. Stanley RHR, Doney SC, Jenkins WJ, Lott DEI. 2012. Apparent oxygen utilization rates calculated from tritium and helium-3 profiles at the Bermuda Atlantic Time-series Study site. Biogeosciences 9:1969–83 [Google Scholar]
  164. Stendardo I, Gruber N. 2012. Oxygen trends over five decades in the North Atlantic. J. Geophys. Res. 117:C11004 [Google Scholar]
  165. Stramma L, Oschlies A, Schmidtko S. 2012. Mismatch between observed and modeled trends in dissolved upper-ocean oxygen over the last 50 yr. Biogeosciences 9:4045–57 [Google Scholar]
  166. Stramma L, Schmidtko S, Levin LA, Johnson GC. 2010. Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res. I 57:587–95 [Google Scholar]
  167. Sweeney C, Gloor E, Jacobson AJ, Key RM, McKinley G. et al. 2007. Constraining global air-sea exchange for CO2 with recent bomb 14C measurements. Glob. Biogeochem. Cycles 21:GB2015 [Google Scholar]
  168. Swift JH, Orsi AH. 2012. Sixty-four days of hydrography and storms: RVIB Nathaniel B. Palmer's 2011 S04P Cruise. Oceanography 25:354–55 doi: 10.5670/oceanog.2012.74 [Google Scholar]
  169. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely R. et al. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res. I 56:2075–76 [Google Scholar]
  170. Takatani Y, Kojima A, Iida Y, Nakano T, Ishii M. et al. 2014. Ocean acidification in the interior of the western North Pacific subtropical region Presented at Int. Ocean Res. Conf., 2nd, Barcelona, Spain, Nov 17–21
  171. Takatani Y, Sasano D, Nakano T, Midorikawa T, Ishii M. 2012. Decrease of dissolved oxygen after the mid-1980s in the western North Pacific subtropical gyre along the 137°E repeat section. Glob. Biogeochem. Cycles 26:GB2013 [Google Scholar]
  172. Talley LD. 2008. Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Prog. Oceanogr. 78:257–303 [Google Scholar]
  173. Talley LD. 2009. Review of ocean temperature, salinity and oxygen changes in the Pacific and subtropical southern hemisphere. IOP Conf. Ser. Earth Environ. Sci. 6:032009 [Google Scholar]
  174. Talley LD. 2013. Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: schematics and transports. Oceanography 26:180–97 doi: 10.5670/oceanog.2013.07 [Google Scholar]
  175. Tanhua T, Bates NR, Körtzinger A. 2013a. The marine carbon cycle and ocean carbon inventories. Ocean Circulation and Climate: A 21st Century Perspective J Church, J Gould, S Griffies, G Siedler 787–815 Int. Geophys. Ser. Vol. 103. Amsterdam: Academic , 2nd ed..
  176. Tanhua T, Waugh DW, Bullister JL. 2013b. Estimating changes in ocean ventilation from early 1990s CFC-12 and late 2000s SF6 measurements. Geophys. Res. Lett. 40:927–32 [Google Scholar]
  177. Tanhua T, Waugh DW, Wallace DWR. 2008. Use of SF6 to estimate anthropogenic CO2 in the upper ocean. J. Geophys. Res. 113:C04037 [Google Scholar]
  178. Thompson DWJ, Wallace JM, Hegerl GC. 2000. Annular modes in the extra-tropical circulation. Part II: trends. J. Clim. 13:1018–36 [Google Scholar]
  179. van Heuven S, Hoppema M, Huhn O, Slagter HA, de Baar HJW. 2011. Direct observation of increasing CO2 in the Weddell Gyre along the Prime Meridian during 1973–2008. Deep-Sea Res. II 58:2613–35 [Google Scholar]
  180. Walker SJ, Weiss RF, Salameh PK. 2000. Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113, and carbon tetrachloride. J. Geophys. Res. 105:14285–96 [Google Scholar]
  181. Wanninkhof R, Doney SC, Bullister JL, Levine NM, Warner M, Gruber N. 2010. Detecting anthropogenic CO2 changes in the interior Atlantic Ocean between 1989 and 2005. J. Geophys. Res. 115:C11028 [Google Scholar]
  182. Wanninkhof R, Park G-H, Takahashi T, Feely RA, Bullister JL, Doney SC. 2013a. Changes in deep-water CO2 concentrations over the last several decades determined from discrete pCO2 measurements. Deep-Sea Res. I 74:48–63 [Google Scholar]
  183. Wanninkhof R, Park G-H, Takahashi T, Sweeney C, Feely R. et al. 2013b. Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10:1983–2000 [Google Scholar]
  184. Warner MJ, Weiss RF. 1985. Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res. A 32:1485–97 [Google Scholar]
  185. Waterhouse A, MacKinnon JA, Nash JD, Alford MH, Kunze E. et al. 2014. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44:1854–72 [Google Scholar]
  186. Waters JF, Millero FJ, Sabine CL. 2011. Changes in South Pacific anthropogenic carbon. Glob. Biogeochem. Cycles 25:GB4011 [Google Scholar]
  187. Waugh DW, Hall TM, Haine TWN. 2003. Relationships among tracer ages. J. Geophys. Res. 108:3138 [Google Scholar]
  188. Waugh DW, Primeau F, Devries T, Holzer M. 2013. Recent changes in the ventilation of the Southern Oceans. Science 339:568–70 [Google Scholar]
  189. Whalen CB, MacKinnon JA, Talley LD, Waterhouse AF. 2015. Estimating the mean diapycnal mixing using a finescale parameterization. J. Phys. Oceanogr. 45:1174–88 [Google Scholar]
  190. Whalen CB, Talley LD, MacKinnon JA. 2012. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett. 39:L18612 [Google Scholar]
  191. Whitney FA, Bograd SJ, Ono T. 2013. Nutrient enrichment of the subarctic Pacific Ocean pycnocline. Geophys. Res. Lett. 40:2200–5 [Google Scholar]
  192. Whitney FA, Freeland HJ, Robert M. 2007. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog. Oceanogr. 75:179–99 [Google Scholar]
  193. Wunsch C, Heimbach P. 2013. Two decades of the Atlantic meridional overturning circulation: anatomy, variations, extremes, prediction, and overcoming its limitations. J. Clim. 26:7167–86 [Google Scholar]
  194. Yashayaev I. 2007. Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr. 73:242–76 [Google Scholar]
  195. Yool A, Popova EE, Anderson TR. 2013a. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies. Geosci. Model Dev. 6:1767–811 [Google Scholar]
  196. Yool A, Popova EE, Coward AC, Bernie D, Anderson TR. 2013b. Climate change and ocean acidification impacts of lower trophic levels and the export of organic carbon to the deep ocean. Biogeosciences 10:5831–54 [Google Scholar]
  197. Zamora L, Landolfi A, Oschlies A, Hansell D, Dietze H, Dentener F. 2010. Atmospheric deposition of nutrients and excess N formation in the North Atlantic. Biogeosciences 7:777–93 [Google Scholar]
  198. Zhang JZ, Mordy CM, Gordon LI, Ross A, Garcia HE. 2000. Temporal trends in deep ocean Redfield ratios. Science 289:1839a [Google Scholar]
  199. Zweng MM, Reagan JR, Antonov JI, Locarnini RA, Mishonov AV. et al. 2013. World Ocean Atlas 2013 2 Salinity Ed. S Levitus, Tech. Ed. A Mishonov. NOAA Atlas NESDIS 74 Washington, DC: US Gov. Print. Off.
/content/journals/10.1146/annurev-marine-052915-100829
Loading
/content/journals/10.1146/annurev-marine-052915-100829
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error