Cold ocean temperature anomalies have been observed in the mid- to high-latitude North Atlantic on interannual to centennial timescales. Most notably, a large region of persistently low surface temperatures accompanied by a sharp reduction in ocean heat content was evident in the subpolar gyre from the winter of 2013–2014 to 2016, and the presence of this feature at a time of pervasive warming elsewhere has stimulated considerable debate. Here, we review the role of air-sea interaction and ocean processes in generating this cold anomaly and place it in a longer-term context. We also discuss the potential impacts of surface temperature anomalies for the atmosphere, including the North Atlantic Oscillation and European heat waves; contrast the behavior of the Atlantic with the extreme warm surface event that occurred in the North Pacific over a similar timescale; and consider the possibility that these events represent a response to a change in atmospheric planetary wave forcing.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alexander MA, Timlin MS, Schott JD. 2001. Winter to winter recurrence of sea surface temperature, salinity and mixed layer depth anomalies. Prog. Oceanogr. 49:41–61 [Google Scholar]
  2. Amaya DJ, Bond NE, Miller AJ, DeFlorio MJ. 2016. The evolution and known atmospheric forcing mechanisms behind the 2013–2015 North Pacific warm anomalies. US CLIVAR Var 14:21–6 [Google Scholar]
  3. Barnston AG, Livezey RE. 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weath. Rev. 115:1083–126 [Google Scholar]
  4. Bjerknes J. 1964. Atlantic air-sea interaction. Adv. Geophys. 10:1–82 [Google Scholar]
  5. Bojariu R, Gimeno L. 2003. The role of snow cover fluctuations in multiannual NAO persistence. Geophys. Res. Lett. 30:1156–59 [Google Scholar]
  6. Bond NE, Cronin MF, Freeland H, Mantua N. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42:3414–20 [Google Scholar]
  7. Böning CW, Behrens E, Biastoch A, Getzlaff K, Bamber JL. 2016. Emerging impact of Greenland meltwater on deep water formation in the North Atlantic Ocean. Nat. Geosci. 9:523–28 [Google Scholar]
  8. Boyer TP, Antonov JI, Baranova OK, Coleman C, Garcia HE. et al. 2013. World Ocean Database 2013 Ed. S Levitus, tech. ed. A Mishonov. NOAA Atlas NESDIS 72 Silver Spring, MD: Natl. Oceanogr. Atmos. Admin. [Google Scholar]
  9. Bryden HL, King BA, McCarthy GD, McDonagh EL. 2014. Impact of a 30% reduction in Atlantic meridional overturning during 2009–2010. Ocean Sci 10:683–91 [Google Scholar]
  10. Buchan J, Hirschi JJM, Blaker AT, Sinha B. 2014. North Atlantic SST anomalies and the cold north European weather events of winter 2009/10 and December 2010. Mon. Weath. Rev. 142:922–32 [Google Scholar]
  11. Buckley MW, Ponte RM, Forget G, Heimbach P. 2014. Low-frequency SST and upper-ocean heat content variability in the North Atlantic. J. Clim. 27:4996–5018 [Google Scholar]
  12. Cassou C, Deser C, Alexander MA. 2007. Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J. Clim. 20:3510–26 [Google Scholar]
  13. Cassou C, Terray L, Phillips AS. 2005. Tropical Atlantic influence on European heat waves. J. Clim. 18:2805–11 [Google Scholar]
  14. Clim. Predict. Cent. 2012. Northern Hemisphere teleconnection patterns http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml [Google Scholar]
  15. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D. et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7:627–37 [Google Scholar]
  16. Collins M. 2002. Climate predictability on interannual to decadal time scales: the initial value problem. Clim. Dyn. 19:671–92 [Google Scholar]
  17. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ. et al. 2011. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 137:1–28 [Google Scholar]
  18. Coumou D, Lehmann J, Beckmann J. 2015. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348:324–27 [Google Scholar]
  19. Cunningham SA, Roberts CD, Frajka-Williams E, Johns WE, Hobbs W. et al. 2013. Atlantic meridional overturning circulation slowdown cooled the subtropical ocean. Geophys. Res. Lett. 40:6202–207 [Google Scholar]
  20. Czaja A, Frankignoul C. 2002. Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Clim. 15:606–23 [Google Scholar]
  21. de Jong MF, de Steur L. 2016. Strong winter cooling over the Irminger Sea in winter 2014–2015, exceptional deep convection, and the emergence of anomalously low SST. Geophys. Res. Lett. 43:L069596 [Google Scholar]
  22. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P. et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137:553–97 [Google Scholar]
  23. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H. 2007. Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim. Dyn. 29:251–75 [Google Scholar]
  24. Deser C, Alexander MA, Xie S-P, Phillips AS. 2010. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2:115–43 [Google Scholar]
  25. Di Capua G, Coumou D. 2016. Changes in meandering of the Northern Hemisphere circulation. Environ. Res. Lett. 11:094028 [Google Scholar]
  26. Di Lorenzo E, Mantua NJ. 2016. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6:1042–47 [Google Scholar]
  27. Dong B, Sutton R, Shaffrey L, Wilcox L. 2016. The 2015 European heatwave. Bull. Am. Meteorol. Soc. 97:S57–62 [Google Scholar]
  28. Drijfhout S, van Oldenborgh GJ, Cimatoribus A. 2012. Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns. J. Clim. 25:8373–79 [Google Scholar]
  29. Duchez A, Courtois P, Hirschi JJ-M, Harris E, Josey SA. et al. 2016a. Potential for seasonal prediction of Atlantic sea surface temperatures using the RAPID array at 26°N. Clim. Dyn. 46:3351–70 [Google Scholar]
  30. Duchez A, Frajka-Williams E, Josey SA, Evans DC, Grist JP. et al. 2016b. North Atlantic Ocean drivers of the 2015 European heat wave. Environ. Res. Lett. 11:074004 [Google Scholar]
  31. Dunstone NA, Smith D, Scaife A, Hermanson L, Eade R. et al. 2016. Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci. 9:809–14 [Google Scholar]
  32. Evans D, Toole J, Forget G, Zika A, Naveira Garabato A. et al. 2017. Recent wind-driven variability in Atlantic water mass distribution and meridional overturning circulation. J. Phys. Oceanogr. 47:633–47 [Google Scholar]
  33. Feudale L, Shukla J. 2011. Influence of sea surface temperature on the European heat wave of 2003 summer. Part I: an observational study. Clim. Dyn. 36:1691–703 [Google Scholar]
  34. Fischer EM, Seneviratne SI, Lüthi D, Schär C. 2007a. Contribution of land‐atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 34:L06707 [Google Scholar]
  35. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C. 2007b. Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J. Clim. 20:5081–99 [Google Scholar]
  36. Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S, Hurrell JW. 2009. The summer North Atlantic Oscillation: past, present, and future. J. Clim. 22:1082–103 [Google Scholar]
  37. Francis JA, Skific N. 2015. Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos. Trans. R. Soc. A 373:20140–70 [Google Scholar]
  38. Francis JA, Vavrus SJ. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39:L051000 [Google Scholar]
  39. Francis JA, Vavrus SJ. 2015. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 10:014005 [Google Scholar]
  40. Frankignoul C, Czaja MA, l'Hévéder B. 1998. Air-sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Clim. 11:2310–24 [Google Scholar]
  41. Frankignoul C, Hasselmann K. 1977. Stochastic climate models. Part II: application to sea-surface temperature variability and thermocline variability. Tellus 29:289–305 [Google Scholar]
  42. Fröb F, Olsen A, Våge K, Moore K, Yashayaev I. et al. 2016. Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior. Nat. Commun. 7:13244 [Google Scholar]
  43. Gastineau G, Frankignoul C. 2015. Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Clim. 28:1396–416 [Google Scholar]
  44. Good SA, Martin MJ, Rayner NA. 2013. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118:6704–16 [Google Scholar]
  45. Gray LT, Woollings TJ, Andrews M, Knight J. 2016. Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Q. J. R. Meteorol. Soc. 142:1890–903 [Google Scholar]
  46. Grist JP, Josey SA, Jacobs ZL, Marsh R, Sinha B, van Sebille E. 2016. Extreme air–sea interaction over the North Atlantic subpolar gyre during the winter of 2013–14 and its sub-surface legacy. Clim. Dyn. 46:4027 [Google Scholar]
  47. Grist JP, Josey SA, Marsh SA, Good AC, Coward AC. et al. 2010. The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability. Ocean Dyn 660:771–90 [Google Scholar]
  48. Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP. 2013. North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 499:464–67 [Google Scholar]
  49. Häkkinen P, Rhines B, Worthen DL. 2015. Heat content variability in the North Atlantic Ocean in ocean reanalyses. Geophys. Res. Lett. 42:2901–9 [Google Scholar]
  50. Hall A, Manabe S. 1997. Can local linear stochastic theory explain sea surface temperature and salinity variability. Clim. Dyn. 13:167–80 [Google Scholar]
  51. Hall RJ, Jones JM, Hanna E, Scaife AA, Erdélyi R. 2017. Drivers and potential predictability of summer time North Atlantic polar front jet variability. Clim. Dyn. 48:3869–87 [Google Scholar]
  52. Hartmann DL. 2015. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 42:1894–902 [Google Scholar]
  53. Hasselmann K. 1976. Stochastic climate models. Part I: theory. Tellus 28:473–85 [Google Scholar]
  54. Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C. et al. 2011. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 4:17–21 [Google Scholar]
  55. Hobbs WR, Willis JK. 2012. Midlatitude North Atlantic heat transport: a time series based on satellite and drifter data. J. Geophys. Res. Oceans 117:C01008 [Google Scholar]
  56. Horton RM, Mankin JS, Lesk C, Coffel E, Raymond C. 2016. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2:242–59 [Google Scholar]
  57. Hu ZZ, Kumar A, Jha B, Zhu J, Huang B. 2017. Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014–16. J. Clim. 30:689–702 [Google Scholar]
  58. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M. 2003. The North Atlantic Oscillation: Climate Significance and Environmental Impact Geophys. Monogr. Ser 134 Washington, DC: Am. Geophys. Union [Google Scholar]
  59. Ineson S, Scaife AA. 2009. The role of the stratosphere in the European climate response to El Niño. Nat. Geosci. 2:32–36 [Google Scholar]
  60. Josey SA, Grist JP, Kieke D, Yashayaev I, Yu L. 2015. Extraordinary ocean cooling and new dense water formation in the North Atlantic, in ‘State of the Climate in 2014.’ Bull. Am. Meteorol. Soc. 96:S67–68 [Google Scholar]
  61. Josey SA, Gulev S, Yu L. 2013. Exchanges through the ocean surface. Ocean Circulation and Climate: A 21st Century Perspective G Siedler, S Griffies, J Gould, J Church 115–40 San Diego, CA: Academic [Google Scholar]
  62. Josey SA, Kent EC, Sinha B. 2001. Can a state of the art atmospheric general circulation model reproduce recent NAO related variability at the air-sea interface. Geophys. Res. Lett. 28:4543–46 [Google Scholar]
  63. Josey SA, Yu L, Gulev S, Jin X, Tilinina N. et al. 2014. Unexpected impacts of the Tropical Pacific array on reanalysis surface meteorology and heat fluxes. Geophys. Res. Lett. 41:L061302 [Google Scholar]
  64. Kennedy JJ. 2014. A review of uncertainty in in situ measurements and datasets of sea surface temperature. Rev. Geophys. 52:1–32 [Google Scholar]
  65. Kistler R, Kalnay E, Collins W, Saha S, White G. et al. 2001. The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 82:247–67 [Google Scholar]
  66. Kretschmer M, Coumou D, Donges JF, Runge J. 2016. Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation. J. Clim. 29:4069–81 [Google Scholar]
  67. Lozier M, Bacon S, Bower A, Cunningham S, de Jong M. et al. 2017. Overturning in the Subpolar North Atlantic Program: a new international ocean observing system. Bull. Am. Meteorol. Soc. 98:737–52 [Google Scholar]
  68. Maidens A, Arribas A, Scaife AA, Maclachlan C, Peterson D, Knight J. 2013. The influence of surface forcings on the prediction of the North Atlantic Oscillation regime of winter 2010–2011. Mon. Weath. Rev. 141:3801–13 [Google Scholar]
  69. Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller SK. et al. 2017. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events.. Sci. Rep. 7:45242 [Google Scholar]
  70. Marsh R, Haigh ID, Cunningham SA, Inall ME, Porter M, Moat BI. 2017. Large-scale forcing of the European Slope Current and associated inflows to the North Sea. Ocean Sci 13:315–35 [Google Scholar]
  71. Marshall AG, Scaife AA. 2009. Impact of the QBO on surface winter climate. J. Geophys. Res. Atmos. 114:D18110 [Google Scholar]
  72. Marshall J, Johnson H, Goodman J. 2001. A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Clim. 14:1399–421 [Google Scholar]
  73. McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS. et al. 2012. Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett. 39:L19609 [Google Scholar]
  74. Moat BI, Josey SA, Sinha B, Blaker AT, Smeed DA. et al. 2016. Major variations in sub-tropical North Atlantic heat transport at short (5 day) timescales and their causes. J. Geophys. Res. Oceans 121:3237–49 [Google Scholar]
  75. Mooney C. 2015. Why some scientists are worried about a cold ‘blob’ in the North Atlantic Ocean. Washington Post Sept. 24. https://www.washingtonpost.com/news/energy-environment/wp/2015/09/24/why-some-scientists-are-worried-about-a-cold-blob-in-the-north-atlantic-ocean [Google Scholar]
  76. Nakamura M, Enomoto T, Yamane S. 2005. A simulation study of the 2003 heatwave in Europe. J. Earth Simulator 2:55–69 [Google Scholar]
  77. Neelin JD, Weng W. 1999. Analytical prototypes for ocean-atmosphere interaction at midlatitudes. Part I: coupled feedbacks as a sea surface temperature dependent stochastic process. J. Clim. 12:697–21 [Google Scholar]
  78. Peng S, Robinson WA, Shuanglin Li S. 2003. Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Clim. 16:1987–2004 [Google Scholar]
  79. Perkins SE. 2015. A review on the scientific understanding of heatwaves—their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 164–165:242–67 [Google Scholar]
  80. Petoukhov V, Petri S, Rahmstorf S, Coumou D, Kornhuber K, Schellnhuber H-J. 2016. The role of quasi-resonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. PNAS 113:6862–67 [Google Scholar]
  81. Piron A, Thierry V, Mercier H, Caniaux G. 2017. Gyre-scale deep convection in the subpolar North Atlantic Ocean during winter 2014–2015. Geophys. Res. Lett. 44:1439–47 [Google Scholar]
  82. Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A. et al. 2015. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5:475–80 [Google Scholar]
  83. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV. et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108:4407 [Google Scholar]
  84. Roberts CD, Palmer MD, Allan RP, Desbruyeres DG, Hyder P. et al. 2017. Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content. J. Geophys. Res. Oceans 122:726–44 [Google Scholar]
  85. Robson J, Ortega P, Sutton R. 2016. A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci. 9:513–17 [Google Scholar]
  86. Robson J, Sutton R, Lohmann K, Smith D, Palmer M. 2012. Causes of the rapid warming of the North Atlantic Ocean in the mid 1990s. J. Clim. 25:4116–34 [Google Scholar]
  87. Röthlisberger M, Pfahl S, Martius O. 2016. Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes. Geophys. Res. Lett. 43:10989–97 [Google Scholar]
  88. Russo S, Sillmann J, Fischer EM. 2015. Top ten European heatwaves since 1950 and their occurrence in the future. Environ. Res. Lett. 10:124003 [Google Scholar]
  89. Scaife AA, Arribas A, Blockley E, Brookshaw A, Clark RT. et al. 2014. Skillful long-range prediction of European and North American winters. Geophys. Res. Lett. 41:2514–19 [Google Scholar]
  90. Scaife AA, Comer RE, Dunstone NJ, Knight JR, Smith DM. et al. 2017. Tropical rainfall, Rossby waves and regional winter climate predictions Q. J. R. Meteorol. Soc. 143:1–11 [Google Scholar]
  91. Schmittner A, Bakker P, Beadling RL, Lenaerts JTM, Mernild S. et al. 2016. Greenland Ice Sheet melting influence on the North Atlantic. US CLIVAR Var 14:232–37 [Google Scholar]
  92. Screen JA, Simmonds I. 2013. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 40:959–64 [Google Scholar]
  93. Sgubin G, Swingedouw D, Drijfhout S, Mary Y, Bennabi A. 2017. Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 8:14375 [Google Scholar]
  94. Smeed DA, McCarthy GD, Cunningham SA, Frajka-Williams E, Rayner D. et al. 2014. Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci 10:29–38 [Google Scholar]
  95. Smeed DA, McCarthy GD, Rayner D, Moat BI, Johns WE. et al. 2016. Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2015 Data Set, Br. Oceanogr. Data Cent., Nat. Environ. Res. Counc Liverpool, UK: https://doi.org/10.5285/35784047-9b82-2160-e053-6c86abc0c91b [Crossref] [Google Scholar]
  96. Sonnewald M, Hirschi JJ-M, Marsh R, McDonagh EL, King BA. 2013. Atlantic meridional ocean heat transport at 26° N: impact on subtropical ocean heat content variability. Ocean Sci 9:1057–69 [Google Scholar]
  97. Stadtherr L, Coumou D, Petoukhov V, Petri S, Rahmstorf S. 2016. Record Balkan floods of 2014 linked to planetary wave resonance. Sci. Adv. 2:e1501428 [Google Scholar]
  98. Sutton RT, Mathieu P-P. 2002. Response of the atmosphere-ocean mixed-layer system to anomalous ocean heat-flux convergence. Q. J. R. Meteorol. Soc. 128:1259–75 [Google Scholar]
  99. Taws SL, Marsh R, Wells NC, Hirschi J. 2011. Re-emerging ocean temperature anomalies in late 2010 associated with a repeat negative NAO. Geophys. Res. Lett. 38:L20601 [Google Scholar]
  100. Toniazzo T, Scaife AA. 2006. The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett. 33:L24704 [Google Scholar]
  101. Uhlenbrock K, Patterson M. 2016. A tale of two blobs. US CLIVAR Var 14:21–2 [Google Scholar]
  102. Williams RG, Roussenov V, Lozier MS, Smith D. 2015. Mechanisms of heat content and thermocline change in the subtropical and subpolar North Atlantic. J. Clim. 28:9803–15 [Google Scholar]
  103. Williams RG, Roussenov V, Smith D, Lozier MS. 2014. Decadal evolution of ocean thermal anomalies in the North Atlantic: the effects of Ekman, overturning, and horizontal transport. J. Clim. 27:698–719 [Google Scholar]
  104. Willis JK. 2010. Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning. Geophys. Res. Lett. 37:L042372 [Google Scholar]
  105. Woollings T, Blackburn M. 2012. The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J. Clim. 25:886–902 [Google Scholar]
  106. Yamamoto A, Palter JB, Lozier MS, Bourqui MS, Leadbetter SJ. 2015. Ocean versus atmosphere control on western European wintertime temperature variability. Clim. Dyn. 45:3593–607 [Google Scholar]
  107. Yashayaev I, Loder JW. 2016. Recurrent replenishment of Labrador Sea Water and associated decadal scale variability. J. Geophys. Res. Oceans 121:8095–114 [Google Scholar]
  108. Yeager S, Kim W, Robson J. 2016. What caused the Atlantic cold blob of 2015. US CLIVAR Var 14:224–31 [Google Scholar]
  109. Yu B, Zhang X. 2015. A physical analysis of the severe 2013/2014 cold winter in North America. J. Geophys. Res. Atmos. 120:10149–65 [Google Scholar]
  110. Zaba KD, Rudnick DL. 2016. The 2014–2105 warming anomaly in the Southern California Current System observed by underwater gliders. Geophys. Res. Lett. 43:1241–48 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error