1932

Abstract

Understanding pelagic ecology and quantifying energy fluxes through the trophic web and from the surface to the deep ocean requires the ability to detect and identify all organisms and particles in situ and in a synoptic manner. An idealized sensor should observe both the very small living or dead particles such as picoplankton and detritus, respectively, and the large particles such as aggregates and meso- to macroplankton. Such an instrument would reveal an astonishing amount and diversity of living and nonliving particles present in a parcel of water. Unfortunately such sensors do not exist. However, complex interactions constrain the space, temporal, and size distributions of these objects in such ways that general rules can be inferred from the measurement of their optical properties. Recent technological developments allow for the in situ measurement of the optical properties and size distributions of particles and plankton in a way such that synoptic surveys are possible. This review deals with particle and plankton size distributions (PSDs) as well as how particles' geometry and nature affect their optical properties. Finally, we propose the integration of the PSD into size-structured mathematical models of biogeochemical fluxes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-120710-100853
2012-01-15
2024-12-06
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-marine-120710-100853
Loading
/content/journals/10.1146/annurev-marine-120710-100853
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error