1932

Abstract

Bioluminescence spans all oceanic dimensions and has evolved many times—from bacteria to fish—to powerfully influence behavioral and ecosystem dynamics. New methods and technology have brought great advances in understanding of the molecular basis of bioluminescence, its physiological control, and its significance in marine communities. Novel tools derived from understanding the chemistry of natural light-producing molecules have led to countless valuable applications, culminating recently in a related Nobel Prize. Marine organisms utilize bioluminescence for vital functions ranging from defense to reproduction. To understand these interactions and the distributions of luminous organisms, new instruments and platforms allow observations on individual to oceanographic scales. This review explores recent advances, including the chemical and molecular, phylogenetic and functional, community and oceanographic aspects of bioluminescence.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-120308-081028
2010-01-15
2024-09-09
Loading full text...

Full text loading...

/deliver/fulltext/marine/2/1/annurev-marine-120308-081028.html?itemId=/content/journals/10.1146/annurev-marine-120308-081028&mimeType=html&fmt=ahah

Literature Cited

  1. Acker J, Leptoukh G. 2007. Online analysis enhances use of NASA Earth science data. Eos. Trans. AGU 88:14–17 [Google Scholar]
  2. Aguilar JA, Albert A, Ameli F, Anghinolfi M, Anton G. et al. 2006. First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope. Astropart. Phys. 26:314–24 [Google Scholar]
  3. Aligizaki K, Nikolaidis G, Katikou P, Baxevanis A, Abatzopoulos T. 2009. Potentially toxic epiphytic Prorocentrum (Dinophyceae) species in Greek coastal waters. Harmful Algae 8:299–311 [Google Scholar]
  4. Alldredge A, Cowles T, Macintyre SS, Rines J, Donaghay P. et al. 2002. Occurrence and mechanisms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord. Mar. Ecol. Prog. Ser. 233:1–12 [Google Scholar]
  5. Alldredge AL, Passow U, Haddock SHD. 1998. The characteristics and transparent exopolymer particle (TEP) content of marine snow formed from thecate dinoflagellates. J. Plankton Res. 20:393–406 [Google Scholar]
  6. Amram P. 2000. Background light in potential sites for the ANTARES undersea neutrino telescope. Astropart. Phys. 13:127–36 [Google Scholar]
  7. Anderson GC. 1969. Subsurface chlorophyll maximum in the northeast Pacific Ocean. Limnol. Oceanogr. 14:386–91 [Google Scholar]
  8. Aoki M, Hashimoto K, Watanabe H. 1989. The intrinsic origin of bioluminescence in the ascidian, Clavelina miniata. Biol. Bull. 176:57–62 [Google Scholar]
  9. Babin M, Roesler CS, Cullen JJ. 2008. Real-Time Coastal Observing Systems for Ecosystem Dynamics and Harmful Algal Blooms Paris: UNESCO807 pp. [Google Scholar]
  10. Bae YM, Hastings JW. 1994. Cloning, sequencing and expression of dinoflagellate luciferase DNA from a marine alga, Gonyaulax polyedra. Biochim. Biophys. Acta 1219:449–56 [Google Scholar]
  11. Baek SH, Shimode S, Han M, Kikuchi T. 2008. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients. Harmful Algae 7:729–39 [Google Scholar]
  12. Bailey D, King N, Priede IG. 2007. Cameras and carcasses: historical and current methods for using artificial food falls to study deep-water animals. Mar. Ecol. Prog. Ser. 350:179–91 [Google Scholar]
  13. Baker A, Robbins I, Moline MA, Iglesias-Rodriguez MD. 2008. Oligonucleotide primers for the detection of bioluminescent dinoflagellates reveal novel luciferase sequences and information on the molecular evolution of this gene. J. Phycol. 44:419–28 [Google Scholar]
  14. Barnes AT, Case JF. 1972. Bioluminescence in the mesopelagic copepod, Gaussia princeps (T. Scott). J. Exp. Mar. Biol. Ecol. 8:53–71 [Google Scholar]
  15. Bassot JM, Nicolas MT. 1995. Bioluminescence in scale-worm photosomes: the photoprotein polynoidin is specific for the detection of superoxide radicals. Histochem. Cell Biol. 104:199–210 [Google Scholar]
  16. Beebe W, Tee-Van J, Hollister G, Crane J, Barton O. 1934. Half Mile Down New York: Harcourt344 pp. [Google Scholar]
  17. Benoit-Bird KJ, Moline MA, Waluk CM, Robbins IC. 2009. Integrated measurements of acoustical and optical thin layers I: Vertical scales of association. Continental Shelf Res. doi: 10.1016/j.csr.2009.08.001 [Google Scholar]
  18. Bissett WP, Walsh JJ, Dieterle DA, Carter KL. 1999. Carbon cycling in the upper waters of the Sargasso Sea: I. Numerical simulation of differential carbon and nitrogen fluxes. Deep-Sea Res. I: Oceanogr. Res. Papers 46:205–69 [Google Scholar]
  19. Blackwell SB, Moline MA, Schaffner A, Garrison T, Chang G. 2008. Sub-kilometer length scales in coastal waters. Cont. Shelf Res. 28:215–26 [Google Scholar]
  20. Bode VC, Desa R, Hastings JW. 1963. Daily rhythm of luciferin activity in Gonyaulax polyedra. Science 141:913–15 [Google Scholar]
  21. Bottger-Schnack R, Schnack D. 2005. Population structure and fecundity of the microcopepod Oncaea bispinosa in the Red Sea—a challenge to general concepts for the scaling of fecundity. Mar. Ecol.-Prog. Series 302:159–75 [Google Scholar]
  22. Bowlby MR, Case JF. 1991. Ultrastructure and neuronal control of luminous cells in the copepod Gaussia princeps. Biol. Bull. 180:440–46 [Google Scholar]
  23. Bradner H, Bartlett M, Blackinton G, Clem J, Karl D. et al. 1987. Bioluminescence profile in the deep Pacific Ocean. Deep-Sea Res. 34:1831–40 [Google Scholar]
  24. Bricaud A. 2002. Algal biomass and sea surface temperature in the Mediterranean Basin Intercomparison of data from various satellite sensors, and implications for primary production estimates. Remote Sens. Environ. 81:163–78 [Google Scholar]
  25. Buck J, Case JF. 2002. Physiological links in firefly flash code evolution. J. Insect Behav. 15:51–68 [Google Scholar]
  26. Bush SL, Robison BH, Caldwell RL. 2009. Behaving in the dark: locomotor, chromatic, postural, and bioluminescent behaviors of the deep-sea squid Octopoteuthis deletron Young 1972. Biol. Bull. 216:7–22 [Google Scholar]
  27. Buskey E, Stearns D. 1991. The effects of starvation on bioluminescence potential and egg release of the copepod Metridia longa. J. Plankton Res. 13:885 [Google Scholar]
  28. Campagna C, Dignani J, Blackwell SB, Marin MR. 2001. Detecting bioluminescence with an irradiance time-depth recorder deployed on southern elephant seals. Marine Mammal Science 17:402–14 [Google Scholar]
  29. Campbell AK. 2008. Jean-Marie Bassot (1933–2007): a life of unquenched curiosity—Obituary. Luminescence 23:187–90 [Google Scholar]
  30. Carnevale G. 2008. Miniature deep-sea hatchetfish (Teleostei: Stomiiformes) from the Miocene of Italy. Geol. Mag. 145:73 [Google Scholar]
  31. Case JF, Haddock SHD, Harper RD. 1994. The ecology of bioluminescence. Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects AK Campbell, LJ Kricka, PE Stanley 115–22 New York: Wiley [Google Scholar]
  32. Cavallaro M, Mammola CL, Verdiglione R. 2004. Structural and ultrastructural comparison of photophores of two species of deep-sea fishes: Argyropelecus hemigymnus and Maurolicus muelleri. J. Fish Biol. 64:1552–67 [Google Scholar]
  33. Chen AK, Latz MI, Sobolewski P, Frangos JA. 2007. Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R2020–27 [Google Scholar]
  34. Cheriton O, McManus M, Holliday D, Greenlaw C, Donaghay P, Cowles T. 2007. Effects of mesoscale physical processes on thin zooplankton layers at four sites along the west coast of the US. Estuaries Coasts 30:575–90 [Google Scholar]
  35. Chiba K, Hoshi M, Isobe M, Hirose E. 1998. Bioluminescence in the tunic of the colonial ascidian, Clavelina miniata: identification of luminous cells in vitro. J. Exp. Zool. 281:546–53 [Google Scholar]
  36. Chun C. 1910. Die Cephalopoden. Oegopsida. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition, “Valdivia” 1898–1899 18 Stuttgart, Germany: G. Fischer Verlag522 pp. [Google Scholar]
  37. Claes J, Mallefet J. 2008. Early development of bioluminescence suggests camouflage by counter-illumination in the velvet belly lantern shark Etmopterus spinax (Squaloidea: Etmopteridae). J. Fish Biol. 73:1337–50 [Google Scholar]
  38. Clarke G, Hubbard C. 1959. Quantitative records of the luminescent flashing of oceanic animals at great depths. Limnol. Oceanogr. 4:163–80 [Google Scholar]
  39. Cohen AC, Morin JG. 1990. Patterns of reproduction in ostracodes: a review. J. Crustacean Biol. 10:184–211 [Google Scholar]
  40. Cohen JH, Frank TM. 2007. Vision in the hyperiid amphipod Scina crassicornis. J. Mar. Biol. Assoc. 87:1201–1206 [Google Scholar]
  41. Cormier MJ, Hori K, Karkhanis YD. 1970. Studies on the bioluminescence of Renilla reniformis. VII. Conversion of luciferin into luciferyl sulfate by luciferin sulfokinase. Biochemistry 9:1184–89 [Google Scholar]
  42. Craig J, Jamieson AJ, Heger A, Priede IG. 2009. Distribution of bioluminescent organisms in the Mediterranean Sea and predicted effects on a deep-sea neutrino telescope. Nuclear Inst. Methods Phys. Res. A 602:224–26 [Google Scholar]
  43. Cummings ME, Partridge JC. 2001. Visual pigments and optical habitats of surfperch (Embiotocidae) in the California kelp forest. J. Comparative Physiol. A 187:875–89 [Google Scholar]
  44. Cussatlegras A. 2001. Mesures de bioluminescence planctonique dans la zone du front Alméria–Oran (Méditerranée). Oceanol. Acta 24:239–50 [Google Scholar]
  45. Cussatlegras A, Geistdoerfer P. 2000. Bioluminescence measurements on the Bay of Biscay continental shelf. 11ième Colloque International d'Océanographie du Golfe de Gascogne, Biarritz, 4–6 Avril. 2000:140–46 [Google Scholar]
  46. Darwin C. 1909. The Voyage of the Beagle New York: Collier524 pp. [Google Scholar]
  47. Daunert S, Deo SK. 2006. Photoproteins in Bioanalysis New York: Wiley-VCH256 pp. [Google Scholar]
  48. Davenport J. 1988. Do diving leatherbacks pursue glowing jelly?. Br. Herpetological Soc. Bull. 24:20–21 [Google Scholar]
  49. Davenport J, Balazs G. 1991. Fiery bodies—Are pyrosomas an important component of the diet of leatherback turtles. Br. Herpetological Soc. Bull. 37:33–38 [Google Scholar]
  50. De Cock R, Matthysen E. 1999. Aposematism and bioluminescence: experimental evidence from glow-worm larvae. Evol. Ecol. 13:619–39 [Google Scholar]
  51. De Cock R, Matthysen E. 2003. Glow-worm larvae bioluminescence (Coleoptera: Lampyridae) operates as an aposematic signal upon toads (Bufo bufo). Behav. Ecol. 14:103–108 [Google Scholar]
  52. Deheyn DD, Latz MI. 2009. Internal and secreted bioluminescence of the marine polychaete Odontosyllis phosphorea (Syllidae). Invertebrate Biol. 128:31–45 [Google Scholar]
  53. Deheyn DD, Mallefet J, Jangoux M. 2000. Evidence of seasonal variation in bioluminescence of Amphipholis squamata (Ophiuroidea, Echinodermata): Effects of environmental factors. J. Exp. Mar. Biol. Ecol. 245:245–64 [Google Scholar]
  54. Dekshenieks M, Donaghay P, Sullivan J, Rines J, Osborn T, Twardowski M. 2001. Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes. Mar. Ecol. Prog. Ser. 223:61–71 [Google Scholar]
  55. Denton EJ, Gilpin-Brown JB, Wright PG. 1970. On the ‘filters’ in the photophores of mesopelagic fish and on a fish emitting red light and especially sensitive to red light. J. Physiol. Lond. 284:72–73 [Google Scholar]
  56. Deutschman DH, Bradshaw GA, Childress WM, Daly KL, Grunbaum D. et al. 1993. Mechanisms of patch formation. Patch Dynamics. Lecture Notes in Biomathematics S Levin, T Powell, J Steele 184–208 Berlin: Springer [Google Scholar]
  57. Devillers I, De Wergifosse B, Bruneau MP, Tinant B, Declercq JP. et al. 1999. Synthesis, structural characterization and antioxidative properties of aminopyrazine and imidazolopyrazine derivatives. J. Chem. Soc. Perkin Trans. 27:1481–87 [Google Scholar]
  58. Dewael Y, Mallefet J. 2002. Luminescence in ophiuroids (Echinodermata) does not share a common nervous control in all species. J. Exp. Biol. J. Exp. Biol. 205:799–806 [Google Scholar]
  59. Dikici E, Qu X, Rowe L, Millner L, Logue C, Deo SK, Ensor M, Daunert S. 2009. Aequorin variants with improved bioluminescence properties. Protein Eng. Design Sel. 22:243–48 [Google Scholar]
  60. Douglas RH, Bowmaker JK, Mullineaux CW. 2002. A possible retinal longwave detecting system in a myctophid fish without far-red bioluminescence: evidence for a sensory arms-race in the deep-sea. Bioluminescence and Chemiluminescence: Progress and Current Applications PE Stanley, LJ Kricka 391–94 Singapore: World Scientific [Google Scholar]
  61. Douglas RH, Mullineaux CW, Partridge JC. 2000. Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355:1269–72 [Google Scholar]
  62. Douglas RH, Partridge JC. 1997. On the visual pigments of deep-sea fish. J. Fish. Biol. 50:68–85 [Google Scholar]
  63. Douglas RH, Partridge JC, Dulai KS, Hunt DM, Mullineaux CW, Hynninen PH. 1999. Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res. 39:2817–32 [Google Scholar]
  64. Douglas RH, Partridge JC, Dulai K, Hunt D, Mullineaux CW, Tauber AY, Hynninen PH. 1998. Dragon fish see using chlorophyll. Nature 393:423–24 [Google Scholar]
  65. Douglas RH, Partridge JC, Hope AJ. 1995. Visual and lenticular pigments in the eyes of demersal deepsea fishes. J. Comp. Physiol. A 177:111–122 [Google Scholar]
  66. Dunlap JC, Hastings JW, Shimomura O. 1981. Dinoflagellate luciferin is structurally related to chlorophyll. FEBS Lett. 135:273–76 [Google Scholar]
  67. Dunlap PV, Ast JC. 2005. Genomic and phylogenetic characterization of luminous bacteria symbiotic with the deep-sea fish Chlorophthalmus albatrossis (Aulopiformes: Chlorophthalmidae). Appl. Environ. Microbiol. 71:930–39 [Google Scholar]
  68. Dunlap PV, Ast JC, Kimura S, Fukui A, Yoshino T, Endo H. 2007. Phylogenetic analysis of host-symbiont specificity and codivergence in bioluminescent symbioses. Cladistics 23:507–32 [Google Scholar]
  69. Dunlap PV, Kita-Tsukamoto K. 2006. Luminous bacteria. Prokaryotes 2:863–92 [Google Scholar]
  70. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE. et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–49 [Google Scholar]
  71. Dunn CW, Pugh PR, Haddock SHD. 2005. Molecular phylogenetics of the siphonophora (Cnidaria), with implications for the evolution of functional specialization. Syst. Biol. 54:916–35 [Google Scholar]
  72. Dunstan SL, Sala-Newby GB, Fajardo AB, Taylor KM, Campbell AK. 2000. Cloning and expression of the bioluminescent photoprotein pholasin from the bivalve mollusc Pholas dactylus. J. Biol. Chem. 275:9403–9409 [Google Scholar]
  73. Etnoyer PJ. 2008. A new species of Isidella bamboo coral (Octocorallia: Alcyonacea: Isididae) from northeast Pacific seamounts. Proc. Biol. Soc. Wash. 121:541–53 [Google Scholar]
  74. Fagan TF, Ohmiya Y, Blinks JR, Inouye S, Tsuji FI. 1993. Cloning, expression and sequence analysis of cDNA for the Ca2+-binding photoprotein, mitrocomin. FEBS Lett. 333:301–305 [Google Scholar]
  75. Fields DM, Shaeffer DS, Weissburg MJ. 2002. Mechanical and neural responses from the mechanosensory hairs on the antennule of Gaussia princeps. Mar. Ecol.-Prog. Series 227:173–86 [Google Scholar]
  76. Fischer A, Fischer U. 1995. On the life-style and life-cycle of the luminescent polychaete Odontosyllis enopla (Annelida: Polychaeta). Invert. Biol. 114:236–47 [Google Scholar]
  77. Fleisher KJ, Case JF. 1995. Cephalopod predation facilitated by dinoflagellate luminescence. Biol. Bull. 189:263–71 [Google Scholar]
  78. Forey PL, Patterson C. 2006. Description and systematic relationships of Tomognathus, an enigmatic fish from the English Chalk. J. Syst. Palaeontol. 4:157–84 [Google Scholar]
  79. Forst S, Dowds B, Boemare N, Stackebrandt E. 1997. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51:47–72 [Google Scholar]
  80. Frank L, Borisova V, Markova S, Malikova N, Stepanyuk G, Vysotski E. 2008. Violet and greenish photoprotein obelin mutants for reporter applications in dual-color assay. Anal. Bioanal. Chem. 391:2891–96 [Google Scholar]
  81. Frank TM. 1999. Comparative study of temporal resolution in the visual systems of mesopelagic crustaceans. Biol. Bull. 196:137–44 [Google Scholar]
  82. Frank TM, Porter M, Cronin TW. 2009. Spectral sensitivity, visual pigments and screening pigments in two life history stages of the ontogentic migrator Gnathophausia ingens. J. Mar. Biol. Assoc. UK 89:119–29 [Google Scholar]
  83. Frank TM, Widder EA. 1999. Comparative study of the spectral sensitivities of mesopelagic crustaceans. J. Comp. Physiol. A 185:255–65 [Google Scholar]
  84. Frank TM, Widder EA, Latz MI, Case JF. 1984. Dietary maintenance of bioluminescence in a deep-sea mysid. J. Exp. Biol. 109:385–89 [Google Scholar]
  85. Fristrup KM, Harbison G. 2002. How do sperm whales catch squids?. Mar. Mammal Sci. 18:42–54 [Google Scholar]
  86. Fujii T, Ahn JY, Kuse M, Mori H, Matsuda T, Isobe M. 2002. A novel photoprotein from oceanic squid (Symplectoteuthis oualaniensis) with sequence similarity to mammalian carbon–nitrogen hydrolase domains. Biochem. Biophys. Res. Commun. 293:874–79 [Google Scholar]
  87. Galt CP, Flood PR. 1998. Bioluminescence in the Appendicularia. The Biology of Pelagic Tunicates Q Bone 215–229 Oxford, UK: Oxford Univ. Press [Google Scholar]
  88. Galt CP, Sykes PF. 1983. Sites of bioluminescence in the appendicularians Oikopleura dioca and O. labradoriensis (Urochordata: Larvacea). Biol. Bull. 77:155–59 [Google Scholar]
  89. Gasca R, Suárez-Morales E, Haddock SHD. 2007. Symbiotic associations between crustaceans and gelatinous zooplankton in deep and surface waters off California. Mar. Biol. 151:233–42 [Google Scholar]
  90. Gentile G, De Luca M, Denaro R, La Cono V. 2008. PCR-based detection of bioluminescent microbial populations in Tyrrhenian Sea. Deep-Sea Research II 56:763–67 [Google Scholar]
  91. Gillibrand EJV, Bagley P, Jamieson A, Herring PJ, Partridge JC. et al. 2007a. Deep sea benthic bioluminescence at artificial food falls, 1000–4800 m depth, in the Porcupine Seabight and Abyssal Plain, North East Atlantic Ocean. Mar. Biol. 150:1053–60 [Google Scholar]
  92. Gillibrand E, Jamieson A, Bagley P, Zuur A, Priede I. 2007b. Seasonal development of a deep pelagic bioluminescent layer in the temperate NE Atlantic Ocean. Mar. Ecol. Prog. Ser. 341:37–44 [Google Scholar]
  93. Godeaux J, Bone Q, Braconnot J-C. 1998. Anatomy of Thaliacea. The Biology of Pelagic Tunicates Q Bone 1–24 Oxford, UK: Oxford Univ. Press [Google Scholar]
  94. Green EP, Dagg M. 1997. Mesozooplankton associations with medium to large marine snow aggregates in the northern Gulf of Mexico. J. Plankton Res. 19:435–47 [Google Scholar]
  95. Grober MS. 1988. Brittle-star bioluminescence functions as an aposematic signal to deter crustacean predators. Anim. Behav. 36:493–501 [Google Scholar]
  96. Guerrero-Ferreira RC, Nishiguchi M. 2007. Biodiversity among luminescent symbionts from squid of the genera Uroteuthis, Loliolus and Euprymna (Mollusca : Cephalopoda). Cladistics 23:497–506 [Google Scholar]
  97. Guilford T, Cuthill IC. 1989. Aposematism and bioluminescence. Anim. Behav. 37:339–41 [Google Scholar]
  98. Haddock SHD. 1997. Bioluminescence in the deep-sea and open ocean: gelatinous zooplankton and marine snow PhD thesis Univ. Calif. Santa Barbara:145 pp. [Google Scholar]
  99. Haddock SHD, Case JF. 1994. A bioluminescent chaetognath. Nature 367:225–26 [Google Scholar]
  100. Haddock SHD, Case JF. 1995. Not all ctenophores are bioluminescent: Pleurobrachia. Biol. Bull. 189:356–62 [Google Scholar]
  101. Haddock SHD, Case JF. 1999. Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: ctenophores, medusae and siphonophores. Mar. Biol. 133:571–82 [Google Scholar]
  102. Haddock SHD, Dunn CW, Pugh PR. 2005a. A re-examination of siphonophore terminology and morphology, applied to the description of two new prayine species with remarkable bio-optical properties. J. Mar. Biol. Assoc. UK 85:695–707 [Google Scholar]
  103. Haddock SHD, Dunn CW, Pugh PR, Schnitzler CE. 2005b. Bioluminescent and red-fluorescent lures in a deep-sea siphonophore. Science 309:263 [Google Scholar]
  104. Haddock SHD, Rivers TJ, Robison BH. 2001. Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Proc. Natl. Acad. Sci. USA 98:11148–51 [Google Scholar]
  105. Haeckel E. 1887. Report on the Radiolaria Collected by the H.M.S. Challenger during the Years 1873–1876. Report on the Scientific Results of the Voyage of the H.M.S. Challenger, Zoology, vol. XVIII. Edinburgh: H.M. Stationery1803 pp. [Google Scholar]
  106. Hamner WM, Robison BH. 1992. In-situ observations of giant appendicularians in Monterey Bay. Deep Sea Res. 39:1299–313 [Google Scholar]
  107. Hanson A, Donaghay P. 1998. Micro-to fine-scale chemical gradients and layers in stratified coastal waters. Oceanogr.-Wash. DC Oceanogr. Soc. 11:10–17 [Google Scholar]
  108. Harper RD, Case JF. 1999. Disruptive counterillumination and its anti-predatory value in the plainfish midshipman Porichthys notatus. Mar. Biol. 134:529–40 [Google Scholar]
  109. Hastings JW. 1983. Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J. Mol. Evol. 19:309–21 [Google Scholar]
  110. Hastings JW. 1995. Bioluminescence: similar chemistries, but many different evolutionary origins. Photochem. Photobiol. 62:599–600 [Google Scholar]
  111. Haygood MG, Distel DL. 1993. Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes form unique lineages related to the genus Vibrio. Nature 363:110–11 [Google Scholar]
  112. Haygood MG, Prince RC. 1993. Light organ symbioses in fishes. Crit. Rev. Microbiol. 19:191–216 [Google Scholar]
  113. Hays GC, Farquhar MR, Luschi P, Teo SLH, Thys TM. 2009. Vertical niche overlap by two ocean giants with similar diets: Ocean sunfish and leatherback turtles. J. Exp. Mar. Biol. Ecol. 370:134–43 [Google Scholar]
  114. Head JF, Inouye S, Teranishi K, Shimomura O. 2000. The crystal structure of the photoprotein aequorin at 2.3 Å resolution. Nature (London) 405:372–76 [Google Scholar]
  115. Heger A, Ieno EN, King NJ, Morris KJ, Bagley PM, Priede IG. 2008. Deep-sea pelagic bioluminescence over the Mid-Atlantic Ridge. Deep Sea Res. II55:126–36 [Google Scholar]
  116. Henninger HP, Watson WH. 2005. Mechanisms underlying the production of carapace vibrations and associated waterborne sounds in the American lobster, Homarus americanus. J. Exp. Biol. 208:3421 [Google Scholar]
  117. Herren CM, Alldredge AL, Case JF. 2004. Coastal bioluminescent marine snow: fine structure of bioluminescence distribution. Cont. Shelf Res. 24:413–29 [Google Scholar]
  118. Herren CM, Haddock SHD, Johnson C, Moline MA, Case JF. 2005. A multi-platform bathyphotometer for fine-scale, coastal bioluminescence research. Limnol. Oceanogr. Methods 3:247–62 [Google Scholar]
  119. Herring PJ. 1977. Luminescence in cephalopods and fish. Symp. Zool. Soc. Lond. 38:127–59 [Google Scholar]
  120. Herring PJ. 1979. Some features of the bioluminescence of the radiolarian Thalassicolla sp. Mar. Biol. 53:213–16 [Google Scholar]
  121. Herring PJ. 1985. Tenuous evidence for the luminous mouthed shark. Nature 318:238 [Google Scholar]
  122. Herring PJ. 1987. Systematic distribution of bioluminescence in living organisms. J. Biolum. Chemilum. 1:147–63 [Google Scholar]
  123. Herring PJ. 2000. Species abundance, sexual encounter, and bioluminescent signalling in the deep sea. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355:1273–76 [Google Scholar]
  124. Herring PJ. 2007. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J. Mar. Biol. Assoc. UK 87:829–42 [Google Scholar]
  125. Herring PJ, Campbell AK, Whitfield M, Maddock L. 1990. Light and Life in the Sea Cambridge, UK: Cambridge Univ. Press365 pp. [Google Scholar]
  126. Herring PJ, Cope C. 2005. Red bioluminescence in fishes: on the suborbital photophores of Malacosteus, Pachystomias and Aristostomias. Mar. Biol. 148:383–94 [Google Scholar]
  127. Herring PJ, Dilly PN, Cope C. 2002. The photophores of the squid family Cranchiidae (Cephalopoda: Oegopsida). J. Zoology 258:73–90 [Google Scholar]
  128. Herring PJ, Watson M. 1993. Milky Seas: a bioluminescent puzzle. The Mar. Obs. 63:22–30 [Google Scholar]
  129. Herring PJ, Widder EA. 2001. Bioluminescence. Encyclopedia Of Ocean Science 1 JH Steele, SA Thorpe, KK Turekian 308–317 San Diego: Academic [Google Scholar]
  130. Herring PJ, Widder EA. 2004. Bioluminescence of deep-sea coronate medusae (Cnidaria: Scyphozoa). Mar. Biol. 146:39–51 [Google Scholar]
  131. Herring PJ, Widder EA, Haddock SHD. 1992. Correlation of bioluminescence emissions with ventral photophores in the mesopelagic squid Abralia veranyi (Cephalopoda: Enoploteuthidae). Mar. Biol. 112:293–98 [Google Scholar]
  132. Hirose E. 2009. Ascidian tunic cells: morphology and functional diversity of free cells outside the epidermis. Invert. Biol. 128:83–96 [Google Scholar]
  133. Holliday DV. 2003. Advances in defining fine- and micro-scale pattern in marine plankton. Aquatic Living Resour. 16:131–36 [Google Scholar]
  134. Hopcroft RR, Robison BH. 1999. A new mesopelagic larvacean, Mesochordaeus erythrocephalus, sp. nov., from Monterey Bay, with a description of its filtering house. J. Plankton Res. 21:1923–37 [Google Scholar]
  135. Hori K, Charbonneau H, Hart RC, Cormier MJ. 1977. Structure of native Renilla reniformis luciferin. Proc. Natl. Acad. Sci. USA 74:4285–87 [Google Scholar]
  136. Houghton JD, Doyle TK, Davenport J, Wilson RP, Hays GC. 2008. The role of infrequent and extraordinary deep dives in leatherback turtles (Dermochelys coriacea). J. Exp. Biol. 211:2566–75 [Google Scholar]
  137. Hu V. 1978. Relationships between vertical migration and diet in four species of euphausiids. Limnol. Oceanogr. 23:296–306 [Google Scholar]
  138. Huber ME, Arneson AC, Widder EA. 1989. Extremely blue bioluminescence in the polychaete Polycirrus perplexus (Terebellidae). Bull. Mar. Sci. 44:1236–39 [Google Scholar]
  139. Huxley TH. 1898. The Scientific Memoirs of Thomas Henry Huxley London: Macmillan606 pp. [Google Scholar]
  140. Ikejima K, Ishiguro N, Wada M, Kita-Tsukamoto K, Nishida M. 2004. Molecular phylogeny and possible scenario of ponyfish (Perciformes: Leiognathidae) evolution. Mol. Phylogenet. Evol. 31:904–909 [Google Scholar]
  141. Ikejima K, Wada M, Kita-Tsukamoto K, Yamamoto T, Azuma N. 2008. Synchronized development of gonad and bioluminescent light organ in a highly sexually dimorphic leiognathid fish, Photoplagios rivulatus. Mar. Biol. 153:1009–14 [Google Scholar]
  142. Illarionov BA, Bondar VS, Illarionova VA, Vysotski ES. 1995. Sequence of the cDNA encoding the Ca2+-activated photoprotein obelin from the hydroid polyp Obelia longissima. Gene 153:273–74 [Google Scholar]
  143. Inoue S, Kakoi H, Murata M, Goto T, Shimomura O. 1977. Complete structure of renilla luciferin and luciferyl sulfate. Tetrahedron Lett. 18:2685–88 [Google Scholar]
  144. Inoue S, Sugiura S, Kakoi H, Hashizume K, Goto T, Iio H. 1975. Squid bioluminescence II. Isolation from Watasenia scintillans and synthesis of 2-(p-hydroxybenzyl)-6-(p-hydroxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-one. Chem. Lett. 4:141–44 [Google Scholar]
  145. Inouye S. 2004. Blue fluorescent protein from the calcium-sensitive photoprotein aequorin is a heat resistant enzyme, catalyzing the oxidation of coelenterazine. FEBS Lett. 577:105–10 [Google Scholar]
  146. Inouye S. 2007. Expression, purification and characterization of calcium-triggered luciferin-binding protein of Renilla reniformis. Protein Expr. Purif. 52:66–73 [Google Scholar]
  147. Inouye S, Noguchi M, Sakaki Y, Takagi Y, Miyata T. et al. 1985. Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc. Nat. Acad. Sci., USA 82:3154–58 [Google Scholar]
  148. Inouye S, Sasaki S. 2007. Overexpression, purification and characterization of the catalytic component of Oplophorus luciferase in the deep-sea shrimp, Oplophorus gracilirostris. Protein Expr. Purif. 56:261–68 [Google Scholar]
  149. Inouye S, Tsuji FI. 1993. Cloning and sequence analysis of cDNA for the Ca2+-activated photoprotein, clytin. FEBS Lett. 315:343–46 [Google Scholar]
  150. Inouye S, Watanabe K, Nakamura H, Shimomura O. 2000. Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase. FEBS Lett. 481:19–25 [Google Scholar]
  151. Isobe M, Kuse M, Tani N, Fujii T, Matsuda T. 2008. Cysteine-390 is the binding site of luminous substance with symplectin, a photoprotein from Okinawan squid, Symplectoteuthis oualaniensis. P. Jpn. Acad. B Phys. 84:386–92 [Google Scholar]
  152. Jamieson A, Godo OR, Bagley PM, Partridge J, Priede IG. 2006. Illumination of trawl gear by mechanically stimulated bioluminescence. Fish Res. 81:276–82 [Google Scholar]
  153. Jester R, Lefebvre K, Langlois G, Vigilant V, Baugh K, Silver M. 2009. A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs. Harmful Algae 8:291–98 [Google Scholar]
  154. Johnsen S. 2005. The red and the black: Bioluminescence and the color of animals in the deep sea. Integr. Comp. Biol. 45:234–46 [Google Scholar]
  155. Johnsen S, Balser EJ, Fisher EC, Widder EA. 1999. Bioluminescence in the deep-sea cirrate octopod Stauroteuthis syrtensis verrill (Mollusca: Cephalopoda). Biol. Bull. 197:26–39 [Google Scholar]
  156. Johnsen S, Widder EA. 1998. Transparency and visibility of gelatinous zooplankton from the Northwestern Atlantic and Gulf of Mexico. Biol. Bull. 195:337–48 [Google Scholar]
  157. Johnsen S, Widder EA. 1999. The physical basis of transparency in biological tissue: Ultrastructure and the minimization of light scattering. J. Theor. Biol. 199:181–98 [Google Scholar]
  158. Johnsen S, Widder EA, Mobley C. 2004. Propagation and perception of bioluminescence: factors affecting counterillumination as a cryptic strategy. Biol. Bull. 207:1–16 [Google Scholar]
  159. Jones B, Nishiguchi M. 2004. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144:1151–55 [Google Scholar]
  160. Kaeding AJ, Ast JC, Pearce MM, Urbanczyk H, Kimura S. et al. 2007. Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of “Photobacterium mandapamensis.”. Appl. Envir. Microbiol. 73:3173–82 [Google Scholar]
  161. Kanakubo A, Isobe M. 2005. Isolation of brominated quinones showing chemiluminescence activity from luminous acorn worm, Ptychodera flava. Bioorg. Med. Chem. 13:2741–47 [Google Scholar]
  162. Kanda S. 1939. The luminescence of a nemertean, Emplectonema kandai, Kato. Biol. Bull. 77:166–73 [Google Scholar]
  163. Kato S-I, Oba Y, Ojika M, Inouye S. 2004. Identification of the biosynthetic units of Cypridina luciferin in Cypridina (Vargula) hilgendorfii by LCESI-TOF-MS. Tetrahedron 60:11427–34 [Google Scholar]
  164. Kato SI, Oba Y, Ojika M, Inouye S. 2007. Biosynthesis of cypridina luciferin in Cypridina noctiluca. Heterocycles 72:673–76 [Google Scholar]
  165. Katz UF. 2004. Status of the ANTARES project. Eur. Phys. J. C Part. Fields 33:971–74 [Google Scholar]
  166. Katz UF. 2006. KM3NeT: Towards a km3 Mediterranean neutrino telescope. Nucl. Instrum. Methods A 567:457–61 [Google Scholar]
  167. Kenaley CP. 2008. Diel vertical migration of the loosejaw dragonfishes (Stomiiformes: Stomiidae: Malacosteinae): a new analysis for rare pelagic taxa. J. Fish Biol. 73:888–901 [Google Scholar]
  168. Kenaley CP. 2009. Revision of Indo-Pacific species of the loosejaw dragonfish genus Photostomias (Teleostei: Stomiidae: Malacosteinae). Copeia1175–89 [Google Scholar]
  169. Kenaley CP, Hartel KE. 2005. A revision of Atlantic species of Photostomias (Teleostei: Stomiidae: Malacosteinae), with a description of a new species. Ichthyol. Res. 52:251–63 [Google Scholar]
  170. Kim G, Lee Y-W, Joung D-J, Kim K-R, Kim K. 2006. Real-time monitoring of nutrient concentrations and red-tide outbreaks in the southern sea of Korea. Geophys. Res. Lett. 33:L13607 [Google Scholar]
  171. Kirkpatrick G, Millie D, Moline M, Schofield O. 2000. Optical discrimination of a phytoplankton species in natural mixed populations. Limnol. Oceanogr. 45:467–71 [Google Scholar]
  172. Kishi Y, Goto T, Hirata Y, Shimomura O, Johnson FH. 1966. Cypridina bioluminescence I: structure of Cypridina luciferin. Tetrahedron Lett. 7:3427–36 [Google Scholar]
  173. Kremp A, Lindholm T, Dresler N, Erler K, Gerdts G. et al. 2009. Bloom forming Alexandrium ostenfeldii (Dinophyceae) in shallow waters of the Åland Archipelago, Northern Baltic Sea. Harmful Algae 8:318–28 [Google Scholar]
  174. Krönström J, Dupont S, Mallefet J, Thorndyke M, Holmgren S. 2007. Serotonin and nitric oxide interaction in the control of bioluminescence in northern krill, Meganyctiphanes norvegica (M. Sars). J. Exp. Biol. 210:3179–87 [Google Scholar]
  175. Krönström J, Karlsson W, Johansson BR, Holmgren S. 2009. Involvement of contractile elements in control of bioluminescence in Northern krill, Meganyctiphanes norvegica (M. Sars). Cell Tissue Res. 336:299–308 [Google Scholar]
  176. Kubodera T, Koyama Y, Mori K. 2007. Observations of wild hunting behaviour and bioluminescence of a large deep-sea, eight-armed squid, Taningia danae. Proc. Biol. Sci. 274:1029–34 [Google Scholar]
  177. Kunitomo Y, Sarashina I, Iijima M, Endo K, Sashida K. 2006. Molecular phylogeny of acantharian and polycystine radiolarians based on ribosomal DNA sequences, and some comparisons with data from the fossil record. Eur. J. Protistol. 42:143–53 [Google Scholar]
  178. Labas YA, Matz MV, Zakhartchenko VA. 2001. On the origin of bioluminescent systems. In Bioluminescence and Chemiluminescence 2000. JF Case, PJ Herring, BH Robison, SHD Haddock, LJ Kricka, PE Stanley 91–94 Singapore: World Scientific [Google Scholar]
  179. Lall AB, Seliger HH, Biggley WH, Lloyd JE. 1980. Ecology of colors of firefly bioluminescence. Science 210:560–62 [Google Scholar]
  180. Land MF, Marshall NJ, Diebel C. 1995. Tracking of blue lights by hyperiid amphipods. J. Mar. Biol. Assoc. UK 75:71–81 [Google Scholar]
  181. Lapointe M, Morse D. 2008. Reassessing the role of a 3′-UTR-binding translational inhibitor in regulation of circadian bioluminescence rhythm in the dinoflagellate Gonyaulax. Biol. Chem. 389:13–19 [Google Scholar]
  182. Lapota D. 1998. Long term and seasonal changes in dinoflagellate bioluminescence in the Southern California Bight PhD thesis Univ. of Calif. Santa Barbara:193 pp. [Google Scholar]
  183. Lapota D, Galt C, Losee J, Huddell H, Orzech J, Nealson K. 1988. Observations and measurements of planktonic bioluminescence in and around a milky sea. J. Exp. Mar. Biol. Ecol. 119:55–81 [Google Scholar]
  184. Lapota D, Paulen S, Duckworth D, Rosenberg DE, Case JF. 1994. Coastal and oceanic bioluminescence trends in the Southern California Bight using MOORDEX bathyphotometers. Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects AK Cambell, LJ Kricka, PE Stanley 127–30 Chichester, UK: Wiley [Google Scholar]
  185. Latz M, Bovard M, Vandelinder V, Segre E, Rohr J, Groisman A. 2008. Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device. J. Exp. Biol. 211:2865–75 [Google Scholar]
  186. Latz M, Rohr J. 1999. Luminescent response of the red tide dinoflagellate Lingulodinium polyedrum to laminar and turbulent flow. Limnol. Oceanogr. 44:1423–35 [Google Scholar]
  187. Latz MI. 1995. Physiological mechanisms in the control of bioluminescent countershading in a midwater shrimp. Mar. Freshwater Behav. Physiol. 26:207–18 [Google Scholar]
  188. Latz MI. 2004. Hydrodynamic stimulation of dinoflagellate bioluminescence: a computational and experimental study. J. Exp. Biol. 207:1941–51 [Google Scholar]
  189. Latz MI, Bowlby MR, Case JF. 1991. Bioluminescence of the solitary spumellarian radiolarian, Thalassicola nucleata (Huxley). J. Plankton Res. 13:1187–201 [Google Scholar]
  190. Latz MI, Jeong HJ. 1996. Effect of red tide dinoflagellate diet and cannibalism on the bioluminescence of the heterotrophic dinoflagellates Protoperidinium spp. Mar. Ecol. Prog. Ser. 132:275–85 [Google Scholar]
  191. Le Boeuf BJ, Crocker D, Costa D, Blackwell S, Webb P, Houser D. 2000. Foraging ecology of northern elephant seals. Ecol. Monogr. 70:353–82 [Google Scholar]
  192. Lee DH, Mittag M, Sczekan S, Morse DE, Hastings JW. 1993. Molecular cloning and genomic organization of a gene for luciferin-binding protein from the dinoflagellate Gonyaulax polyedra. J. Biol. Chem. 268:8842–50 [Google Scholar]
  193. Lieberman S, Lapota D, Losee J, Zirino A. 1987. Planktonic bioluminescence in the surface waters of the Gulf of California. Biol. Oceanogr. 4:25–46 [Google Scholar]
  194. Ling H-Y, Haddock SHD. 1997. The enclosing latticed sphere of Tuscaridium cygneum (Murray), a eurybathyal phaeodarian Radiolaria, from the North Pacific. Paleontol. Res. 1:144–49 [Google Scholar]
  195. Liu L, Hastings JW. 2007. Two different domains of the luciferase gene in the heterotrophic dinoflagellate Noctiluca scintillans occur as two separate genes in photosynthetic species. Proc. Natl. Acad. Sci. USA 104:696–701 [Google Scholar]
  196. Liu L, Wilson T, Hastings JW. 2004. Molecular evolution of dinoflagellate luciferases, enzymes with three catalytic domains in a single polypeptide. Proc. Natl. Acad. Sci. USA 101:16555–60 [Google Scholar]
  197. Liu Z-J, Vysotski ES, Chen C-J, Rose JP, Lee J, Wang B-C. 2000. Structure of the Ca2+-regulated photoprotein obelin at 1.7 Å resolution determined directly from its sulfur substructure. Protein Sci. 9:2085–93 [Google Scholar]
  198. Lorenz WW, McCann RO, Longiaru M, Cormier MJ. 1991. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl. Acad. Sci. USA 88:4438–42 [Google Scholar]
  199. MacIntyre S, Alldredge AL, Gotschalk CG. 1995. Accumulation of marine snow at density discontinuities in the water column. Limnol. Oceanogr. 40:449–68 [Google Scholar]
  200. Mackie GO. 1991. Propagation of bioluminescence in Euphysa japonica hydromedusae, (Tubulariidae). Hydrobiologia 216:581–88 [Google Scholar]
  201. Makemson JC, Fulayfil NR, Landry W, Vanert LM, Wimpee CF, Widder EA, Case JF. 1997. Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int. J. Syst. Bacteriol. 47:1034–39 [Google Scholar]
  202. Maldonado EM, Latz MI. 2007. Shear-stress dependence of dinoflagellate bioluminescence. Biol. Bull. 212:242 [Google Scholar]
  203. Mallefet J, Hendler G, Herren CM, McDougall CM, Case JF. 2004. A new bioluminescent ophiuroid species from the coast of California. Echinoderms: München T Heinzeller, JH Nebelsick 305–10 [Google Scholar]
  204. Mallefet J, Shimomura O. 1995. Presence of coelenterazine in mesopelagic fishes from the Strait of Messina. Mar. Biol. 124:381–85 [Google Scholar]
  205. Manjarrés IM, Chamero P, Domingo B, Molina F, Llopis J. et al. 2008. Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles. Pflügers Arch. 455:961–70 [Google Scholar]
  206. Markova SV, Golz S, Frank LA, Kalthof B. 2004. Cloning and expression of cDNA for a luciferase from the marine copepod Metridia longa: a novel secreted reporter enzyme. J. Biol. Chem. 279:3312–17 [Google Scholar]
  207. Markova SV, Vysotski ES, Blinks JR, Burakova LP, Wang BC, Lee J. 2002. Obelin from the bioluminescent marine hydroid Obelia geniculata: Cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins. Biochemistry 41:2227–36 [Google Scholar]
  208. Marra J, Hartwig E. 1984. Biowatt: A study of bioluminescence and optical variability in the sea. Eos Trans. Amer. Geophys. Union 65:732–33 [Google Scholar]
  209. Marra J, Langdon C, Knudson CA. 1995. Primary production, water column changes, and the demise of a Phaeocystis bloom at the Marine Light-Mixed Layers site (59°N, 21°W) in the northeast Atlantic Ocean. J. Geophys. Res. 100:6633–43 [Google Scholar]
  210. Masuda H, Takenaka Y, Yamaguchi A, Nishikawa S, Mizuno H. 2006. A novel yellowish-green fluorescent protein from the marine copepod, Chiridius poppei, and its use as a reporter protein in HeLa cells. Gene 372:18–25 [Google Scholar]
  211. Matsui S, Seidou M, Uchiyama I, Sekiya N, Hiraki K. et al. 1988. 4-Hydroxyretinal, a new visual pigment chromophore found in the bioluminescent squid, Watasenia scintillans. Biochim. Biophys. Acta 966:370–74 [Google Scholar]
  212. McFall-Ngai MJ, Ruby E. 1998. Sepiolids and vibrios: when first they meet. BioScience 48:257–65 [Google Scholar]
  213. McManus M, Alldredge AL, Barnard A, Boss E, Case JF. et al. 2003. Characteristics, distribution and persistence of thin layers over a 48 hour period. Mar. Ecol. Prog. Ser. 261:1–19 [Google Scholar]
  214. McManus M, Kudela R, Silver M, Steward G, Donaghay P, Sullivan J. 2008. Cryptic blooms: Are thin layers the missing connection?. Estuaries Coasts 31:396–401 [Google Scholar]
  215. Medwin H. 2005. Sounds in the sea: from ocean acoustics to acoustical oceanography Cambridge, UK: Cambridge Univ. Press643 pp. [Google Scholar]
  216. Meighen EA. 1991. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55:123–42 [Google Scholar]
  217. Mensinger AF, Case JF. 1990. Luminescent properties of deep sea fish. J. Exp. Mar. Biol. Ecol. 144:1–15 [Google Scholar]
  218. Mensinger AF, Case JF. 1992. Dinoflagellate luminescence increases susceptibility of zooplankton to teleost predation. Mar. Biol. 112:207–10 [Google Scholar]
  219. Miller SD, Haddock SHD, Elvidge CD, Lee TH. 2005. Detection of a bioluminescent milky sea from space. Proc. Natl. Acad. Sci. USA 102:14181–84 [Google Scholar]
  220. Miller SD, Haddock SHD, Elvidge CD, Lee TF. 2006. Twenty thousand leagues over the seas: The first satellite perspective on bioluminescent ‘milky seas’. Int. J. Remote Sens. 27:5131–43 [Google Scholar]
  221. Mittag M, Li L, Woodland Hastings J. 1998. The mRNA level of the circadian regulated Gonyaulax luciferase remains constant over the cycle. Chronobiol. Int. 15:93–98 [Google Scholar]
  222. Moline MA, Benoit-Bird KJ, Robbins IC, Schroth-Miller M, Waluk CM, Zelenke B. 2009a. Integrated measurements of acoustical and optical thin layers II: Horizontal length scales. Continental Shelf Res. doi: 10.1016/j.csr.2009.08.004 [Google Scholar]
  223. Moline MA, Blackwell SM, Case JF, Haddock SHD, Herren CM. et al. 2009b. Bioluminescence to reveal structure and interaction of coastal planktonic communities. Deep Sea Res. II 56:232–45 [Google Scholar]
  224. Moline MA, Bissett P, Blackwell S, Mueller J, Sevadjian J. et al. 2005b. An autonomous vehicle approach for quantifying bioluminescence in ports and harbors. Proc. SPIE 5780:81 [Google Scholar]
  225. Moline MA, Blackwell SM, Von Alt C, Allen B, Austin T. et al. 2005a. Remote Environmental Monitoring Units: An autonomous vehicle for characterizing coastal environments. J. Atmos. Oceanic Technol. 22:1797 [Google Scholar]
  226. Moline MA, Heine E, Case JF, Herren CM, Schofield O. 2001. Spatial and temporal variability of bioluminescence potential in coastal regions. Bioluminescence and Chemiluminescence 2000 JF Case, PJ Herring, SHD Haddock, LJ Kricka, PE Stanley 123–126 Singapore: World Scientific [Google Scholar]
  227. Moline MA, Oliver MJ, Mobley CD, Sundman L, Bensky T. et al. 2007. Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water-leaving radiance. J. Geophys. Res. 112:C11016 [Google Scholar]
  228. Moore J, Doney S, Kleypas J, Glover D, Fung I. 2001. An intermediate complexity marine ecosystem model for the global domain. Deep Sea Res. II: Topical Stud. Oceanogr. 49:403–62 [Google Scholar]
  229. Moore P, Fields D, Yen J. 1999. Physical constraints of chemoreception in foraging copepods. Limnol. Oceanogr. 44:166–77 [Google Scholar]
  230. Morin JG. 1983. Coastal bioluminescence: patterns and functions. Bull. Mar. Sci. 33:787–817 [Google Scholar]
  231. Morin JG. 1986. “Firefleas” of the sea: Luminescence signaling in marine ostracode crustaceans. Florida Entomol. 69:105–21 [Google Scholar]
  232. Morin JG, Cohen AC. 2010. It's all about sex: bioluminescent courtship displays, morphological variation and sexual selection in two new genera of Caribbean ostracodes. J. Crust. Biol. 30: In press [Google Scholar]
  233. Morin JG, Harrington A, Nealson K, Krieger N, Baldwin TO, Hastings JW. 1975. Light for all reasons: Versatility in the behavioral repertoire of the flashlight fish. Science 190:74–76 [Google Scholar]
  234. Morse D, Pappenheimer AMJ, Hastings JW. 1989. Role of a luciferin-binding protein in the circadian bioluminescent reaction of Gonyaulax polyedra. J. Biol. Chem. 264:11822–26 [Google Scholar]
  235. Morton SL, Vershinin A, Smith LL, Leighfield TA, Pankov S, Quilliam MA. 2009. Seasonality of Dinophysis spp. and Prorocentrum lima in Black Sea phytoplankton and associated shellfish toxicity. Harmful Algae 8:629–36 [Google Scholar]
  236. Moulton JM. 1957. Sound production in the spiny lobster Panulirus argus (Latreille). Biol. Bull. 113:286 [Google Scholar]
  237. Munk O. 1999. The escal photophore of ceratioids (Pisces; Ceratioidei)—a review of structure and function. Acta Zoologica 80:265–84 [Google Scholar]
  238. Nakajima Y, Kobayashi K, Yamagishi K, Enomoto T, Ohmiya Y. 2004. cDNA cloning and characterization of a secreted luciferase from the luminous Japanese ostracod, Cypridina noctiluca. Biosci. Biotechnol. Biochem. 68:565–70 [Google Scholar]
  239. Nakamura H, Kishi Y, Shimomura O, Morse D, Hastings JW. 1989. Structure of dinoflagellate luciferin and its enzymatic and nonenzymatic air-oxidation products. J. Am. Chem. Soc. 111:7607–11 [Google Scholar]
  240. Nealson KH, Hastings JW. 2006. Quorum sensing on a global scale: massive numbers of bioluminescent bacteria make milky seas. Appl. Environ. Microbiol. 72:2295–97 [Google Scholar]
  241. Nelson DR, McKibben JN, Strong WR Jr, Lowe CG, Sisneros JA. et al. 1997. An acoustic tracking of a megamouth shark, Megachasma pelagios: A crepuscular vertical migrator. Environ. Biol. Fishes 49:389–99 [Google Scholar]
  242. Nishida S, Ohtsuka S, Parker AR. 2002. Functional morphology and food habits of deep-sea copepods of the genus Cephalophanes (Calanoida: Phaennidae): perception of bioluminescence as a strategy for food detection. Mar. Ecol.-Progr. Series 227:157–71 [Google Scholar]
  243. Nishiguchi MK, Ruby EG, McFall-Ngai MJ. 1998. Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in sepiolid squid-vibrio symbioses. Appl. Environ. Microbiol. 64:3209 [Google Scholar]
  244. Nyholm SV, McFall-Ngai M. 2004. The winnowing: establishing the squid-vibrio symbiosis. Nat. Rev. Microbiol. 2:632 [Google Scholar]
  245. Nyholm SV, Stewart JJ, Ruby EG, McFall-Ngai MJ. 2009. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ. Microbiol. 11:483–93 [Google Scholar]
  246. Oba Y, Tsuduki H, Kato Si, Ojika M, Inouye S. 2004. Identification of the luciferin-luciferase system and quantification of coelenterazine by mass spectrometry in the deep-sea luminous ostracod Conchoecia pseudodiscophora. ChemBioChem. 5:1495–99 [Google Scholar]
  247. Ohtsuka S, Böttger-Schnack R, Okada M. 1996. In situ feeding habits of Oncaea (Copepoda: Poecilostomatoida) from the upper 250 m of the central Red Sea, with special reference to consumption of appendicularian houses. Bull. Plankton Soc. Jpn. 43:89–105 [Google Scholar]
  248. Okamoto OK, Liu L, Robertson D, Hastings JW. 2001. Members of a dinoflagellate luciferase gene family differ in synonymous substitution rates. Biochemistry 40:15862–68 [Google Scholar]
  249. Oliver MJ, Moline MA, Mobley CD, Sundman L, Schofield OME. 2007. Bioluminescence in a complex coastal environment: 2. Prediction of bioluminescent source depth from spectral water-leaving radiance. J. Geophys. Res. 112:C11017 [Google Scholar]
  250. Orrico CM, Barnard A, Moore C, Moline MA, Robbins I. et al. 2008. The underwater bioluminscence assessment tool (U-BAT), a new platform-adaptable bioluminescence sensor for coastal and open ocean environments. Proceedings of Ocean Optics XIX 1991 [Google Scholar]
  251. Osborn KJ, Haddock SHD, Pleijel F, Madin LP, Rouse GW. 2009. Deep-sea, swimming worms with luminescent “bombs.”. Science 325:964 [Google Scholar]
  252. Osborn KJ, Rouse GW. 2008. Multiple origins of pelagicism within Flabelligeridae (Annelida). Mol. Phylogenet. Evol. 49:386–92 [Google Scholar]
  253. Osborn T. 1998. Finestructure, microstructure, and thin layers. Oceanogr. Oceanogr. Soc. 11:36–43 [Google Scholar]
  254. Panceri M. 1872. Etudes sur la phosphorescence des animaux marins. Ann. Sci. Nat. (Zool.) 16:1–67 [Google Scholar]
  255. Partridge JC, Douglas RH. 1995. Far-red sensitivity of dragon fish. Nature 375:21–22 [Google Scholar]
  256. Patek SN. 2001. Spiny lobsters stick and slip to make sound. Nature 411:153–54 [Google Scholar]
  257. Peel MM, Alfredson DA, Gerrard JG, Davis JM, Robson JM. et al. 1999. Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J. Clin. Microbiol. 37:3647 [Google Scholar]
  258. Petushkov VN, Rodionova NS. 2007. Purification and partial spectral characterization of a novel luciferin from the luminous enchytraeid Fridericia heliota. J. Photochem. Photobiol. 87:130–6 [Google Scholar]
  259. Pietsch TW. 2009. Oceanic Anglerfishes: Extraordinary Diversity in the Deep Sea Berkeley: Univ. of Calif. Press576 pp. [Google Scholar]
  260. Piontkovski S, Landry M, Finenko Z, Kovalev A, Williams R. et al. 2003. Plankton communities of the South Atlantic anticyclonic gyre. Oceanologica Acta 26:255–68 [Google Scholar]
  261. Piontkovski SA, Tokarev YN, Bitukov EP, Williams R, Kiefer DA. 1997. The bioluminescent field of the Atlantic Ocean. Mar. Ecol.-Prog. Series 156:33–41 [Google Scholar]
  262. Polet S, Berney C, Fahrni J, Pawlowski J. 2004. Small-subunit ribosomal RNA gene sequences of Phaeodarea challenge the monophyly of Haeckel's Radiolaria. Protist 155:53–63 [Google Scholar]
  263. Polovina J, Chai F, Howell E, Kobayashi D, Shi L, Chao Y. 2008. Ecosystem dynamics at a productivity gradient: A study of the lower trophic dynamics around the northern atolls in the Hawaiian Archipelago. Prog. Oceanogr. 77:217–24 [Google Scholar]
  264. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. 1992. Primary structure of the Aequorea victoria green fluorescent protein. Gene 111:229–33 [Google Scholar]
  265. Prasher DC, McCann RO, Cormier MJ. 1985. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem. Biophys. Res. Commun. 126:1259–68 [Google Scholar]
  266. Prasher DC, McCann RO, Cormier MJ. 1986. Isolation and expression of a cDNA coding for aequorin, the Ca2+-activated photoprotein from Aequorea victoria. Methods Enzymol. 133:288–98 [Google Scholar]
  267. Priede I, Bagley P, Way S, Herring P, Partridge J. 2006. Bioluminescence in the deep sea: Free-fall lander observations in the Atlantic Ocean off Cape Verde. Deep Sea Res. I 53:1272–83 [Google Scholar]
  268. Priede IG, Jamieson A, Heger A, Craig J, Zuur AF. 2008. The potential influence of bioluminescence from marine animals on a deep-sea underwater neutrino telescope array in the Mediterranean Sea. Deep Sea Res. I 55:1474–83 [Google Scholar]
  269. Pugh PR, Haddock SHD. 2009. Three new species of Resomiid siphonophores (Siphonophora, Physonectae). J. Mar. Biol. Assoc. UK doi: 10.1017/S0025315409990543 [Google Scholar]
  270. Purcell JE. 1980. Influence of siphonophore behavior upon their natural diets: evidence for aggressive mimicry. Science 209:1045–47 [Google Scholar]
  271. Ramanathan S, Shi W, Rosen BP, Daunert S. 1997. Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal. Chem. 69:3380–84 [Google Scholar]
  272. Ramsdell JS, Anderson DM, Glibert PM. 2005. Harmful Algal Research and Response: A National Environmental Science Strategy 2005–2015 Washington, DC: Ecological Society of America96 pp. [Google Scholar]
  273. Rees JF, De Wergifosse B, Noiset O, Dubuisson M, Janssens B, Thompson EM. 1998. The origins of marine bioluminescence: Turning oxygen defence mechanisms into deep-sea communication tools. J. Exp. Biol. 201:1211–21 [Google Scholar]
  274. Renaux R, Youngbluth M. 1990. A new mesopelagic appendicularian, Mesochordaeus bahamasi gen. nov., sp. nov. J. Mar. Biol. Assoc. UK 70:755–60 [Google Scholar]
  275. Rines J, Donaghay P, Dekshenieks M, Sullivan J, Twardowski M. 2002. Thin layers and camouflage: hidden Pseudo-nitzschia spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA. Mar. Ecol. Prog. Ser. 225:123–37 [Google Scholar]
  276. Ripp S, Daumer KA, McKnight T, Levine LH, Garland JL. et al. 2003. Bioluminescent bioreporter integrated-circuit sensing of microbial volatile organic compounds. J. Ind. Microbiol. Biotechnol. 30:636–42 [Google Scholar]
  277. Rivers TJ, Morin JG. 2008. Complex sexual courtship displays by luminescent male marine ostracods. J. Exp. Biol. 211:2252–62 [Google Scholar]
  278. Rivers TJ, Morin JG. 2009. Plasticity of male mating behaviour in a marine bioluminescent ostracod in both time and space. Animal Behav. doi: 10.1016/j.anbehav.2009.06.020. In press [Google Scholar]
  279. Robison BH. 1992. Bioluminescence in the benthopelagic holothurian Enypniastes eximia. J. Mar. Biol. Assoc. UK 72:463–72 [Google Scholar]
  280. Robison BH, Raskoff KA, Sherlock RE. 2005. Ecological substrate in midwater: Doliolula equus, a new mesopelagic tunicate. J. Mar. Biol. Assoc. UK 85:655–63 [Google Scholar]
  281. Robison BH, Reisenbichler KR. 2008. Macropinna microstoma and the paradox of its tubular eyes. Copeia4780–84 [Google Scholar]
  282. Robison BH, Reisenbichler KR, Hunt JC, Haddock SHD. 2003. Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis. Biol. Bull. 205:102–109 [Google Scholar]
  283. Robison BH, Ruby EG, Morin JG. 1977. Luminous bacteria associated with the gut contents of midwater fishes. West. Soc. Nat. 58:55 [Google Scholar]
  284. Robison BH, Young RE. 1981. Bioluminescence in pelagic octopods. Pac. Sci. 35:39–44 [Google Scholar]
  285. Rodhouse P, Arnbom T, Fedak M, Yeatman J, Murray A. 1992. Cephalopod prey of the southern elephant seal, Mirounga leonina. L. Can. J. Zool. 70:1007–15 [Google Scholar]
  286. Rohr J, Latz MI, Fallon S, Nauen JC, Hendricks E. 1998. Experimental approaches towards interpreting dolphin-stimulated bioluminescence. J. Exp. Biol. 201:1447–60 [Google Scholar]
  287. Ruby EG, McFall-Ngai MJ. 1992. A squid that glows in the night: development of an animal-bacterial mutualism. J. Bacteriol. 174:4865–70 [Google Scholar]
  288. Ruby E, Morin J. 1979. Luminous enteric bacteria of marine fishes: a study of their distribution, densities, and dispersion. Appl. Environ. Microbiol. 38:406–11 [Google Scholar]
  289. Ruby E, Urbanowski M, Campbell J, Dunn A, Faini M. et al. 2005. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA 102:3004–3009 [Google Scholar]
  290. Ryan JP, Fischer AM, Kudela RM, Gower JFR, King SA, Marin Iii R, Chavez FP. 2009. Influences of upwelling and downwelling winds on red tide bloom dynamics in Monterey Bay, California. Cont. Shelf Res. 29:785–95 [Google Scholar]
  291. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG. 2000. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, “Candidatus Entotheonella palauensis.”. Mar. Biol. 136:969–77 [Google Scholar]
  292. Schofield O, Grzymski J, Bissett WP, Kirkpatrick GJ, Millie DF. et al. 1999. Optical monitoring and forecasting systems for harmful algal blooms: possibility or pipe dream. J. Phycol. 35:1477–96 [Google Scholar]
  293. Schultz LW, Liu L, Cegielski M, Hastings JW. 2005. Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole. Proc. Natl. Acad. Sci. USA 102:1378–83 [Google Scholar]
  294. Seidou M, Sugahara M, Uchiyama H, Hiraki K, Hamanaka T. et al. 1990. On the three visual pigments in the retina of the firefly squid, Watasenia scintillans. J. Comp. Physiol. A: Sens. Neural Behav. Physiol. 166:769–73 [Google Scholar]
  295. Seliger H, Fastie W, McElroy W. 1969. Towable photometer for rapid area mapping of concentrations of bioluminescent marine dinoflagellates. Limnol. Oceanogr. 14:806–13 [Google Scholar]
  296. Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA. et al. 2004. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol. Biol. Evol. 21:841–50 [Google Scholar]
  297. Shimomura O. 1987. Presence of coelenterazine in non-bioluminescent marine organisms. Comp. Biochem. Physiol. B 86:361–63 [Google Scholar]
  298. Shimomura O. 1995a. A short story of aequorin. Biol. Bull. 189:1–5 [Google Scholar]
  299. Shimomura O. 1995b. The roles of the two highly unstable components F and P involved in the bioluminescence of euphausiid shrimps. J. Biolum. Chemilum. 10:91–101 [Google Scholar]
  300. Shimomura O. 2005. The discovery of aequorin and green fluorescent protein. J. Microsc. 217:3–15 [Google Scholar]
  301. Shimomura O. 2006. Bioluminescence: Chemical Principles And Methods. Singapore: World Scientific500 pp. [Google Scholar]
  302. Shimomura O, Flood P. 1998. Luciferase of the scyphozoan medusa Periphylla periphylla. Biol. Bull. 194:244–52 [Google Scholar]
  303. Shimomura O, Goto T, Hirata Y. 1957. Crystalline Cypridina luciferin. Bull. Chem. Soc. Jpn. 30:929–33 [Google Scholar]
  304. Shimomura O, Inoue S, Johnson FH, Haneda Y. 1980. Widespread occurrence of coelenterazine in marine bioluminescence. Comp. Biochem. Physiol. 65B:435–37 [Google Scholar]
  305. Shimomura O, Johnson F. 1972. Structure of the light-emitting moiety of aequorin. Biochemistry 11:1602–1608 [Google Scholar]
  306. Shimomura O, Johnson F. 1975. Chemical nature of bioluminescence systems in coelenterates. Proc. Natl. Acad. Sci. USA 72:1546–49 [Google Scholar]
  307. Shimomura O, Johnson FH. 1978. Peroxidized coelenterazine, the active group in the photoprotein aequorin. Proc. Natl. Acad. Sci. USA 75:2611–15 [Google Scholar]
  308. Shimomura O, Johnson FH, Saiga Y. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59:223–39 [Google Scholar]
  309. Shulman I, Haddock SHD, McGillicuddy DJ, Paduan JD, Bissett WP. 2003. Numerical modeling of bioluminescence distributions in the coastal ocean. J. Atmos. Oceanic Technol. 20:1060–68 [Google Scholar]
  310. Shulman I, McGillicuddy DJ, Moline M, Haddock S, Kindle JC. et al. 2005. Bioluminescence intensity modeling and sampling strategy optimization. J. Atmos. Oceanic Technol. 22:1267–81 [Google Scholar]
  311. Sinclair EH. 1994. Prey of juvenile northern elephant seals (Mirounga angustirostris) in the Southern California Bight. Mar. Mammal Sci. 10:230–39 [Google Scholar]
  312. Sinniger F, Reimer JD, Pawlowski J. 2008. Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia). Zool. Sci. 25:1253–60 [Google Scholar]
  313. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A. et al. 2008. Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb. Ecol. 56:625–36 [Google Scholar]
  314. Steele JH, Yentsch CS. 1960. The vertical distribution of chlorophyll. J. Mar. Biol. Assoc. UK 39:217–26 [Google Scholar]
  315. Stepanyuk GA, Liu ZJ, Vysotski ES, Lee J, Rose JP, Wang BC. 2009. Structure based mechanism of the Ca2+-induced release of coelenterazine from the Renilla binding protein. Proteins: Structure, Funct. Bioformatics 74:583–93 [Google Scholar]
  316. Sugiyama N, Shimomura O, Saiga Y, Haneda Y. 1961. Crystalline luciferin from a luminescent fish, Parapriacanthus beryciformes. Proc. Natl. Acad. Sci. USA 47:486–89 [Google Scholar]
  317. Suntsov AV, Brodeur RD. 2008. Trophic ecology of three dominant myctophid species in the northern California Current region. Mar. Ecol.-Prog. Series 373:81–96 [Google Scholar]
  318. Suntsov AV, Widder EA, Sutton TT. 2008. Bioluminescence in larval fishes. Fish Larval Physiology RN Finn, BG Kapoor 51–88 Bergen, Norway: Univ. Bergen Press [Google Scholar]
  319. Sutton TT. 2005. Trophic ecology of the deep-sea fish Malacosteus niger (Pisces : Stomiidae): An enigmatic feeding ecology to facilitate a unique visual system?. Deep Sea Res. I 52:2065–76 [Google Scholar]
  320. Sutton TT, Hartel KE. 2004. New species of Eustomias (Teleostei : Stomiidae) from the western North Atlantic, with a review of the subgenus Neostomias. Copeia116–21 [Google Scholar]
  321. Sutton TT, Hopkins TL. 1996. Trophic ecology of the stomiid (Pisces: Stomiidae) fish assemblage of the eastern Gulf of Mexico. Mar. Biol. 127:179–92 [Google Scholar]
  322. Sweeney AM, Haddock S, Johnsen S. 2007. Comparative visual acuity of coleoid cephalopods. Integr. Comp. Biol. 47:808–14 [Google Scholar]
  323. Swift E, Sullivan JM, Batchelder HP, Van Keuren J, Vaillancourt RD, Bidigare RR. 1995. Bioluminescent organisms and bioluminescence measurements in the North Atlantic Ocean near latitude 59.5°N, longitude 21° W. J. Geophys. Res. 100:6527–47 [Google Scholar]
  324. Szent-Gyorgyi C, Ballou BT, Dagnal E, Bryan B. 2003. Cloning and characterization of new bioluminescent proteins. Proc. SPIE 3600:4–11 [Google Scholar]
  325. Takahashi H, Isobe M. 1993. Symplectoteuthis bioluminescence (1) Structure and binding form of chromophore in photoprotein of a luminous squid. Bioorg. Med. Chem. Lett. 3:2647–52 [Google Scholar]
  326. Takahashi H, Isobe M. 1994. Photoprotein of luminous squid, Symplectoteuthis oualaniensis and reconstruction of the luminous system. Chem. Lett. 23:843–46 [Google Scholar]
  327. Takahashi T. 2001. White band on upper jaw of megamouth shark, Megachasma pelagios, and its presumed function (Lamniformes: Mecachasmidae). Bull. Fisheries Sci. 52:125–29 [Google Scholar]
  328. Takenaka Y, Masuda H, Yamaguchi A, Nishikawa S, Shigeri Y, Yasukazu Y, Mizuno H. 2008. Two forms of secreted and thermostable luciferases from the marine copepod crustacean, Metridia pacifica. Gene 425:28–35 [Google Scholar]
  329. Takeuchi A, Nakamura M, Suzuki C, Ryufuku M. 2005. Isolation and structure determination of the luciferin of the dinoflagellate, Noctiluca scintillans. Nippon Kagakkai Koen Yokoshu 85:1461 [Google Scholar]
  330. Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71:295 [Google Scholar]
  331. Tester PA, Stumpf RP, Steidinger KA. 1998. Ocean color imagery: What is the minimum detection level for Gymnodinium breve blooms?. Harmful Algae B Reguera, J Blanco, ML Fernandez, T Wyatt 149–51 Paris: UNESCO Publishing [Google Scholar]
  332. Tett P. 1972. An annual cycle of flash induced luminescence in the euphausiid Thysanoessa raschii. Mar. Biol. 12:207–18 [Google Scholar]
  333. Thompson EM, Nagata S, Tsuji FI. 1989. Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii. Proc. Natl. Acad. Sci. USA 86:6567–71 [Google Scholar]
  334. Thomson CM, Herring PJ, Campbell AK. 1995. Evidence for de novo biosynthesis of coelenterazine in the bioluminescent midwater shrimp, Systellaspis debilis. J. Mar. Biol. Assoc. UK 75:165–71 [Google Scholar]
  335. Thomson CM, Herring PJ, Campbell AK. 1997. The widespread occurrence and tissue distribution of the imidazolopyrazine luciferins. J. Biolum. Chemilum. 12:87–91 [Google Scholar]
  336. Tinn O, Oakley T. 2008. Erratic rates of molecular evolution and incongruence of fossil and molecular divergence time estimates in Ostracoda (Crustacea). Mol. Phylogenet. Evol. 48:157–67 [Google Scholar]
  337. Titushin M, Markova S, Frank L, Malikova N, Stepanyuk G. et al. 2008. Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase. Photochem. Photobio. Sci. 7:189–96 [Google Scholar]
  338. Tizard TH, Moseley HN, Buchanan JY, Murray J. 1885. Narrative of the cruise of H.M.S. Challenger with a general account of the scientific results of the expedition Edinburgh: H.M. Stationery905 pp. [Google Scholar]
  339. Tokarev YN, Bityukov EP, Vasilenko VI, Sokolov BG, Serikova IM. 2003. Bioluminescence from the Black Sea to the eastern Mediterranean: The spatial structure and functional connection with the characteristics of plankton in the two interconnected basins. Oceanography of Eastern Mediterranean and Black Sea: Similarities and Differences of Two Interconnected Basins A Yilmaz Tubitak, Turkey: Tubitak [Google Scholar]
  340. Tokarev Y, Williams R, Piontkovski S. 1998. Small-scale plankton patchiness in the Black Sea euphotic layer. Hydrobiologia 375:363–67 [Google Scholar]
  341. Tokarev Y, Williams R, Piontkovski S. 1999. Identification of small-scale structure of plankton communities of the Black and Ionian Seas by their bioluminescence characteristics. Hydrobiologia 393:163–67 [Google Scholar]
  342. Torres E, Cohen AC. 2005. Vargula morini, a new species of bioluminescent ostracode (Myodocopida: Cypridinidae) from Belize and an associated copepod (Copepoda: Siphonostomatoida: Nicothoidae). J. Crustacean Biol. 25:11–24 [Google Scholar]
  343. Tsuji FI. 1955. The absorption spectrum of reduced and oxidized Cypridina luciferin, isolated by a new method. Arch. Biochem. Biophys. 59:452–64 [Google Scholar]
  344. Tsuji FI. 2002. Bioluminescence reaction catalyzed by membrane-bound luciferase in the “firefly squid,” Watasenia scintillans. Biochim. Biophys. Acta 1564:189–97 [Google Scholar]
  345. Tsuji FI. 2005. Role of molecular oxygen in the bioluminescence of the firefly squid, Watasenia scintillans. Biochem. Biophys. Res. Commun. 338:250–53 [Google Scholar]
  346. Tsuji FI, Barnes AT, Case JF. 1972. Bioluminescence in the marine teleost, Porichthys notatus, and its induction in a non-luminous form by Cypridina (Ostracod) luciferin. Nature 237:515–16 [Google Scholar]
  347. Turner JR, White EM, Collins MA, Partridge JC, Douglas RH. 2009. Vision in lanternfish (Myctophidae): adaptations for viewing bioluminescence in the deep-sea. Deep Sea Res. I 56:1003–17 [Google Scholar]
  348. Vallin A, Jakobsson S, Lind J, Wiklund C. 2006. Crypsis versus intimidation—anti-predation defence in three closely related butterflies. Behav. Ecol. Sociobiol. 59:455–59 [Google Scholar]
  349. Visick K, Foster J, Doino J, McFall-Ngai M, Ruby E. 2000. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182:4578–86 [Google Scholar]
  350. Von Dassow P, Latz MI. 2002. The role of Ca2+ in stimulated bioluminescence of the dinoflagellate Lingulodinium polyedrum. J. Exp. Biol. 205:2971–86 [Google Scholar]
  351. Voss GL. 1967. Squids, jet-powered torpedos of the deep. Natl. Geogr. Mag. 131:386–411 [Google Scholar]
  352. Wada M, Azuma N, Mizuno N, Kurokura H. 1999. Transfer of symbiotic luminous bacteria from parental Leiognathus nuchalis to their offspring. Mar. Biol. 135:683–87 [Google Scholar]
  353. Wagner H, Douglas RH, Frank TM, Roberts NW, Partridge JC. 2009. A novel vertebrate eye using both refractive and reflective optics. Curr. Biol. 19:108–14 [Google Scholar]
  354. Ward WW, Davis DF, Cutler MW. 1994. The origin of chromophores in coelenterate bioluminescence. Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects AK Campbell, LJ Kricka, PE Stanley 131–34 New York: Wiley [Google Scholar]
  355. Ward WW, Seliger HH. 1974. Properties of mnemiopsin and berovin, calcium-activated photoproteins from the ctenophores Mnemiopsis sp. and Beroë ovata. Biochemistry 13:1500–1509 [Google Scholar]
  356. Warner JA, Case JF. 1980. The zoogeography and dietary induction of bioluminescence in the midshipman fish, Porichthys notatus. Biol. Bull. 159:231–46 [Google Scholar]
  357. Warrant E, Locket NA. 2004. Vision in the deep sea. Biol. Rev. Cambridge Philos. Soc. 79:671–712 [Google Scholar]
  358. Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319–46 [Google Scholar]
  359. Weatherby TM, Davis AD, Hartline DK, Lenz PH. 2000. The need for speed. II. Myelin in calanoid copepods. J. Comp. Physiol. A 186:347–57 [Google Scholar]
  360. Webster M, Roos C, Roberts A, Okada A, Ohashi Y. et al. 1991. Mechanical stimulation of bioluminescence in the deep Pacific Ocean. Deep Sea Res. I 38:201–17 [Google Scholar]
  361. Widder EA. 1998. A predatory use of counterillumination by the squaloid shark, Isistius brasiliensis. Envir. Biol. Fishes 53:267–73 [Google Scholar]
  362. Widder EA. 2002. Bioluminescence and the pelagic visual environment. Mar. Freshwater Behav. Physiol. 35:1–26 [Google Scholar]
  363. Widder EA. 2007. Lighting the deep. The New Sci. 196:24–25 [Google Scholar]
  364. Widder EA, Case JF, Bernstein SA, Macintyre S, Lowenstine MR. et al. 1993. A new large volume bioluminescence bathyphotometer with defined turbulence excitation. Deep Sea Res. I 40:607–27 [Google Scholar]
  365. Widder EA, Greene CH, Youngbluth MJ. 1992. Bioluminescence of sound-scattering layers in the Gulf of Maine. J. Plankton Res. 14:1607–24 [Google Scholar]
  366. Widder EA, Johnsen S. 2000. 3D spatial point patterns of bioluminescent plankton: a map of the ‘minefield.’. J. Plankton Res. 33:409–20 [Google Scholar]
  367. Widder EA, Johnsen S, Bernstein SA, Case JF, Neilson DJ. 1999. Thin layers of bioluminescent copepods found at density discontinuities in the water column. Mar. Biol. 134:429–37 [Google Scholar]
  368. Widder EA, Robison BH, Reisenbichler KR, Haddock SHD. 2005. Using red light for in situ observations of deep-sea fishes. Deep Sea Res. I 52:2077–85 [Google Scholar]
  369. Wilkes RJ. 1994. DUMAND and AMANDA: High Energy Neutrino Astrophysics. Univ. of Wash. Seattle: UWSEA-PUB-94–07, arXiv astro-ph:9412019v1 [Google Scholar]
  370. Williams G. 2001. First record of a bioluminescent soft coral: description of a disjunct population of Eleutherobia grayi (Thomson and Dean, 1921) from the Solomon Islands, with a review of bioluminescence in the Octocorallia. Proc. Cal. Acad. Sci. 52:209–25 [Google Scholar]
  371. Wilson T, Hastings JW. 1998. Bioluminescence. Annu. Rev. Cell Dev. Biol. 14:197–230 [Google Scholar]
  372. Wollenberg MS, Ruby EG. 2009. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Appl. Environ. Microbiol. 75:193–202 [Google Scholar]
  373. Woodland DJ, Cabanban AS, Taylor VM, Taylor RJ. 2002. A synchronized rhythmic flashing light display by schooling Leiognathus splendens (Leiognathidae: Perciformes). Mar. Freshwater Res. 53:159–62 [Google Scholar]
  374. Woods W Jr, Hendrickson H, Mason J, Lewis S. 2007. Energy and predation costs of firefly courtship signals. Am. Nat. 170:702–708 [Google Scholar]
  375. Woodson CB, Webster DR, Weissburg MJ, Yen J. 2007. Cue hierarchy and foraging in calanoid copepods: Ecological implications of oceanographic structure. Mar. Ecol. Prog. Ser. 330:163–77 [Google Scholar]
  376. Yamaguchi S, Endo K. 2003. Molecular phylogeny of Ostracoda (Crustacea) inferred from 18S ribosomal DNA sequences: implication for its origin and diversification. Mar. Biol. 143:23–38 [Google Scholar]
  377. Yoon HS, Hackett JD, Bhattacharya D. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. USA 99:11724–29 [Google Scholar]
  378. Young RE, Mencher FM. 1980. Bioluminescence in mesopelagic squids: Diel color change during counterillumination. Science 208:1286–88 [Google Scholar]
  379. Yuasa T, Takahashi O, Dolven J, Mayama S, Matsuoka A. et al. 2006. Phylogenetic position of the small solitary phaeodarians (Radiolaria) based on 18S rDNA sequences by single cell PCR analysis. Mar. Micropaleontol. 59:104–14 [Google Scholar]
  380. Zingone A, Siano R, D'Alelio D, Sarno D. 2006. Potentially toxic and harmful microalgae from coastal waters of the Campania region (Tyrrhenian Sea, Mediterranean Sea). Harmful Algae 5:321–37 [Google Scholar]
  381. Zörner SA, Fischer A. 2007. The spatial pattern of bioluminescent flashes in the polychaete Eusyllis blomstrandi (Annelida). Helgoland Mar. Res. 61:55–66 [Google Scholar]
/content/journals/10.1146/annurev-marine-120308-081028
Loading
/content/journals/10.1146/annurev-marine-120308-081028
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error