The role of marine bioaerosols in cloud formation and climate is currently so uncertain that even the sign of the climate forcing is unclear. Marine aerosols form through direct emissions and through the conversion of gas-phase emissions to aerosols in the atmosphere. The composition and size of aerosols determine how effective they are in catalyzing the formation of water droplets and ice crystals in clouds by acting as cloud condensation nuclei and ice nucleating particles, respectively. Marine organic aerosols may be sourced both from recent regional phytoplankton blooms that add labile organic matter to the surface ocean and from long-term global processes, such as the upwelling of old refractory dissolved organic matter from the deep ocean. Understanding the formation of marine aerosols and their propensity to catalyze cloud formation processes are challenges that must be addressed given the major uncertainties associated with aerosols in climate models.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alldredge AL, Passow U, Logan BE. 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res. I 40:1131–40 [Google Scholar]
  2. Alldredge AL, Silver MW. 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20:41–82 [Google Scholar]
  3. Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF. 2005. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci. 36:801–12 [Google Scholar]
  4. Alpert PA, Aller JY, Knopf DA. 2011. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases. Phys. Chem. Chem. Phys. 13:19882–94 [Google Scholar]
  5. Andreae MO, Elbert W, Demora SJ. 1995. Biogenic sulfur emissions and aerosols over the tropical South Atlantic. 3. Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei. J. Geophys. Res. Atmos. 100:11335–56 [Google Scholar]
  6. Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3:401–25 [Google Scholar]
  7. Arsene C, Barnes I, Olariu RI, Becker KH. 2005. Dimethyl sulphide photo-oxidation at various NO2 concentrations. 1. Product study and mechanistic investigation. Rev. Roum. Chim. 50:359–69 [Google Scholar]
  8. Ault AP, Zhao DF, Ebben CJ, Tauber MJ, Geiger FM. et al. 2013. Raman microspectroscopy and vibrational sum frequency generation spectroscopy as probes of the bulk and surface compositions of size-resolved sea spray aerosol particles. Phys. Chem. Chem. Phys. 15:6206–14 [Google Scholar]
  9. Ayers GP, Cainey JM. 2007. The CLAW hypothesis: a review of the major developments. Environ. Chem. 4:366–74 [Google Scholar]
  10. Ayers GP, Gras JL. 1991. Seasonal relationship between cloud condensation nuclei and aerosol methanesulfonate in marine air. Nature 353:834–35 [Google Scholar]
  11. Barnes I, Hjorth J, Mihalopoulos N. 2006. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. Chem. Rev. 106:940–75 [Google Scholar]
  12. Bates TS, Quinn PK, Frossard AA, Russell LM, Hakala J. et al. 2012. Measurements of ocean derived aerosol off the coast of California. J. Geophys. Res. Atmos. 117:D00V15 [Google Scholar]
  13. Behrenfeld MJ, Boss ES. 2014. Resurrecting the ecological underpinnings of ocean plankton blooms. Annu. Rev. Mar. Sci. 6:167–94 [Google Scholar]
  14. Bell TG, De Bruyn W, Miller SD, Ward B, Christensen KH, Saltzman ES. 2013. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys. 13:11073–87 [Google Scholar]
  15. Blanchard DC, Syzdek LD. 1982. Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles. Appl. Environ. Microbiol. 43:1001–5 [Google Scholar]
  16. Brooks SD, Suter K, Olivarez L. 2014. Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols. J. Phys. Chem. A 118:10036–47 [Google Scholar]
  17. Brown CW, Yoder JA. 1994. Coccolithophorid blooms in the global ocean. J. Geophys. Res. Oceans 99:7467–82 [Google Scholar]
  18. Burrows SM, Hoose C, Poschl U, Lawrence MG. 2013. Ice nuclei in marine air: biogenic particles or dust. Atmos. Chem. Phys. 13:245–67 [Google Scholar]
  19. Burrows SM, Ogunro O, Frossard AA, Russell LM, Rasch PJ, Elliott SM. 2014. A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria. Atmos. Chem. Phys. 14:13601–29 [Google Scholar]
  20. Campbell L, Vaulot D. 1993. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Res. I 40:2043–60 [Google Scholar]
  21. Carlson CA, Hansell DA. 2015. DOM sources, sinks, reactivity, and budgets. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 65–126 London: Academic, 2nd ed.. [Google Scholar]
  22. Carney JF, Schnell RC, Carty CE. 1975. Active ice nuclei associated with viable bacteria in Nova Scotia marine fogs. Eos Trans. AGU 56:994 [Google Scholar]
  23. Carr M-E, Friedrichs MAM, Schmeltz M, Aita MN, Antoine D. et al. 2006. A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res. II 53:741–70 [Google Scholar]
  24. Cavalli F, Facchini MC, Decesari S, Mircea M, Emblico L. et al. 2004. Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J. Geophys. Res. Atmos. 109:D24215 [Google Scholar]
  25. Charlson RJ, Lovelock JE, Andreae MO, Warren SG. 1987. Oceanic phytoplankton, atmospheric sulfur, cloud albedo, and climate. Nature 326:655–61 [Google Scholar]
  26. Chin WC, Orellana MV, Verdugo P. 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–72 [Google Scholar]
  27. Christensen MW, Stephens GL. 2012. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds. J. Geophys. Res. Atmos. 117:D11203 [Google Scholar]
  28. Clarke AD, Freitag S, Simpson RMC, Hudson JG, Howell SG. et al. 2013. Free troposphere as a major source of CCN for the equatorial Pacific boundary layer: long-range transport and teleconnections. Atmos. Chem. Phys. 13:7511–29 [Google Scholar]
  29. Coggon MM, Sorooshian A, Wang Z, Metcalf AR, Frossard AA. et al. 2012. Ship impacts on the marine atmosphere: insights into the contribution of shipping emissions to the properties of marine aerosol and clouds. Atmos. Chem. Phys. 12:8439–58 [Google Scholar]
  30. Collier KN, Brooks SD. 2016. Role of organic hydrocarbons in atmospheric ice formation via contact freezing. J. Phys. Chem. A 120:10169–80 [Google Scholar]
  31. Collins DB, Ault AP, Moffet RC, Ruppel MJ, Cuadra-Rodriguez LA. et al. 2013. Impact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol. J. Geophys. Res. Atmos. 118:8553–65 [Google Scholar]
  32. Collins DB, Bertram TH, Sultana CM, Lee C, Axson JL, Prather KA. 2016. Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol. Geophys. Res. Lett. 43:9975–83 [Google Scholar]
  33. Cunliffe M, Engel A, Frka S, Gasparovic B, Guitart C. et al. 2013. Sea surface microlayers: a unified physicochemical and biological perspective of the air-ocean interface. Prog. Oceanogr. 109:104–16 [Google Scholar]
  34. Decesari S, Finessi E, Rinaldi M, Paglione M, Fuzzi S. et al. 2011. Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. J. Geophys. Res. Atmos. 116:D22210 [Google Scholar]
  35. DeLeon-Rodriguez N, Lathem TL, Rodriguez-R LM, Barazesh JM, Anderson BE. et al. 2013. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. PNAS 110:2575–80 [Google Scholar]
  36. DeMott PJ, Hill TCJ, McCluskey CS, Prather KA, Collins DB. et al. 2016. Sea spray aerosol as a unique source of ice nucleating particles. PNAS 113:5797–803 [Google Scholar]
  37. Deng CH, Brooks SD, Vidaurre G, Thornton DCO. 2014. Using Raman microspectroscopy to determine chemical composition and mixing state of airborne marine aerosols over the Pacific Ocean. Aerosol Sci. Technol. 48:193–206 [Google Scholar]
  38. Ekstrom S, Noziere B, Hultberg M, Alsberg T, Magner J. et al. 2010. A possible role of ground-based microorganisms on cloud formation in the atmosphere. Biogeosciences 7:387–94 [Google Scholar]
  39. Elliott S, Burrows SM, Deal C, Liu X, Long M. et al. 2014. Prospects for simulating macromolecular surfactant chemistry at the ocean-atmosphere boundary. Environ. Res. Lett. 9:064012 [Google Scholar]
  40. Emerson SR, Hedges JI. 2008. Chemical Oceanography and the Marine Carbon Cycle Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  41. Facchini MC, Decesari S, Rinaldi M, Finessi E, Ceburnis D. et al. 2010. Marine SOA: gas-to-particle conversion and oxidation of primary organic aerosol. Geochim. Cosmochim. Acta 74:A275 [Google Scholar]
  42. Facchini MC, O'Dowd CD. 2009. Biogenic origin of primary and secondary organic components in marine aerosol. Geochim. Cosmochim. Acta 73:A348 [Google Scholar]
  43. Facchini MC, Rinaldi M, Decesari S, Carbone C, Finessi E. et al. 2008. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett. 35:L17814 [Google Scholar]
  44. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D. et al. 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–96 [Google Scholar]
  45. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40 [Google Scholar]
  46. Finlayson-Pitts BJ, Pitts JN. 2000. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications San Diego, CA: Academic [Google Scholar]
  47. Fornea AP, Brooks SD, Dooley JB, Saha A. 2009. Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J. Geophys. Res. Atmos. 114:D13201 [Google Scholar]
  48. Frossard AA, Russell LM, Burrows SM, Elliott SM, Bates TS, Quinn PK. 2014. Sources and composition of submicron organic mass in marine aerosol particles. J. Geophys. Res. Atmos. 119:12977–3003 [Google Scholar]
  49. Fuentes E, Coe H, Green D, de Leeuw G, McFiggans G. 2010. Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos. Meas. Tech. 3:141–62 [Google Scholar]
  50. Fuentes E, Coe H, Green D, McFiggans G. 2011. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol—part 2: composition, hygroscopicity and cloud condensation activity. Atmos. Chem. Phys. 11:2585–602 [Google Scholar]
  51. Fuhrman JA, Hagstrom A. 2008. Bacterial and archaeal community structure and its patterns. Microbial Ecology of the Oceans DL Kirchman 45–90 Hoboken, NJ: Wiley & Sons [Google Scholar]
  52. Fukuda R, Ogawa H, Nagata T, Koike I. 1998. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64:3352–58 [Google Scholar]
  53. Garrison T. 2005. Oceanography Belmont, CA: Thomson [Google Scholar]
  54. Glen A, Brooks SD. 2014. Single particle measurements of the optical properties of small ice crystals and heterogeneous ice nuclei. Aerosol Sci. Technol. 48:1123–32 [Google Scholar]
  55. Gobler CJ, Hutchins DA, Fisher NS, Cosper EM, Sañudo-Wilhelmy SA. 1997. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42:1492–504 [Google Scholar]
  56. Hansell DA. 2013. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5:421–45 [Google Scholar]
  57. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R. 2009. Dissolved organic matter in the ocean: A controversy stimulates new insights. Oceanography 22:4202–11 [Google Scholar]
  58. Hartmann M, Gomez-Pereira P, Grob C, Ostrowski M, Scanlan DJ, Zubkov MV. 2014. Efficient CO2 fixation by surface Prochlorococcus in the Atlantic Ocean. ISME J 8:2280–89 [Google Scholar]
  59. Hedges JI. 2002. Why dissolved organic matter?. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 1–33 San Diego, CA: Academic [Google Scholar]
  60. Hegg DA, Ferek RJ, Hobbs PV, Radke LF. 1991a. Dimethyl sulfide and cloud condensation nucleus correlations in the northeast Pacific Ocean. J. Geophys. Res. Atmos. 96:13189–91 [Google Scholar]
  61. Hegg DA, Radke LF, Hobbs PV. 1991b. Measurement of Aitken nuclei and cloud condensation nuclei in the marine atmosphere and their relation to the DMS-cloud-climate hypothesis. J. Geophys. Res. Atmos. 96:18727–33 [Google Scholar]
  62. Hoose C, Möhler O. 2012. Heterogeneous ice nucleation on atmospheric aerosols: a review of the results from laboratory experiments. Atmos. Chem. Phys. 12:9817–54 [Google Scholar]
  63. Hudson JG, Noble S. 2014a. CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds. J. Atmos. Sci. 71:312–31 [Google Scholar]
  64. Hudson JG, Noble S. 2014b. Low-altitude summer/winter microphysics, dynamics, and CCN spectra of northeastern Caribbean small cumuli, and comparisons with stratus. J. Geophys. Res. Atmos. 119:5445–63 [Google Scholar]
  65. Hunter KA. 1997. Chemistry of the sea-surface microlayer. The Sea Surface and Global Change PS Liss, RA Duce 287–320 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  66. IPCC (Intergov. Panel Clim. Change). 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switz.: IPCC [Google Scholar]
  67. Knopf DA, Alpert PA, Wang B, Aller JY. 2011. Stimulation of ice nucleation by marine diatoms. Nat. Geosci. 4:88–90 [Google Scholar]
  68. Korhonen H, Carslaw KS, Spracklen DV, Mann GW, Woodhouse MT. 2008. Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: a global model study. J. Geophys. Res. Atmos. 113:D15204 [Google Scholar]
  69. Kujawinski EB. 2011. The impact of microbial metabolism on marine dissolved organic matter. Annu. Rev. Mar. Sci. 3:567–99 [Google Scholar]
  70. Lack DA, Corbett JJ, Onasch T, Lerner B, Massoli P. et al. 2009. Particulate emissions from commercial shipping: chemical, physical, and optical properties. J. Geophys. Res. Atmos. 114:D00F04 [Google Scholar]
  71. Lana A, Bell TG, Simó R, Vallina SM, Ballabrera-Poy J. et al. 2011. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Glob. Biogeochem. Cycles 25:GB1004 [Google Scholar]
  72. Lapina K, Heald CL, Spracklen DV, Arnold SR, Allan JD. et al. 2011. Investigating organic aerosol loading in the remote marine environment. Atmos. Chem. Phys. 11:8847–886 [Google Scholar]
  73. Leck C, Gao Q, Rad FM, Nilsson U. 2013. Size-resolved atmospheric particulate polysaccharides in the high summer Arctic. Atmos. Chem. Phys. 13:12573–88 [Google Scholar]
  74. Li X, Hede T, Tu YQ, Leck C, Agren H. 2013. Cloud droplet activation mechanisms of amino acid aerosol particles: insight from molecular dynamics simulations. Tellus B 65:20476 [Google Scholar]
  75. Liss PS, Duce RA. 1997. Preface. The Sea Surface and Global Change PS Liss, RA Duce xiii–xvi Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  76. Liss PS, Hatton AD, Malin G, Nightingale PD, Turner SM. 1997. Marine sulphur emissions. Philos. Trans. R. Soc. B 352:159–68 [Google Scholar]
  77. Loh AN, Bauer JE, Druffel ERM. 2004. Variable ageing and storage of dissolved organic components in the open ocean. Nature 430:877–81 [Google Scholar]
  78. Long RA, Azam F. 1996. Abundant protein-containing particles in the sea. Aquat. Microb. Ecol. 10:213–21 [Google Scholar]
  79. Longhurst A, Sathyendranath S, Platt T, Caverhill C. 1995. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17:1245–71 [Google Scholar]
  80. Mace GG, Zhang QQ, Vaughan M, Marchand R, Stephens G. et al. 2009. A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res. Atmos. 114:D00A26 [Google Scholar]
  81. Maria SF, Russell LM, Turpin BJ, Porcja RJ. 2002. FTIR measurements of functional groups and organic mass in aerosol samples over the Caribbean. Atmos. Environ. 36:5185–96 [Google Scholar]
  82. McCluskey CS, Hill TCJ, Malfatti F, Sultana CM, Lee C. et al. 2017. A dynamic link between ice nucleating particles released in nascent sea spray aerosol and oceanic biological activity during two mesocosm experiments. J. Atmos. Sci. 74:151–66 [Google Scholar]
  83. Meskhidze N, Xu J, Gantt B, Zhang Y, Nenes A. et al. 2011. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation. Atmos. Chem. Phys. 11:11689–705 [Google Scholar]
  84. Möhler O, Hoose C. 2011. Ocean algae and atmospheric ice. Nat. Geosci. 4:76–77 [Google Scholar]
  85. Møller EF. 2007. Production of dissolved organic carbon by sloppy feeding in the copepods Acartiatonsa, Centropages typicus, and Temora longicornis. Limnol. Oceanogr 5279–84 [Google Scholar]
  86. Moore MJK, Furutani H, Roberts GC, Moffet RC, Gilles MK. et al. 2011. Effect of organic compounds on cloud condensation nuclei (CCN) activity of sea spray aerosol produced by bubble bursting. Atmos. Environ. 45:7462–69 [Google Scholar]
  87. Nagamoto CT, Rosinski J, Haagenson PL, Michalowskasmak A, Parungo F. 1984. Characteristics of ice-forming nuclei in continental maritime air. J. Aerosol Sci. 15:147 [Google Scholar]
  88. O'Connor NA, Abugharbieh A, Yasmeen F, Buabeng E, Mathew S. et al. 2015. The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels. Int. J. Biol. Macromol. 72:88–93 [Google Scholar]
  89. O'Dowd C, Ceburnis D, Ovadnevaite J, Bialek J, Stengel DB. et al. 2015. Connecting marine productivity to sea-spray via nanoscale biological processes: phytoplankton dance or death disco. Sci. Rep. 5:11 [Google Scholar]
  90. O'Dowd C, Facchini MC, Cavalli F, Ceburnis D, Mircea M. et al. 2004. Biogenically driven organic contribution to marine aerosol. Nature 431:676–80 [Google Scholar]
  91. Orellana MV, Matrai PA, Leck C, Rauschenberg CD, Lee AM, Coz E. 2011. Marine microgels as a source of cloud condensation nuclei in the high Arctic. PNAS 108:13612–17 [Google Scholar]
  92. Orellana MV, Petersen TW, Diercks AH, Donohoe S, Verdugo P, van den Engh G. 2007. Marine microgels: optical and proteomic fingerprints. Mar. Chem. 105:229–39 [Google Scholar]
  93. Ovadnevaite J, Ceburnis D, Martucci G, Bialek J, Monahan C. et al. 2011a. Primary marine organic aerosol: a dichotomy of low hygroscopicity and high CCN activity. Geophys. Res. Lett. 38:L21806 [Google Scholar]
  94. Ovadnevaite J, O'Dowd C, Dall'Osto M, Ceburnis D, Worsnop DR, Berresheim H. 2011b. Detecting high contributions of primary organic matter to marine aerosol: a case study. Geophys. Res. Lett. 38:L02807 [Google Scholar]
  95. Passow U. 2002. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55:287–333 [Google Scholar]
  96. Petters MD, Kreidenweis SM. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7:1961–71 [Google Scholar]
  97. Prather KA, Bertram TH, Grassian VH, Deane GB, Stokes MD. et al. 2013. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. PNAS 110:7550–55 [Google Scholar]
  98. Quigg A, Finkel ZV, Irwin AJ, Rosenthal Y, Ho TY. et al. 2003. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291–94 [Google Scholar]
  99. Quinn PK, Bates TS. 2011. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480:51–56 [Google Scholar]
  100. Quinn PK, Bates TS, Coffman DJ, Covert DS. 2008. Influence of particle size and chemistry on the cloud nucleating properties of aerosols. Atmos. Chem. Phys. 8:1029–42 [Google Scholar]
  101. Quinn PK, Bates TS, Schulz KS, Coffman DJ, Frossard AA. et al. 2014. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci. 7:228–32 [Google Scholar]
  102. Rinaldi M, Decesari S, Finessi E, Giulianelli L, Carbone C. et al. 2010. Primary and secondary organic marine aerosol and oceanic biological activity: recent results and new perspectives for future studies. Adv. Meteorol. 2010:310682 [Google Scholar]
  103. Rinaldi M, Fuzzi S, Decesari S, Marullo S, Santoleri R. et al. 2013. Is chlorophyll-a the best surrogate for organic matter enrichment in submicron primary marine aerosol. J. Geophys. Res. Atmos. 118:4964–73 [Google Scholar]
  104. Rogers DC, DeMott PJ, Kreidenweis SM, Chen Y. 2001. Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. J. Geophys. Res. 106:15053–63 [Google Scholar]
  105. Rosinski J, Haagenson PL, Nagamoto CT, Parungo F. 1986. Ice-forming nuclei of maritime origin. J. Aerosol Sci. 17:23–46 [Google Scholar]
  106. Rosinski J, Haagenson PL, Nagamoto CT, Parungo F. 1987. Nature of ice-forming nuclei in marine air masses. J. Aerosol Sci. 18:291–309 [Google Scholar]
  107. Rosinski J, Haagenson PL, Nagamoto CT, Quintana B, Parungo F, Hoyt SD. 1988. Ice-forming nuclei in air masses over the Gulf of Mexico. J. Aerosol Sci. 19:539–51 [Google Scholar]
  108. Rosinski J, Nagamoto CT, Zhou MY. 1995. Ice-forming nuclei over the East China Sea. Atmos. Res. 36:95–105 [Google Scholar]
  109. Russell LM. 2015. Sea-spray particles cause freezing in clouds. Nature 525:194–95 [Google Scholar]
  110. Russell LM, Hawkins LN, Frossard AA, Quinn PK, Bates TS. 2010. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. PNAS 107:6652–57 [Google Scholar]
  111. Russell LM, Takahama S, Liu S, Hawkins LN, Covert DS. et al. 2009. Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V Ronald Brown during TEXAQS/GoMACCS 2006. J. Geophys. Res. Atmos. 114:D00F05 [Google Scholar]
  112. Schill SR, Collins DB, Lee C, Morris HS, Novak GA. et al. 2015. The impact of aerosol particle mixing state on the hygroscopicity of sea spray aerosol. ACS Cent. Sci. 1:132–41 [Google Scholar]
  113. Schnell RC. 1977. Ice nuclei in seawater, fogwater, and marine air off the coast of Nova Scotia: summer 1975. J. Atmos. Sci. 34:1299–305 [Google Scholar]
  114. Schnell RC, Carney JF, Carty CE. 1976a. Ocean derived ice nuclei. Bull. Am. Meteorol. Soc. 57:148 [Google Scholar]
  115. Schnell RC, Vali G. 1976b. Biogenic ice nuclei. 1. Terrestrial and marine sources. J. Atmos. Sci. 33:1554–64 [Google Scholar]
  116. Schwier AN, Rose C, Asmi E, Ebling AM, Landing WM. et al. 2015. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study. Atmos. Chem. Phys. 15:7961–76 [Google Scholar]
  117. Sciare J, Favez O, Sarda-Esteve R, Oikonomou K, Cachier H, Kazan V. 2009. Long-term observations of carbonaceous aerosols in the Austral Ocean atmosphere: evidence of a biogenic marine organic source. J. Geophys. Res. Atmos. 114:D15302 [Google Scholar]
  118. Sechrist B, Coakley JA, Tahnk WR. 2012. Effects of additional particles on already polluted marine stratus. J. Atmos. Sci. 69:1975–93 [Google Scholar]
  119. Sieburth JMN, Willis PJ, Johnson KM, Burney CM, Lavoie DM. et al. 1976. Dissolved organic matter and heterotropic microneustom in surface microlayers of the north Atlantic. Science 194:1415–18 [Google Scholar]
  120. Sobanska S, Falgayrac G, Rimetz-Planchon J, Perdrix E, Bremard C, Barbillat J. 2014. Resolving the internal structure of individual atmospheric aerosol particle by the combination of atomic force microscopy, ESEM-EDX, Raman and ToF-SIMS imaging. Microchem. J. 114:89–98 [Google Scholar]
  121. Sorooshian A, Padró LT, Nenes A, Feingold G, McComiskey A. et al. 2009. On the link between ocean biota emissions, aerosol, and maritime clouds: airborne, ground, and satellite measurements off the coast of California. Glob. Biogeochem. Cycles 23:GB4007 [Google Scholar]
  122. Sun L, Li X, Hede T, Tu YQ, Leck C, Agren H. 2014. Molecular dynamics simulations reveal the assembly mechanism of polysaccharides in marine aerosols. Phys. Chem. Chem. Phys. 16:25935–41 [Google Scholar]
  123. Suttle CA. 2005. Viruses in the sea. Nature 437:356–61 [Google Scholar]
  124. Suttle CA, Chan AM, Cottrell MT. 1990. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347:467–69 [Google Scholar]
  125. Taylor AR, Chrachri A, Wheeler G, Goddard H, Brownlee C. 2011. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. PLOS Biol 9:e1001085 [Google Scholar]
  126. Thornton DCO. 2014. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49:20–46 [Google Scholar]
  127. Thornton DCO, Brooks SD, Chen J. 2016. Protein and carbohydrate exopolymer particles in the sea surface microlayer (SML). Front. Mar. Sci. 3:135 [Google Scholar]
  128. Vali G. 1971. Quantitative evaluation of experimental results on heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 28:402–5 [Google Scholar]
  129. Vali G. 1985. Nucleation terminology. J. Aerosol Sci. 16:575–76 [Google Scholar]
  130. Vali G, DeMott PJ, Möhler O, Whale TF. 2015. Technical note: a proposal for ice nucleation terminology. Atmos. Chem. Phys. 15:10263–70 [Google Scholar]
  131. Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH. 2006. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. PNAS 103:8607–12 [Google Scholar]
  132. Veldhuis MJW, Kraay GW, Timmermans KR. 2001. Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. Eur. J. Phycol. 36:167–77 [Google Scholar]
  133. Verdugo P. 2012. Marine microgels. Annu. Rev. Mar. Sci. 4:375–400 [Google Scholar]
  134. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH. 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92:67–85 [Google Scholar]
  135. Wallace JM, Hobbs PV. 2006. Atmospheric Science: An Introductory Survey New York: Elsevier [Google Scholar]
  136. Wang XF, Sultana CM, Trueblood J, Hill TCJ, Malfatti F. et al. 2015. Microbial control of sea spray aerosol composition: a tale of two blooms. ACS Cent. Sci. 1:124–31 [Google Scholar]
  137. Weiss MS, Abele U, Weckesser J, Welte W, Schiltz E, Schulz GE. 1991. Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–30 [Google Scholar]
  138. Westberry T, Behrenfeld MJ, Siegel DA, Boss E. 2008. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22:GB2024 [Google Scholar]
  139. Westervelt DM, Moore RH, Nenes A, Adams PJ. 2012. Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations. Atmos. Chem. Phys. 12:89–101 [Google Scholar]
  140. Wex H, Fuentes E, Tsagkogeorgas G, Voigtlander J, Clauss T. et al. 2010. The influence of algal exudate on the hygroscopicity of sea spray particles. Adv. Meteorol. 2010:365131 [Google Scholar]
  141. Wilson TW, Ladino LA, Alpert PA, Breckels MN, Brooks IM. et al. 2015. A marine biogenic source of atmospheric ice-nucleating particles. Nature 525:234–38 [Google Scholar]
  142. Woodhouse MT, Mann GW, Carslaw KS, Boucher O. 2013. Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions. Atmos. Chem. Phys. 13:2723–33 [Google Scholar]
  143. Wozniak AS, Willoughby AS, Gurganus SC, Hatcher PG. 2014. Distinguishing molecular characteristics of aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise. Atmos. Chem. Phys. 14:8419–34 [Google Scholar]
  144. Yang Q, Gustafson WI, Fast JD, Wang H, Easter RC. et al. 2012. Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: a regional modelling study using WRF-Chem. Atmos. Chem. Phys. 12:8777–96 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error