The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter—the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abraham ER. 1998. The generation of plankton patchiness by turbulent stirring. Nature 391:577–80 [Google Scholar]
  2. Abraham ER, Bowen MM. 2002. Chaotic stirring by a mesoscale surface-ocean flow. Chaos 12:373–81 [Google Scholar]
  3. Abraham ER, Law CS, Boyd PW, Lavender SJ, Maldonado MT, Bowie AR. 2000. Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407:727–30 [Google Scholar]
  4. Alvain S, Moulin C, Dandonneau Y, Loisel H. 2008. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob. Biogeochem. Cycles 22:GB3001 [Google Scholar]
  5. Bagniewski W, Fennel K, Perry MJ, D'Asaro EA. 2011. Optimizing models of the North Atlantic spring bloom using physical, chemical and bio-optical observations from a Lagrangian float. Biogeosciences 8:1291–307 [Google Scholar]
  6. Behrenfeld MJ. 2010. Abandoning Sverdrup's critical depth hypothesis on phytoplankton blooms. Ecology 91:977–89 [Google Scholar]
  7. Behrenfeld MJ, O'Malley RT, Boss ES, Westberry TK, Graff JR. et al. 2016. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Change 6:323–30 [Google Scholar]
  8. Beron-Vera FJ, LaCasce JH. 2016. Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr. 46:2183–99 [Google Scholar]
  9. Beron-Vera FJ, Olascoaga MJ, Goni GJ. 2008. Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophys. Res. Lett. 35:L12603 [Google Scholar]
  10. Berta M, Griffa A, Özgökmen TM, Poje AC. 2016. Submesoscale evolution of surface drifter triads in the Gulf of Mexico. Geophys. Res. Lett. 43:11751–59 [Google Scholar]
  11. Bettencourt JH, López C, Hernández-García E, Montes I, Sudre J. et al. 2015. Boundaries of the Peruvian oxygen minimum zone shaped by coherent mesoscale dynamics. Nat. Geosci. 8:937–40 [Google Scholar]
  12. Blain S, Quéguiner B, Armand L, Belviso S, Bombled B. et al. 2007. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070–74 [Google Scholar]
  13. Boffetta G, Lacorata G, Redaelli G, Vulpiani A. 2001. Detecting barriers to transport: a review of different techniques. Phys. D 159:58–70 [Google Scholar]
  14. Bon C, Della Penna A, d'Ovidio F, Arnould J, Poupart T, Bost C-A. 2015. Influence of oceanographic structures on foraging strategies: Macaroni penguins at Crozet Islands. Mov. Ecol. 3:32 [Google Scholar]
  15. Boyd PW, Jickells T, Law CS, Blaim S, Boyle EA. et al. 2007. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–17 [Google Scholar]
  16. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T. et al. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702 [Google Scholar]
  17. Brewin RJW, Sathyendranath S, Hirata T, Lavender SJ, Barciela RM, Hardman-Mountford NJ. 2010. A three-component model of phytoplankton size class for the Atlantic Ocean. Ecol. Model. 221:1472–83 [Google Scholar]
  18. Buesseler KO. 2012. Biogeochemistry: the great iron dump. Nature 487:305–6 [Google Scholar]
  19. Calil PHR, Doney SC, Yumimoto K, Eguchi K, Takemura T. 2011. Episodic upwelling and dust deposition as bloom triggers in low‐nutrient, low‐chlorophyll regions. J. Geophys. Res. 116:C06030 [Google Scholar]
  20. Calil PHR, Richards KJ. 2010. Transient upwelling hot spots in the oligotrophic North Pacific. J. Geophys. Res. 115:C02003 [Google Scholar]
  21. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF. 2008. Mesoscale to submesoscale transition in the California Current System. Part I: flow structure, eddy flux, and observational tests. J. Phys. Oceanogr. 38:29–43 [Google Scholar]
  22. Carlson D, Fredj E, Gildor H, Rom-Kedar V. 2010. Deducing an upper bound to the horizontal eddy diffusivity using a stochastic Lagrangian model. Environ. Fluid Mech. 10:499–520 [Google Scholar]
  23. Chambault P, Roquet F, Benhamou S, Baudena A, Pauthenet E. et al. 2017. The Gulf Stream frontal system: a key oceanographic feature in the habitat selection of the leatherback turtle. Deep-Sea Res. I 123:35–47 [Google Scholar]
  24. Chassot E, Bonhommeau S, Reygondeau G, Nieto K, Polovina JJ. et al. 2011. Satellite remote sensing for an ecosystem approach to fisheries management. ICES J. Mar. Sci. 68:651–66 [Google Scholar]
  25. Chelton DB, Gaube P, Schlax MG, Early JJ, Samelson RM. 2011. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334:328–32 [Google Scholar]
  26. Chenillat F, Blanke B, Grima N, Franks PJS, Capet X, Riviere P. 2015. Quantifying tracer dynamics in moving fluids: a combined Eulerian-Lagrangian approach. Front. Environ. Sci. 3:43 [Google Scholar]
  27. Chenillat F, Franks PJ, Combes V. 2016. Biogeochemical properties of eddies in the California Current System. Geophys. Res. Lett. 43:5812–20 [Google Scholar]
  28. Ciotti AM, Bricaud A. 2006. Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol. Oceanogr. Methods 4:237–53 [Google Scholar]
  29. Cipollini P, Vignudelli S, Benveniste J. 2014. The coastal zone: a mission target for satellite altimeters. Eos Trans. AGU 95:72 [Google Scholar]
  30. Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S. et al. 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501 [Google Scholar]
  31. Cotté C, d'Ovidio F, Chaigneau A, Lévy M, Taupier-Letage I. et al. 2011. Scale-dependent interactions of Mediterranean whales with marine dynamics. Limnol. Oceanogr. 56:219–32 [Google Scholar]
  32. Cotté C, d'Ovidio F, Dragon A-C, Guinet C, Lévy M. 2015. Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current. Prog. Oceanogr. 131:46–58 [Google Scholar]
  33. D'Asaro EA, Harcourt RR, Steffen EL, Garwood RW. 2003. Performance of autonomous Lagrangian floats. J. Atmos. Ocean. Technol. 20:896–911 [Google Scholar]
  34. De Monte S, Cotté C, d'Ovidio F, Lévy M, Le Corre M, Weimerskirch H. 2012. Frigatebird behaviour at the ocean-atmosphere interface: integrating animal behaviour with multi-satellite data. J. R. Soc. Interface 9:3351–58 [Google Scholar]
  35. De Monte S, Soccodato A, Alvain S, d'Ovidio F. 2013. Can we detect oceanic biodiversity hotspots from space?. ISME J 7:2054–56 [Google Scholar]
  36. Della Penna A, De Monte S, Kestenare E, Guinet C, d'Ovidio F. 2015. Quasi-planktonic behavior of foraging top marine predators. Sci. Rep. 5:18063 [Google Scholar]
  37. Della Penna A, Koubbi P, Cotté C, Bon C, Bost C-A, d'Ovidio F. 2017. Lagrangian analysis of multi-satellite data in support of open ocean Marine Protected Area design. Deep-Sea Res. II 140:212–21 [Google Scholar]
  38. Denman KL, Abbott MR. 1988. Time evolution of surface chlorophyll patterns from cross-spectrum analysis of satellite color images. J. Geophys. Res. 93:6789–98 [Google Scholar]
  39. Despres A, Reverdin G, d'Ovidio F. 2011. Mechanisms and spatial variability of mesoscale frontogenesis in the northwestern subpolar gyre. Ocean Model 39:97–113 [Google Scholar]
  40. Doglioli AM, Veneziani M, Blanke B, Speich S, Griffa A. 2006. A Lagrangian analysis of the Indian Atlantic interocean exchange in a regional model. Geophys. Res. Lett. 33:L14611 [Google Scholar]
  41. d'Ovidio F, De Monte S, Alvain S, Dandonneau Y, Lévy M. 2010. Fluid dynamical niches of phytoplankton types. PNAS 107:18366–70 [Google Scholar]
  42. d'Ovidio F, De Monte S, Della Penna A, Cotté C, Guinet C. 2013. Ecological implications of eddy retention in the open ocean: a Lagrangian approach. J. Phys. A 46:254023 [Google Scholar]
  43. d'Ovidio F, Della Penna A, Trull TW, Nencioli F, Pujol M-I. et al. 2015. The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen plateau. Biogeosciences 12:5567–81 [Google Scholar]
  44. d'Ovidio F, Fernández V, Hernández-García E, López C. 2004. Mixing structures in the Mediterranean sea from finite-size Lyapunov exponents. Geophys. Res. Lett. 31:L17203 [Google Scholar]
  45. Efrati S, Lehahn Y, Rahav E, Kress N, Herut B. et al. 2013. Intrusion of coastal waters into the pelagic eastern Mediterranean: in situ and satellite-based characterization. Biogeosciences 10:3349–57 [Google Scholar]
  46. Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41:253–82 [Google Scholar]
  47. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. 2007. Emergent biogeography of microbial communities in a model ocean. Science 315:1843–46 [Google Scholar]
  48. Franks P. 1992. Phytoplankton blooms at fronts: patterns, scales, and physical forcing mechanisms. Rev. Aquat. Sci. 6:121–37 [Google Scholar]
  49. Fu LL, Rodriguez E. 2004. High‐resolution measurement of ocean surface topography by radar interferometry for oceanographic and geophysical applications. The State of the Planet: Frontiers and Challenges in Geophysics RSJ Sparks, CJ Hawkesworth 209–24 Washington, DC: Am. Geophys. Union [Google Scholar]
  50. Gaube P, Chelton DB, Strutton PG, Behrenfeld MJ. 2013. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. 118:6349–70 [Google Scholar]
  51. Godø OR, Samuelsen A, Macaulay GJ, Patel R, Hjøllo SS. et al. 2012. Mesoscale eddies are oases for higher trophic marine life. PLOS ONE 7:e30161 [Google Scholar]
  52. Gower JFR, Denman KL, Holyer RJ. 1980. Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure. Nature 288:157–59 [Google Scholar]
  53. Griffa A, Haza A, Özgökmen TM, Molcard A, Taillandier V. et al. 2013. Investigating transport pathways in the ocean. Deep-Sea Res. II 85:81–95 [Google Scholar]
  54. Guidi L, Calil PHR, Duhamel S, Björkman KM, Doney SC. et al. 2012. Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre?. J. Geophys. Res. 117:G02024 [Google Scholar]
  55. Guieu C, Aumont O, Paytan A, Bopp L, Law CS. et al. 2014. The significance of the episodic nature of atmospheric deposition to low nutrient low chlorophyll regions. Glob. Biogeochem. Cycles 28:1179–98 [Google Scholar]
  56. Haller G. 2011. A variational theory of hyperbolic Lagrangian coherent structures. Phys. D 240:574–98 [Google Scholar]
  57. Haller G. 2015. Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47:137–62 [Google Scholar]
  58. Haller G, Beron-Vera FJ. 2012. Geodesic theory of transport barriers in two-dimensional flows. Phys. D 241:1680–702 [Google Scholar]
  59. Haller G, Beron-Vera FJ. 2013. Coherent Lagrangian vortices: the black holes of turbulence. J. Fluid Mech. 731:R4 [Google Scholar]
  60. Haller G, Poje AC. 1998. Finite time transport in aperiodic flows. Phys. D 119:352–80 [Google Scholar]
  61. Haller G, Yuan G. 2000. Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147:352–70 [Google Scholar]
  62. Harcourt RR, D'Asaro EA. 2010. Measurement of vertical kinetic energy and vertical velocity skewness in oceanic boundary layers by imperfectly Lagrangian floats. J. Atmos. Ocean. Technol. 27:1918–35 [Google Scholar]
  63. Haza AC, Özgökmen TM, Griffa A, Garraffo ZD, Piterbarg L. 2012. Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models. Ocean Model 42:31–49 [Google Scholar]
  64. Hernández-Carrasco I, López C, Hernández-García E, Turiel A. 2011. How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics. Ocean Model 36:208–18 [Google Scholar]
  65. Huhn F, von Kameke A, Pérez-Muñuzuri V, Olascoaga MJ, Beron-Vera FJ. 2012. The impact of advective transport by the South Indian Ocean countercurrent on the Madagascar plankton bloom. Geophys. Res. Lett. 39:L06602 [Google Scholar]
  66. Jaffe JS, Franks PJS, Roberts PLD, Mirza D, Schurgers C. et al. 2017. A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics. Nat. Commun. 8:14189 [Google Scholar]
  67. Jönsson BF, Salisbury JE. 2016. Episodicity in phytoplankton dynamics in a coastal region. Geophys. Res. Lett. 43:5821–28 [Google Scholar]
  68. Jönsson BF, Salisbury JE, Mahadevan A. 2009. Extending the use and interpretation of ocean satellite data using Lagrangian modelling. Int. J. Remote Sens. 30:3331–41 [Google Scholar]
  69. Jönsson BF, Salisbury JE, Mahadevan A. 2011. Large variability in continental shelf production of phytoplankton carbon revealed by satellite. Biogeosciences 8:1213–23 [Google Scholar]
  70. Koh TY, Legras B. 2002. Hyperbolic lines and the stratospheric polar vortex. Chaos 12:382–94 [Google Scholar]
  71. Kostadinov TS, Siegel DA, Maritorena S. 2009. Retrieval of the particle size distribution from satellite ocean color observations. J. Geophys. Res. Oceans 114:C09015 [Google Scholar]
  72. Kurekin AA, Miller PI, Van der Woerd HJ. 2014. Satellite discrimination of Karenia mikimotoi and Phaeocystis harmful algal blooms in European coastal waters: merged classification of ocean colour data. Harmful Algae 31:163–76 [Google Scholar]
  73. LaCasce JH. 2008. Statistics from Lagrangian observations. Prog. Oceanogr. 77:1–29 [Google Scholar]
  74. Lacorata G, Aurell E, Vulpiani A. 2001. Drifter dispersion in the Adriatic Sea: Lagrangian data and chaotic model. Ann. Geophys. 19:121–29 [Google Scholar]
  75. Le Traon PY, Nadal F, Ducet N. 1998. An improved mapping method of multisatellite altimeter data. J. Atmos. Ocean. Technol. 15:522–34 [Google Scholar]
  76. Lehahn Y, d'Ovidio F, Lévy M, Amitai Y, Heifetz E. 2011. Long-range transport of a quasi-isolated chlorophyll patch by an Agulhas ring. Geophys. Res. Lett. 38:L17201 [Google Scholar]
  77. Lehahn Y, d'Ovidio F, Lévy M, Heifetz E. 2007. Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data. J. Geophys. Res. 112:C08005 [Google Scholar]
  78. Lehahn Y, Koren I, Rudich I, Bidle K, Trainic M. et al. 2014a. Decoupling oceanic and atmospheric factors affecting aerosol loading over a cluster of mesoscale North Atlantic eddies. Geophys. Res. Lett. 41:4075–81 [Google Scholar]
  79. Lehahn Y, Koren I, Schatz D, Frada M, Sheyn U. et al. 2014b. Decoupling physical from biological processes to assess the impact of viruses on a mesoscale algal bloom. Curr. Biol. 24:2041–46 [Google Scholar]
  80. Lehahn Y, Koren I, Sharoni S, d'Ovidio F, Vardi A, Boss E. 2017. Dispersion/dilution enhances phytoplankton blooms in nutrient-limited waters. Nat. Commun. 8:14868 [Google Scholar]
  81. Lévy M, Ferrari R, Franks PJS, Martin AP, Rivière P. 2012. Bringing physics to life at the submesoscale. Geophys. Res. Lett. 39:L14602 [Google Scholar]
  82. Lévy M, Jahn O, Dutkiewicz S, Follows MJ, d'Ovidio F. 2015. The dynamical landscape of marine phytoplankton diversity. J. R. Soc. Interface 12:20150481 [Google Scholar]
  83. Lumpkin R, Özgökmen TM, Centurioni L. 2017. Advances in the application of surface drifters. Annu. Rev. Mar. Sci. 9:59–81 [Google Scholar]
  84. Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8:161–84 [Google Scholar]
  85. Mahadevan A, Campbell J. 2002. Biogeochemical patchiness at the sea surface. Geophys. Res. Lett. 29:1926 [Google Scholar]
  86. Mancho AM, Small D, Wiggins S. 2004. Computation of hyperbolic trajectories and their stable and unstable manifolds for oceanographic flows represented as data sets. Nonlinear Process. Geophys. 11:17–33 [Google Scholar]
  87. Mariano AJ, Ryan EH, Huntley HS, Laurindo LC, Coelho E. et al. 2016. Statistical properties of the surface velocity field in the northern Gulf of Mexico sampled by GLAD drifters. J. Geophys. Res. 121:5193–216 [Google Scholar]
  88. Martin AP. 2003. Phytoplankton patchiness: the role of lateral stirring and mixing. Prog. Oceanogr. 57:125–74 [Google Scholar]
  89. Martin JH. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13 [Google Scholar]
  90. Martin P, van der Loeff MR, Cassar N, Vandromme P, d'Ovidio F. et al. 2013. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX. Glob. Biogeochem. Cycles 27:871–81 [Google Scholar]
  91. Mathur M, Haller G, Peacock T, Ruppert-Felsot JE, Swinney HL. 2007. Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett. 98:144502 [Google Scholar]
  92. McGillicuddy DJ Jr. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci. 8:125–59 [Google Scholar]
  93. McManus MA, Woodson CB. 2011. Plankton distribution and ocean dispersal. J. Exp. Biol. 215:1008–16 [Google Scholar]
  94. Mendoza C, Mancho AM. 2010. Hidden geometry of ocean flows. Phys. Rev. Lett. 105:038501 [Google Scholar]
  95. Mouw CB, Yoder JA. 2010. Optical determination of phytoplankton size composition from global SeaWiFS imagery. J. Geophys. Res. Oceans 115:C12018 [Google Scholar]
  96. Mundel R, Fredj E, Gildor H, Rom-Kedar V. 2014. New Lagrangian diagnostics for characterizing fluid flow mixing. Phys. Fluids 26:126602 [Google Scholar]
  97. Nencioli F, d'Ovidio F, Doglioli AM, Petrenko AA. 2011. Surface coastal circulation patterns by in-situ detection of Lagrangian coherent structures. Geophys. Res. Lett. 38:L17604 [Google Scholar]
  98. Niiler PP, Sybrandy AS, Bi K, Poulain PM, Bitterman D. 1995. Measurements of the water-following capability of holey-sock and TRISTAR drifters. Deep-Sea Res. I 42:1951–55 [Google Scholar]
  99. Nordstrom CA, Battaile BC, Cotté C, Trites AW. 2013. Foraging habitats of lactating northern fur seals are structured by thermocline depths and submesoscale fronts in the eastern Bering sea. Deep-Sea Res. II 88:78–96 [Google Scholar]
  100. Okubo A. 1978. Horizontal dispersion and critical scales for phytoplankton patches. Spatial Pattern in Plankton Communities JH Steele 21–42 New York: Plenum [Google Scholar]
  101. Olascoaga MJ, Beron-Vera FJ, Brand LE, Kocak H. 2008. Tracing the early development of harmful algal blooms on the West Florida Shelf with the aid of Lagrangian coherent structures. J. Geophys. Res. 113:C12014 [Google Scholar]
  102. Olascoaga MJ, Beron-Vera FJ, Haller G, Triñanes J, Iskandarani M. et al. 2013. Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett. 40:6171–75 [Google Scholar]
  103. Ottino JM. 1989. The Kinematics of Mixing: Stretching, Chaos, and Transport Cambridge, UK: Cambridge Univ. Press
  104. Pascual A, Faugere Y, Larnicol G, Le Traon P-Y. 2006. Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett. 33:L02611 [Google Scholar]
  105. Perruche C, Rivière P, Lapeyre G, Carton X, Pondaven P. 2011. Effects of surface quasi-geostrophic turbulence on phytoplankton competition and coexistence. J. Mar. Res. 69:105–35 [Google Scholar]
  106. Petrenko AA, Doglioli AM, Nencioli F, Kersalé M, Hu Z, d'Ovidio F. 2017. A review of the LATEX project: mesoscale to submesoscale processes in a coastal environment. Ocean Dyn 67:513–33 [Google Scholar]
  107. Pierrehumbert RT, Yang H. 1993. Global chaotic mixing on isentropic surfaces. J. Atmos. Sci. 50:2462–80 [Google Scholar]
  108. Piontkovski SA, Williams R, Peterson WT, Yunev OA, Minkina NI. et al. 1997. Spatial heterogeneity of the planktonic fields in the upper mixed layer of the open ocean. Mar. Ecol. Prog. Ser. 148:145–54 [Google Scholar]
  109. Platt T, Denman K. 1975. Spectral analysis in ecology. Annu. Rev. Ecol. Syst. 6:189–210 [Google Scholar]
  110. Poje AC, Özgökmen TM, Lipphardt BL Jr., Haus BK, Ryan EH. et al. 2014. Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. PNAS 111:12693–98 [Google Scholar]
  111. Poje AC, Toner M, Kirwan AD, Jones CKRT. 2002. Drifter launch strategies based on Lagrangian templates. J. Phys. Oceanogr. 32:1855–69 [Google Scholar]
  112. Polovina JJ, Howell E, Kobayashi DR, Seki MP. 2001. The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Prog. Oceanogr. 49:469–83 [Google Scholar]
  113. Polovina JJ, Howell E, Kobayashi DR, Seki MP. 2017. The transition zone chlorophyll front updated: advances from a decade of research. Prog. Oceanogr. 150:79–85 [Google Scholar]
  114. Prants SV, Budyansky MV, Uleysky MY. 2014a. Identifying Lagrangian fronts with favorable fishery conditions. Deep-Sea Res. I 90:27–35 [Google Scholar]
  115. Prants SV, Budyansky MV, Uleysky MY. 2014b. Lagrangian fronts in the ocean. Atmos. Ocean. Phys. 50:284–91 [Google Scholar]
  116. Prants SV, Lobanov VB, Budyansky MV, Uleysky MY. 2016. Lagrangian analysis of formation, structure, evolution and splitting of anticyclonic Kuril eddies. Deep-Sea Res. I 109:61–75 [Google Scholar]
  117. Prants SV, Uleysky MY, Budyansky MV. 2017. Lagrangian Oceanography: Large-Scale Transport and Mixing in the Ocean Cham, Switz.: Springer
  118. Provenzale A. 1999. Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech. 31:55–93 [Google Scholar]
  119. Quinn PK, Bates TS. 2011. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480:51–56 [Google Scholar]
  120. Raitsos DE, Lavender SJ, Maravelias CD, Haralabous J, Richardson AJ, Reid PC. 2008. Identifying four phytoplankton functional types from space: an ecological approach. Limnol. Oceanogr. 53:605–13 [Google Scholar]
  121. Resplandy L, Lévy M, d'Ovidio F, Merlivat L. 2009. Impact of submesoscale variability in estimating the air-sea CO2 exchange: results from a model study of the POMME experiment. Glob. Biogeochem. Cycles 23:GB1017 [Google Scholar]
  122. Robinson J, Popova EE, Yool A, Srokosz M, Lampitt RS, Blundell JR. 2014. How deep is deep enough? Ocean iron fertilization and carbon sequestration in the Southern Ocean. Geophys. Res. Lett. 41:2489–95 [Google Scholar]
  123. Rossi V, López C, Sudre J, Hernández-García E, Garçon V. 2008. Comparative study of mixing and biological activity of the Benguela and Canary upwelling systems. Geophys. Res. Lett. 35:L11602 [Google Scholar]
  124. Sandulescu M, Hernández-García E, López C, Feudel U. 2006. Kinematic studies of transport across an island wake, with application to the Canary islands. Tellus 58:605–15 [Google Scholar]
  125. Scales KL, Miller PI, Embling CB, Ingram SN, Pirotta E, Votier SC. 2014. Mesoscale fronts as foraging habitats: composite front mapping reveals oceanographic drivers of habitat use for a pelagic seabird. J. R. Soc. Interface 11:20140679 [Google Scholar]
  126. Schroeder K, Chiggiato J, Haza AC, Griffa A, Özgökmen TM. et al. 2012. Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone. Geophys. Res. Lett. 39:11608 [Google Scholar]
  127. Shadden SC, Lekien F, Marsden JE. 2005. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D 212:271–304 [Google Scholar]
  128. Shadden SC, Lekien F, Paduan JD, Chavez F, Marsden JE. 2009. The correlation between surface drifters and coherent structures based on HF radar in Monterey Bay. Deep-Sea Res. II 56:161–72 [Google Scholar]
  129. Siegel DA, Behrenfeld MJ, Maritorena S, McClain CR, Antoine D. et al. 2013. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135:77–91 [Google Scholar]
  130. Siegel DA, Court DB, Menzies DW, Peterson P, Maritorena S, Nelson NB. 2008. Satellite and in situ observations of the bio-optical signatures of two mesoscale eddies in the Sargasso Sea. Deep-Sea Res. II 55:1218–30 [Google Scholar]
  131. Smetacek V, Klaas C, Strass VH, Assmy P, Montresor M. et al. 2012. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487:313–19 [Google Scholar]
  132. Sudre J, Morrow RA. 2008. Global surface currents: a high-resolution product for investigating ocean dynamics. Ocean Dyn 58:101 [Google Scholar]
  133. Sulman MHM, Huntley HS, Lipphardt BL, Kirwan AD. 2013. Leaving flatland: diagnostics for Lagrangian coherent structures in three-dimensional flows. Phys. D 258:77–92 [Google Scholar]
  134. Tew Kai E, Rossi V, Sudre J, Weimerskirch H, López C. et al. 2009. Top marine predators track Lagrangian coherent structures. PNAS 106:8245–50 [Google Scholar]
  135. Toner M, Kirwan AD, Poje AC, Kantha LH, Muller-Karger FE, Jones CKRT. 2003. Chlorophyll dispersal by eddy-eddy interactions in the Gulf of Mexico. J. Geophys. Res. 108:3105 [Google Scholar]
  136. Turner MG. 1989. Landscape ecology: the effect of pattern on process. Annu. Rev. Ecol. Syst. 20:171–97 [Google Scholar]
  137. Uitz J, Claustre H, Morel A, Hooker SB. 2006. Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J. Geophys. Res. 111:C08005 [Google Scholar]
  138. Villar E, Farrant GK, Follows M, Garczarek L, Speich S. et al. 2015. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348:1261447 [Google Scholar]
  139. Washburn L, Emery BM, Jones BH, Ondercin DG. 1998. Eddy stirring and phytoplankton patchiness in the subarctic north Atlantic in late summer. Deep-Sea Res. I 45:1411–39 [Google Scholar]
  140. Waugh DW, Abraham ER. 2008. Stirring in the global surface ocean. Geophys. Res. Lett. 35:L20605 [Google Scholar]
  141. Wiggins S. 2005. The dynamical systems approach to Lagrangian transport in oceanic flows. Annu. Rev. Fluid Mech. 37:295–328 [Google Scholar]
  142. Wilkins D, Van Sebille E, Rintoul SR, Lauro FM, Cavicchioli R. 2013. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4:2457 [Google Scholar]
  143. Xu Y, Fu LL. 2012. The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr. 42:2229–33 [Google Scholar]
  144. Yoder JA, Ackleson SG, Barber RT, Flament P, Balch WM. 1994. A line in the sea. Nature 371:689–92 [Google Scholar]
  145. Yoder JA, Aiken J, Swift RN, Hoge F, Stegmann P. 1993. Spatial variability in the near-surface chlorophyll a fluorescence measured by the Airborne Oceanographic Lidar (AOL). Deep-Sea Res. II 40:37–53 [Google Scholar]
  146. Yoder JA, McClain C, Blanton J, Oey LY. 1987. Spatial scales in CZCS chlorophyll imagery of the southeastern U.S. continental shelf. Limnol. Oceanogr. 32:929–41 [Google Scholar]
  147. Zarubin M, Lindemann Y, Genin A. 2017. The dispersion-confinement mechanism: phytoplankton dynamics and the spring bloom in a deeply-mixing subtropical sea. Prog. Oceanogr. 155:13–27 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error