1932

Abstract

Marine plankton elemental stoichiometric ratios can deviate from the Redfield ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that lead to the observed variation across lineages, regions, and seasons. Many models of ecological stoichiometry blend together acclimative and adaptive responses to environmental conditions. These two pathways can have unique molecular mechanisms and stoichiometric outcomes, and we attempt to disentangle the two processes. We find that interactions between environmental conditions and cellular growth are key to understanding stoichiometric regulation, but the growth rates of most marine plankton populations are poorly constrained. We propose that specific physiological mechanisms have a strong impact on plankton and community stoichiometry in nutrient-rich environments, whereas biogeochemical interactions are important for the stoichiometry of the oligotrophic gyres. Finally, we outline key areas with missing information that is needed to advance understanding of the present and future ecological stoichiometry of ocean plankton.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063126
2018-01-03
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/marine/10/1/annurev-marine-121916-063126.html?itemId=/content/journals/10.1146/annurev-marine-121916-063126&mimeType=html&fmt=ahah

Literature Cited

  1. Agren GI. 2004. The C:N:P stoichiometry of autotrophs—theory and observations. Ecol. Lett. 7:185–91 [Google Scholar]
  2. Alexander H, Jenkins BD, Rynearson TA, Dyhrman ST. 2015. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. PNAS 112:E2182–90 [Google Scholar]
  3. Allison SD, Vitousek PM. 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 37:937–44 [Google Scholar]
  4. Anderson AJ, Dawes EA. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54:450–72 [Google Scholar]
  5. Anning T, Macintyre HL, Pratt SM, Sammes PJ, Gibb S, Geider RJ. 2000. Photoacclimation in the marine diatom Skeletonema costatum. Limnol. Ocean. 45:1807–17 [Google Scholar]
  6. Arnosti C, Steen AD, Ziervogel K, Ghobrial S, Jeffrey WH. 2011. Latitudinal gradients in degradation of marine dissolved organic carbon. PLOS ONE 6:8–13 [Google Scholar]
  7. Arrigo KR. 2005. Marine microorganisms and global nutrient cycles. Nature 437:349–55 [Google Scholar]
  8. Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR. et al. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–67 [Google Scholar]
  9. Augueres AS, Loreau M. 2015. Regulation of Redfield ratios in the deep ocean. Glob. Biogeochem. Cycles 29:254–66 [Google Scholar]
  10. Babbin AR, Keil RG, Devol AH, Ward BB. 2014. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science 344:406–8 [Google Scholar]
  11. Baer SE, Lomas MW, Terpis KX, Mouginot C, Martiny AC. 2017. Stoichiometry of Prochlorococcus, Synechococcus, and small eukaryotic populations in the western North Atlantic Ocean. Environ. Microbiol. 19:1568–83 [Google Scholar]
  12. Behrenfeld MJ, Marañón E, Siegel DA, Hooker SB. 2002. Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production. Mar. Ecol. Prog. Ser. 228:103–17 [Google Scholar]
  13. Berges JA, Varela DE, Harrison PJ. 2002. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Mar. Ecol. Ser. 225:139–46 [Google Scholar]
  14. Bertilsson S, Berglund O, Karl DM, Chisholm SW. 2003. Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol. Oceanogr. 48:1721–31 [Google Scholar]
  15. Bi R, Arndt C, Sommer U. 2012. Stoichiometric responses of phytoplankton species to the interactive effect of nutrient supply ratios and growth rates. J. Phycol. 48:539–49 [Google Scholar]
  16. Binder BJ, Liu YC. 1998. Growth rate regulation of rRNA content of a marine Synechococcus (cyanobacterium) strain. Appl. Environ. Microbiol. 64:3346–51 [Google Scholar]
  17. Bonachela JA, Allison SD, Martiny AC, Levin SA. 2013. A model for variable phytoplankton stoichiometry based on cell protein regulation. Biogeosciences 10:4341–56 [Google Scholar]
  18. Bouman HA, Ulloa O, Scanlan DJ, Zwirglmaier K, Li WK. et al. 2006. Oceanographic basis of the global surface distribution of Prochlorococcus ecotypes. Science 312:918–21 [Google Scholar]
  19. Broeze RJ, Solomon CJ, Pope DH. 1978. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J. Bacteriol. 134:861–74 [Google Scholar]
  20. Caperon J, Meyer J. 1972. Nitrogen-limited growth of marine phytoplankton—I. Changes in population characteristics with steady-state growth rate. Deep-Sea Res. Oceanogr. Abstr. 19:601–18 [Google Scholar]
  21. Chapin FS, Matson PA, Vitousek PM. 2012. Principles of Terrestrial Ecosystem Ecology New York: Springer [Google Scholar]
  22. Chisholm SW, Stross RG, Nobbs PA. 1975. Light/dark-phased cell division in Euglena gracilis (Z) (Euglenophyceae) in PO4-limited continuous culture. J. Phycol. 11:367–73 [Google Scholar]
  23. Chrzanowski TH, Grover JP. 2008. Element content of Pseudomonas fluorescens varies with growth rate and temperature: a replicated chemostat study addressing ecological stoichiometry. Limnol. Oceanogr. 53:1242–51 [Google Scholar]
  24. Collier JL, Grossman AR. 1992. Chlorosis induced by nutrient deprivation in Synechococcussp. strain PCC 7942: Not all bleaching is the same. J. Bacteriol. 174:4718–26 [Google Scholar]
  25. Conover SAM. 1975. Partitioning of nitrogen and carbon in cultures of the marine diatom Thalassiosira fluviatilis supplied with nitrate, ammonium, or urea. Mar. Biol. 32:231–46 [Google Scholar]
  26. Cotner JB, Ammerman JW, Peele ER, Bentzen E. 1997. Phosphorus-limited bacterioplankton growth in the Sargasso Sea. Aquat. Microb. Ecol. 13:141–49 [Google Scholar]
  27. Cotner JB, Makino W, Biddanda BA. 2006. Temperature affects stoichiometry and biochemical composition of Escherichia coli. Microb. Ecol. 52:26–33 [Google Scholar]
  28. Cotner JB, Wetzel RG. 1992. Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnol. Oceanogr. 37:232–43 [Google Scholar]
  29. Cunningham BR, John SG. 2017. The effect of iron limitation on cyanobacteria major nutrient and trace element stoichiometry. Limnol. Oceanogr. 62:846–58 [Google Scholar]
  30. Daines SJ, Clark JR, Lenton TM. 2014. Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N:P ratio. Ecol. Lett. 17:414–25 [Google Scholar]
  31. Davison IR. 1991. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27:2–8 [Google Scholar]
  32. Deutsch C, Key RM, Sarmiento JL, Ganachaud A. 2001. Denitrification and N2 fixation in the Pacific Ocean. Glob. Biogeochem. Cycles 15:483–506 [Google Scholar]
  33. Deutsch C, Sarmiento JL, Sigman DM, Gruber N, Dunne JP. 2007. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445:163–67 [Google Scholar]
  34. Deutsch C, Weber T. 2012. Nutrient ratios as a tracer and driver of ocean biogeochemistry. Annu. Rev. Mar. Sci. 4:113–41 [Google Scholar]
  35. DeVries T, Deutsch C. 2014. Large-scale variations in the stoichiometry of marine organic matter respiration. Nat. Geosci. 7:890–94 [Google Scholar]
  36. Diaz JM, Bjorkman KM, Haley ST, Ingall ED, Karl DM. et al. 2016. Polyphosphate dynamics at Station ALOHA, North Pacific subtropical gyre. Limnol. Oceanogr. 61:227–39 [Google Scholar]
  37. Dickman EM, Vanni MJ, Horgan MJ. 2006. Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia 149:676–89 [Google Scholar]
  38. Droop MR. 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. UK 48:689–733 [Google Scholar]
  39. Dugdale RC, Goering JJ. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12:196–206 [Google Scholar]
  40. Edwards K, Thomas M, Klausmeier CA, Litchman E. 2012. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol. Oceanogr. 57:554–66 [Google Scholar]
  41. Elrifi IR, Turpin DH. 1985. Steady-state luxury consumption and the concept of optimum nutrient ratios—a study with phosphate and nitrate limited Selenastrum minutum (Chlorophyta). J. Phycol. 21:592–602 [Google Scholar]
  42. Elser JJ, Acharya K, Kyle M, Cotner J, Makino W. et al. 2003. Growth rate–stoichiometry couplings in diverse biota. Ecol. Lett. 6:936–43 [Google Scholar]
  43. Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA. et al. 2000. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3:540–50 [Google Scholar]
  44. Emerson S. 2014. Annual net community production and the biological carbon flux in the ocean. Glob. Biogeochem. Cycles 28:14–28 [Google Scholar]
  45. Eppley RW. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70:1063–85 [Google Scholar]
  46. Fagerbakke KM, Heldal M, Norland S. 1996. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat. Microb. Ecol. 10:15–27 [Google Scholar]
  47. Falkowski PG. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–75 [Google Scholar]
  48. Falkowski PG, LaRoche J. 1991. Acclimation to spectral irradiance in algae. J. Phycol. 27:8–14 [Google Scholar]
  49. Farewell A, Neidhardt FC. 1998. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 180:4704–10 [Google Scholar]
  50. Finkel ZV, Follows MJ, Liefer JD, Brown CM, Benner I, Irwin AJ. 2016. Phylogenetic diversity in the macromolecular composition of microalgae. PLOS ONE 11:e0155977 [Google Scholar]
  51. Finkel ZV, Quigg A, Raven JA, Reinfelder JR, Schofield OE, Falkowski PG. 2006. Irradiance and the elemental stoichiometry of marine phytoplankton. Limnol. Oceanogr. 51:2690–701 [Google Scholar]
  52. Flynn KJ. 2008. Use, abuse, misconceptions and insights from quota models—the Droop cell quota model 40 years on. Oceanogr. Mar. Biol. 46:1–23 [Google Scholar]
  53. Flynn KJ, Raven JA, Rees TAV, Finkel Z, Quigg A, Beardall J. 2010. Is the growth rate hypothesis applicable to microalgae?. J. Phycol. 46:1–12 [Google Scholar]
  54. Fu FX, Warner ME, Zhang YH, Feng YY, Hutchins DA. 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J. Phycol. 43:485–96 [Google Scholar]
  55. Galbraith ED, Martiny AC. 2015. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. PNAS 112:8199–204 [Google Scholar]
  56. Garcia NS, Bonachela JA, Martiny AC. 2016. Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus. ISME J 10:2715–24Demonstrates the variation in cellular quotas and elemental stoichiometry under nutrient-limited conditions. [Google Scholar]
  57. Gasol JM, del Giorgio PA, Duarte CM. 1997. Biomass distribution in marine planktonic communities. Limnol. Oceanogr. 42:1353–63 [Google Scholar]
  58. Gausing K. 1982. Regulation of ribosome synthesis in E. coli. Trends Biochem. Sci. 7:65–67 [Google Scholar]
  59. Geider RJ. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol 106:1–34 [Google Scholar]
  60. Geider RJ, La Roche J. 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37:1–17 [Google Scholar]
  61. Geider RJ, Macintyre HL, Kana TM. 1996. A dynamic model of photoadaptation in phytoplankton. Limnol. Oceanogr. 41:1–15Formulates a dynamic photoacclimation phytoplankton model that results in a better understanding of biochemical allocation and C:N:P. [Google Scholar]
  62. Geider RJ, MacIntyre HL, Kana TM. 1998. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43:679–94 [Google Scholar]
  63. Geider RJ, Osborne BA. 1989. Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol 112:327–41 [Google Scholar]
  64. Godwin CM, Cotner JB. 2015. Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry. ISME J 9:2324–27 [Google Scholar]
  65. Godwin CM, Whitaker EA, Cotner JB. 2016. Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria. Ecology 98:820–29 [Google Scholar]
  66. Goldman JC, McCarthy JJ, Peavey DG. 1979. Growth-rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–15 [Google Scholar]
  67. Goldman JC, Peavey DG. 1979. Steady-state growth and chemical composition of the marine chlorophyte Dunaliella tertiolecta in nitrogen-limited continuous cultures. Appl. Environ. Microbiol. 38:894–901 [Google Scholar]
  68. Hall EK, Neuhauser C, Cotner JB. 2008. Toward a mechanistic understanding of how natural bacterial communities respond to changes in temperature in aquatic ecosystems. ISME J 2:471–81 [Google Scholar]
  69. Harrison PJ, Conway HL, Dugdale RC. 1976. Marine diatoms grown in chemostats under silicate or ammonium limitation. I. Cellular chemical composition and steady state growth kinetics of Skeletonema costatum. Mar. Biol 35:177–86 [Google Scholar]
  70. Henderson RJ, Mackinlay EE. 1989. Effect of temperature on lipid composition of the marine cryptomonad Chroomonas salina. Phytochemistry 28:2943–48 [Google Scholar]
  71. Herrero A, Flores E, Guerrero MG. 1985. Regulation of nitrate reductase cellular levels in the cyanobacteria Anabaena variabilis and Synechocystis sp. FEMS Microbiol. Lett. 26:21–25 [Google Scholar]
  72. Hillebrand H, Steinert G, Boersma M, Malzahn A, Meunier CL. et al. 2013. Goldman revisited: Faster-growing phytoplankton has lower N:P and lower stoichiometric flexibility. Limnol. Oceanogr. 58:2076–88 [Google Scholar]
  73. Ho TY, Quigg A, Finkel Z V, Milligan AJ, Wyman K. et al. 2003. The elemental composition of some marine phytoplankton. J. Phycol. 39:1145–59 [Google Scholar]
  74. Hochachka PW, Somero GN. 1984. Biochemical Adaptation Princeton, NJ: Princeton Univ. Press [Google Scholar]
  75. Holme T, Palmsterna H. 1956. On the glycogen in Escherichia coli B; its synthesis and breakdown and its specific labeling with 14C. Acta Chem. Scand. 10:1557–62 [Google Scholar]
  76. Hunter-Cevera KR, Neubert MG, Olson RJ, Solow AR, Shalapyonok A, Sosik HM. 2016. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354:326–29 [Google Scholar]
  77. Klausmeier CA, Litchman E, Levin SA. 2004. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol. Oceanogr. 49:1463–70 [Google Scholar]
  78. Kornberg A, Rao NN, Ault-Riche D. 1999. Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem. 68:89–125 [Google Scholar]
  79. Kramer JG, Morris I. 1990. Growth regulation in irradiance limited marine Synechococcussp. WH 7803. Arch. Microbiol. 154:286–93 [Google Scholar]
  80. Kromkamp J. 1987. Formation and functional significance of storage products in cyanobacteria. N. Z. J. Mar. Freshw. Res. 21:457–65 [Google Scholar]
  81. Laws EA, Bannister TT. 1980. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25:457–73 [Google Scholar]
  82. Lenton TM, Klausmeier CA. 2007. Biotic stoichiometric controls on the deep ocean N:P ratio. Biogeosciences 4:353–67 [Google Scholar]
  83. Leonardos N, Geider RJ. 2004a. Effects of nitrate: phosphate supply ratio and irradiance on the C:N:P stoichiometry of Chaetoceros muelleri. Eur. J. Phycol. 39:173–80 [Google Scholar]
  84. Leonardos N, Geider RJ. 2004b. Responses of elemental and biochemical composition of Chaetoceros muelleri to growth under varying light and nitrate: phosphate supply ratios and their influence on critical N:P. Limnol. Oceanogr. 49:2105–14 [Google Scholar]
  85. Leonardos N, Geider RJ. 2005. Elemental and biochemical composition of Rhinomonas reticulata (Cryptophyta) in relation to light and nitrate-to-phosphate supply ratios. J. Phycol. 41:567–76 [Google Scholar]
  86. Lin Y, Gazsi K, Lance VP, Larkin AA, Chandler JW. et al. 2013. In situ activity of a dominant Prochlorococcus ecotype (eHL-II) from rRNA content and cell size. Environ. Microbiol. 15:2736–47 [Google Scholar]
  87. Liu H, Campbell L, Landry MR, Nolla HA, Brown SL, Constantinou J. 1998. Prochlorococcus and Synechococcus growth rates and contributions to production in the Arabian Sea during the 1995 southwest and northeast monsoons. Deep-Sea Res. II 45:2327–52 [Google Scholar]
  88. Lomas MW, Burke AL, Lomas DA, Bell DW, Shen C. et al. 2010. Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP). Biogeosciences 7:695–710 [Google Scholar]
  89. Lopez JL, Garcia NS, Talmy D, Martiny AC. 2016. Diel variability in the elemental composition of the marine cyanobacterium Synechococcus. J. Plankton Res. 38:1052–61 [Google Scholar]
  90. Lourenço SO, Barbarino E, Lavín PL, Lanfer Marquez UM, Aidar E. 2004. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol. 39:17–32 [Google Scholar]
  91. Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ. 2000. Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J. Phycol. 36:510–22 [Google Scholar]
  92. MacIntyre HL, Kana TM, Anning T, Geider RJ. 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol. 38:17–38 [Google Scholar]
  93. Mackey KRM, Paytan A, Caldeira K, Grossman AR, Moran D. et al. 2013. Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Plant Physiol 163:815–29 [Google Scholar]
  94. Makino W, Cotner JB, Sterner RW, Elser JJ. 2003. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct. Ecol. 17:121–30 [Google Scholar]
  95. Malzahn AM, Hantzsche F, Schoo KL, Boersma M, Aberle N. 2010. Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162:35–48 [Google Scholar]
  96. Marchetti A, Harrison PJ. 2007. Coupled changes in the cell morphology and elemental (C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnol. Oceanogr. 52:2270–84 [Google Scholar]
  97. Martin P, Dyhrman ST, Lomas MW, Poulton NJ, Van Mooy BAS. 2014. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus. PNAS 111:8089–94 [Google Scholar]
  98. Martiny AC, Coleman ML, Chisholm SW. 2006. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. PNAS 103:12552–57 [Google Scholar]
  99. Martiny AC, Ma L, Mouginot C, Chandler JW, Zinser ER. 2016a. Interactions between thermal acclimation, growth rate, and phylogeny influence Prochlorococcus elemental stoichiometry. PLOS ONE 11:e0168291 [Google Scholar]
  100. Martiny AC, Pham CTA, Primeau FW, Vrugt JA, Moore JK. et al. 2013a. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6:279–83Demonstrates latitudinal gradients found in marine phytoplankton stoichiometry. [Google Scholar]
  101. Martiny AC, Talarmin A, Mouginot C, Lee JA, Huang JS. et al. 2016b. Biogeochemical interactions control a temporal succession in the elemental composition of marine communities. Limnol. Oceanogr. 61:531–42 [Google Scholar]
  102. Martiny AC, Vrugt JA, Primeau FW, Lomas MW. 2013b. Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean. Glob. Biogeochem. Cycles 27:723–31 [Google Scholar]
  103. Matallana-Surget S, Derock J, Leroy B, Badri H, Deschoenmaeker F, Wattiez R. 2014. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005. PLOS ONE 9:e99076 [Google Scholar]
  104. Mather RL, Reynolds SE, Wolff GA, Williams RG, Torres-Valdes S. et al. 2008. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nat. Geosci. 1:439–43 [Google Scholar]
  105. Maxwell DP, Falk S, Trick CG, Huner NPA, Maxwell DP. et al. 1994. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–43 [Google Scholar]
  106. Meunier CL, Haafke J, Oppermann B, Boersma M, Malzahn AM. 2012. Dynamic stoichiometric response to food quality fluctuations in the heterotrophic dinoflagellate Oxyrrhis marina. Mar. Biol. 159:2241–48 [Google Scholar]
  107. Mills MM, Arrigo KR. 2010. Magnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton. Nat. Geosci. 3:412–16 [Google Scholar]
  108. Mino T, van Loosdrecht MCM, Heijnen JJ. 1998. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32:3193–207 [Google Scholar]
  109. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L. et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6:701–10 [Google Scholar]
  110. Moore LR, Rocap G, Chisholm SW. 1998. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–67 [Google Scholar]
  111. Mouginot C, Kawamura R, Matulich KL, Berlemont R, Allison SD. et al. 2014. Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter. Soil Biol. Biochem. 76:278–85 [Google Scholar]
  112. Mouginot C, Zimmerman AE, Bonachela JA, Fredricks H, Allison SD. et al. 2015. Resource allocation by the marine cyanobacterium Synechococcus WH8102 in response to different nutrient supply ratios. Limnol. Oceanogr. 60:1634–41 [Google Scholar]
  113. Moutin T, Karl DM, Duhamel S, Rimmelin P, Raimbault P. et al. 2007. Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences 5:95–109 [Google Scholar]
  114. Olson RJ, Vaulot D, Chisholm SW. 1986. Effects of environmental stresses on the cell cycle of two marine phytoplankton species. Plant Physiol 80:918–25 [Google Scholar]
  115. Ottesen EA. 2014. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 53:1689–99 [Google Scholar]
  116. Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S. 2010. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:741–51 [Google Scholar]
  117. Price NM. 2005. The elemental stoichiometry and composition of an iron-limited diatom. Limnol. Oceanogr. 50:1159–71 [Google Scholar]
  118. Raven JA, Geider RJ. 1988. Temperature and algal growth. New Phytol 110:441–61 [Google Scholar]
  119. Redfield AC. 1958. The biological control of the chemical factors in the environment. Am. Sci. 46:205–21 [Google Scholar]
  120. Rhee G-Y. 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9:495–506Provides the most comprehensive analysis of P-containing biological components and their abundance within organisms. [Google Scholar]
  121. Rhee G-Y. 1978. Effects of N-P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23:10–25 [Google Scholar]
  122. Rhee G‐Y, Gotham IJ. 1980. Optimum N:P ratios and coexistence of planktonic algae. J. Phycol. 16:486–89 [Google Scholar]
  123. Rhee G-Y, Gotham IJ. 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26:635–48 [Google Scholar]
  124. Rhee G-Y, Gotham IJ, Chisholm SW. 1981. Use of cyclostat cultures to study phytoplankton ecology. Continuous Cultures of Cells 2 PH Calcott 159–86 Boca Raton, FL: CRC [Google Scholar]
  125. Ribalet F, Swalwell J, Clayton S, Jiménez V, Sudek S. et al. 2015. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. PNAS 112:8008–12 [Google Scholar]
  126. Richardson TL, Jackson GA. 2007. Small phytoplankton and carbon export from the surface ocean. Science 315:838–40 [Google Scholar]
  127. Rocap G, Moore LR, Chisholm SW. 1999. Molecular phylogeny of Prochlorococcus ecotypes. Marine Cyanobacteria L Charpy, AWD Larkum 107–16 Monaco: Inst. Océanogr. [Google Scholar]
  128. Schaechter M, Maaloe O, Kjeldgaard NO. 1958. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol. 19:592–606 [Google Scholar]
  129. Schneider B, Schlitzer R, Fischer G, Nothig EM. 2003. Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Glob. Biogeochem. Cycles 17:1032 [Google Scholar]
  130. Sherman E, Moore J, Primeau F, Tanouye D. 2016. Temperature influence on phytoplankton community growth rates. Glob. Biogeochem. Cycles 30:550–59 [Google Scholar]
  131. Simon M, Azam F. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51:201–13 [Google Scholar]
  132. Singh A, Baer SE, Riebesell U, Martiny AC, Lomas MW. 2015. C:N:P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean. Biogeosciences 12:6389–403 [Google Scholar]
  133. Sohm JA, Webb EA, Capone DG. 2011. Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9:499–508 [Google Scholar]
  134. Spilling K, Ylostalo P, Simis S, Seppala J. 2015. Interaction effects of light, temperature and nutrient limitations (N, P and Si) on growth, stoichiometry and photosynthetic parameters of the cold-water diatom Chaetoceros wighamii. PLOS ONE 10:e0126308 [Google Scholar]
  135. Sterner RW. 2015. Ocean stoichiometry, global carbon, and climate. PNAS 112:8162–63 [Google Scholar]
  136. Sterner RW, Elser JJ. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere Princeton, NJ: Princeton Univ. PressDiscusses the basis of elemental stoichiometry as well as the drivers and effects on ecosystems. [Google Scholar]
  137. Talarmin A, Lomas MW, Bozec Y, Savoye N, Frigstad H. et al. 2016. Seasonal and long-term changes in elemental concentrations and ratios of marine particulate organic matter. Glob. Biogeochem. Cycles 30:1699–711 [Google Scholar]
  138. Talmy D, Martiny AC, Hill C, Hickman AE, Follows MJ. 2016. Microzooplankton regulation of surface ocean POC:PON ratios. Glob. Biogeochem. Cycles 30:311–32 [Google Scholar]
  139. Tempest D, Hunter JR. 1965. The influence of temperature and pH value on the macro-molecular composition of magnesium-limited and glycerol-limited Aerobacter aerogenes growing in a chemostat. J. Gen. Microbiol. 41:267–73 [Google Scholar]
  140. Teng Y-C, Primeau FW, Moore JK, Lomas MW, Martiny AC. 2014. Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter. Nat. Geosci. 7:895–98 [Google Scholar]
  141. Tezuka Y. 1990. Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates. Microb. Ecol. 19:227–38 [Google Scholar]
  142. Thompson PA, Guo MX, Harrison PJ. 1992. Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton. J. Phycol. 28:481–88 [Google Scholar]
  143. Thompson PA, Harrison PJ, Parslow JS. 1991. Influence of irradiance of cell volume and carbon quota for ten species of marine phytoplankton. J. Phycol. 27:351–60 [Google Scholar]
  144. Thrane JE, Hessen DO, Andersen T, Hillebrand H. 2016. The impact of irradiance on optimal and cellular nitrogen to phosphorus ratios in phytoplankton. Ecol. Lett. 19:880–88 [Google Scholar]
  145. Tolonen AC, Aach J, Lindell D, Johnson ZI, Rector T. et al. 2006. Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability. Mol. Syst. Biol. 2:53 [Google Scholar]
  146. Torriani-Gorini A. 1987. The birth and growth of the Pho regulon. Phosphate Metabolism and Cellular Regulation in Microorganisms A Torriani-Gorini, FG Rothman, S Silver, A Wright, E Yagil 3–11 Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  147. Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J. et al. 2013. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3:979–84Combines metatranscriptomics and a cellular allocation strategy model to illustrate the impact of temperature on N:P. [Google Scholar]
  148. Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–31 [Google Scholar]
  149. Vadia S, Levin PA. 2015. Growth rate and cell size: a re-examination of the growth law. Curr. Opin. Microbiol. 24:96–103 [Google Scholar]
  150. Van Mooy BAS, Devol AK. 2008. Assessing nutrient limitation of Prochlorococcus in the North Pacific subtropical gyre by using an RNA capture method. Limnol. Oceanogr. 53:78–88 [Google Scholar]
  151. Van Mooy BAS, Fredricks HF. 2010. Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: water-column distribution, planktonic sources, and fatty acid composition. Geochim. Cosmochim. Acta 74:6499–516 [Google Scholar]
  152. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM. et al. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72 [Google Scholar]
  153. Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH. 2006. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. PNAS 103:8607–12 [Google Scholar]
  154. Vaulot D, Marie D, Olson RJ, Chisholm SW. 1995. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268:1480–82 [Google Scholar]
  155. Vrede K, Heldal M, Norland S, Bratbak G. 2002. Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Appl. Environ. Microbiol. 68:2965–71 [Google Scholar]
  156. Waldbauer JR, Rodrigue S, Coleman ML, Chisholm SW. 2012. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle. PLOS ONE 7:e43432 [Google Scholar]
  157. Wanner BL. 1993. Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 51:47–54 [Google Scholar]
  158. Weber TS, Deutsch C. 2010. Ocean nutrient ratios governed by plankton biogeography. Nature 467:550–54Suggests the importance of community structure in understanding the variation in elemental stoichiometry. [Google Scholar]
  159. Weber TS, Deutsch C. 2012. Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation. Nature 489:419–22 [Google Scholar]
  160. Worden AZ, Binder BJ. 2003. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 30:159–74 [Google Scholar]
  161. Wu J, Sunda W, Boyle EA, Karl DM. 2000. Phosphate depletion in the western North Atlantic Ocean. Science 289:759–62 [Google Scholar]
  162. Yun HS, Hong J, Lim HC. 1996. Regulation of ribosome synthesis in Escherichia coli: effects of temperature and dilution rate changes. Biotechnol. Bioeng. 52:615–24 [Google Scholar]
  163. Yvon-Durocher G, Dossena M, Trimmer M, Woodward G, Allen AP. 2015. Temperature and the biogeography of algal stoichiometry. Glob. Ecol. Biogeogr. 24:562–70 [Google Scholar]
  164. Zhu CJ, Lee YK, Chao TM. 1997. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J. Appl. Phycol. 9:451–57 [Google Scholar]
  165. Zimmerman AE, Martiny AC, Lomas MW, Allison SD. 2014. Phosphate supply explains variation in nucleic acid allocation but not C:P stoichiometry in the western North Atlantic. Biogeosciences 11:1599–611 [Google Scholar]
  166. Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C. et al. 2009. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLOS ONE 4:e5135 [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063126
Loading
/content/journals/10.1146/annurev-marine-121916-063126
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error