Climate sensitivity represents the global mean temperature change caused by changes in the radiative balance of climate; it is studied for both present/future (actuo) and past (paleo) climate variations, with the former based on instrumental records and/or various types of model simulations. Paleo-estimates are often considered informative for assessments of actuo-climate change caused by anthropogenic greenhouse forcing, but this utility remains debated because of concerns about the impacts of uncertainties, assumptions, and incomplete knowledge about controlling mechanisms in the dynamic climate system, with its multiple interacting feedbacks and their potential dependence on the climate background state. This is exacerbated by the need to assess actuo- and paleoclimate sensitivity over different timescales, with different drivers, and with different (data and/or model) limitations. Here, we visualize these impacts with idealized representations that graphically illustrate the nature of time-dependent actuo- and paleoclimate sensitivity estimates, evaluating the strengths, weaknesses, agreements, and differences of the two approaches. We also highlight priorities for future research to improve the use of paleo-estimates in evaluations of current climate change.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abe-Ouchi A, Saito F, Kawamura K, Raymo ME, Okuno JI. et al. 2013. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500:190–93 [Google Scholar]
  2. Anagnostou E, John EH, Edgar KM, Foster GL, Ridgwell A. et al. 2016. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533:380–84 [Google Scholar]
  3. Annan JD, Hargreaves JC. 2013. A new global reconstruction of temperature changes at the Last Glacial Maximum. Clim. Past 9:367–76 [Google Scholar]
  4. Arrhenius S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. Ser. 5:237–76 [Google Scholar]
  5. Billups K. 2015. Timing is everything during deglaciations. Nature 522:163–64 [Google Scholar]
  6. Bloch-Johnson J, Pierrehumbert RT, Abbot DS. 2015. Feedback temperature dependence determines the risk of high warming. Geophys. Res. Lett. 42:4973–80 [Google Scholar]
  7. Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS. et al. 2006. How well do we understand and evaluate climate change feedback processes?. J. Clim. 19:3445–82 [Google Scholar]
  8. Bony S, Stevens B, Frierson DMW, Jakob C, Kageyama M. et al. 2015. Clouds, circulation and climate sensitivity. Nat. Geosci. 8:261–68 [Google Scholar]
  9. Byrne B, Goldblatt C. 2014. Radiative forcing at high concentrations of well-mixed greenhouse gases. Geophys. Res. Lett. 41:152–60 [Google Scholar]
  10. Caballero R, Huber M. 2013. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. PNAS 110:14162–67 [Google Scholar]
  11. Callendar GS. 1938. The artificial production of carbon dioxide and its influence on temperature. Q. J. R. Meteorol. Soc. 64:223–40 [Google Scholar]
  12. Ceppi P, Brient F, Zelinka MD, Hatmann DL. 2017. Cloud feedback mechanisms and their representation in global climate models. Wiley Interdiscip. Rev. Clim. Change 8:e465 [Google Scholar]
  13. Charney JG, Arakawa A, Baker DJ, Bolin B, Dickinson RE. et al. 1979. Carbon Dioxide and Climate: A Scientific Assessment Washington, DC: Natl. Acad. Sci. [Google Scholar]
  14. Cheng H, Edwards RL, Sinha A, Spotl C, Yi L. et al. 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534:640–46 [Google Scholar]
  15. Clark PU, Shakun JD, Marcott SA, Mix AC, Eby M. et al. 2016. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6:360–69 [Google Scholar]
  16. Crowley TJ. 1990. Are there any satisfactory geologic analogs for a future greenhouse warming. J. Clim. 3:1282–92 [Google Scholar]
  17. Crucifix M. 2006. Does the Last Glacial Maximum constrain climate sensitivity. Geophys. Res. Lett. 33:L24702 [Google Scholar]
  18. DeConto RM, Pollard D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–49 [Google Scholar]
  19. Denton GH, Anderson RF, Toggweiler JR, Edwards RL, Schaefer JM, Putnam AE. 2010. The Last Glacial Termination. Science 328:1652–56 [Google Scholar]
  20. Drijfhout S, Bathiany S, Beaulieu C, Brovkin V, Claussen M. et al. 2015. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. PNAS 112:E5777–86 [Google Scholar]
  21. Dufresne JL, Bony S. 2008. An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J. Clim. 21:5135–44 [Google Scholar]
  22. Etminan M, Myhre G, Highwood EJ, Shine KP. 2016. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43:12614–23 [Google Scholar]
  23. Fasullo JT, Trenberth KE. 2012. A less cloudy future: the role of subtropical subsidence in climate sensitivity. Science 338:792–94 [Google Scholar]
  24. Forster PM. 2016. Inference of climate sensitivity from analysis of Earth's energy budget. Annu. Rev. Earth Planet. Sci. 44:85–106 [Google Scholar]
  25. Foster GL, Rohling EJ. 2013. Relationship between sea level and climate forcing by CO2 on geological timescales. PNAS 110:1209–14 [Google Scholar]
  26. Friedrich T, Timmermann A, Tigchelaar M, Timm OE, Ganopolski A. 2016. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2:e1501923 [Google Scholar]
  27. Gasson E, DeConto RM, Pollard D. 2016. Modeling the oxygen isotope composition of the Antarctic ice sheet and its significance to Pliocene sea level. Geology 44:827–30 [Google Scholar]
  28. Gleckler PJ, Durack PJ, Stouffer RJ, Johnson GC, Forest CE. 2016. Industrial-era global ocean heat uptake doubles in recent decades. Nat. Clim. Change 6:394–96 [Google Scholar]
  29. Grant KM, Rohling EJ, Bar-Matthews M, Ayalon A, Medina-Elizalde M. et al. 2012. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491:744–47 [Google Scholar]
  30. Grant KM, Rohling EJ, Ramsey CB, Cheng H, Edwards RL. et al. 2014. Sea-level variability over five glacial cycles. Nat. Commun. 5:5076 [Google Scholar]
  31. Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA. et al. 2004. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31:L03205 [Google Scholar]
  32. Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F. et al. 2013a. Assessing “dangerous climate change”: required reduction of carbon emissions to protect young people, future generations and nature. PLOS ONE 8:e81648 [Google Scholar]
  33. Hansen J, Lacis A, Rind D, Russell G, Stone P. et al. 1984. Climate sensitivity: analysis of feedback mechanisms. Climate Processes and Climate Sensitivity JE Hansen, T Takahashi 130–63 Washington, DC: Am. Geophys. Union [Google Scholar]
  34. Hansen J, Ruedy R, Sato M, Lo K. 2010. Global surface temperature change. Rev. Geophys. 48:RG4004 [Google Scholar]
  35. Hansen J, Sato M, Kharecha P, Beerling D, Berner R. et al. 2008. Target atmospheric CO2: Where should humanity aim. Open Atmos. Sci. J. 2:217–31 [Google Scholar]
  36. Hansen J, Sato M, Kharecha P, Russell G, Lea DW, Siddall M. 2007. Climate change and trace gases. Philos. Trans. R. Soc. A 365:1925–54 [Google Scholar]
  37. Hansen J, Sato M, Kharecha P, von Schuckmann K. 2011. Earth's energy imbalance and implications. Atmos. Chem. Phys. 11:13421–49 [Google Scholar]
  38. Hansen J, Sato M, Kharecha P, von Schuckmann K, Beerling DJ. et al. 2017. Young people's burden: requirement of negative CO2 emissions. Earth Syst. Dyn. 8:577–616 [Google Scholar]
  39. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A. et al. 2005. Efficacy of climate forcings. J. Geophys. Res. Atmos. 110:D18104 [Google Scholar]
  40. Hansen J, Sato M, Russell G, Kharecha P. 2013b. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. R. Soc. A 371:20120294 [Google Scholar]
  41. Hansen JE, Sato M. 2012. Paleoclimate implications for human-made climate change. Climate Change: Inferences from Paleoclimate and Regional Aspects A Berger, F Mesinger, D Sijacki 21–47 Vienna: Springer [Google Scholar]
  42. Hays JD, Imbrie J, Shackleton NJ. 1976. Variations in earths orbit: pacemaker of ice ages. Science 194:1121–32 [Google Scholar]
  43. Hegerl GC, Crowley TJ, Hyde WT, Frame DJ. 2006. Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440:1029–32 [Google Scholar]
  44. Hoffman JS, Clark PU, Parnell AC, He F. 2017. Regional and global sea-surface temperatures during the last interglaciation. Science 355:276–79 [Google Scholar]
  45. Holloway MD, Sime LC, Singarayer JS, Tindall JC, Bunch P, Valdes PJ. 2016. Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse. Nat. Commun. 7:12293 [Google Scholar]
  46. IPCC (Intergov. Panel Clim. Change). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  47. Kemp DB, Eichenseer K, Kiessling W. 2015. Maximum rates of climate change are systematically underestimated in the geological record. Nat. Commun. 6:8890 [Google Scholar]
  48. Kirschvink JL. 1992. Late proterozoic low latitude global glaciation: the snowball Earth. The Proterozoic Biosphere: A Multidisciplinary Study JW Schoff, C Klein 51–52 New York: Cambridge Univ. Press [Google Scholar]
  49. Knutti R, Hegerl GC. 2008. The equilibrium sensitivity of the Earth's temperature to radiation changes. Nat. Geosci. 1:735–43 [Google Scholar]
  50. Knutti R, Rugenstein MAA. 2015. Feedbacks, climate sensitivity and the limits of linear models. Philos. Trans. R. Soc. Lond. A 373:20150146 [Google Scholar]
  51. Köhler P, Bintanja R, Fischer H, Joos F, Knutti R. et al. 2010. What caused Earth's temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat. Sci. Rev. 29:129–45 [Google Scholar]
  52. Köhler P, de Boer B, von der Heydt AS, Stap LB, van de Wal R. 2015. On the state dependency of the equilibrium climate sensitivity during the last 5 million years. Clim. Past 11:1801–23 [Google Scholar]
  53. Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. PNAS 111:15296–303 [Google Scholar]
  54. Lord NS, Ridgwell A, Thorne MC, Lunt DJ. 2016. An impulse response function for the “long tail” of excess atmospheric CO2 in an Earth system model. Glob. Biogeochem. Cycles 30:2–17 [Google Scholar]
  55. Lunt DJ, Haywood AM, Schmidt GA, Salzmann U, Valdes PJ, Dowsett HJ. 2010. Earth system sensitivity inferred from Pliocene modelling and data. Nat. Geosci. 3:60–64 [Google Scholar]
  56. Mann ME. 2014. False hope. Sci. Am. 310:78–81 [Google Scholar]
  57. Marcott SA, Bauska TK, Buizert C, Steig EJ, Rosen JL. et al. 2014. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514:616–19 [Google Scholar]
  58. MARGO. 2009. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci. 2:127–32 [Google Scholar]
  59. Marino G, Rohling EJ, Rodriguez-Sanz L, Grant KM, Heslop D. et al. 2015. Bipolar seesaw control on last interglacial sea level. Nature 522:197–201 [Google Scholar]
  60. Martínez-Botí MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF. et al. 2015. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518:49–54 [Google Scholar]
  61. Marvel K, Schmidt GA, Miller RL, Nazarenko LS. 2016. Implications for climate sensitivity from the response to individual forcings. Nat. Clim. Change 6:386–89 [Google Scholar]
  62. Masson-Delmotte V, Buiron D, Ekaykin A, Frezzotti M, Gallee H. et al. 2011. A comparison of the present and last interglacial periods in six Antarctic ice cores. Clim. Past 7:397–423 [Google Scholar]
  63. Masson-Delmotte V, Stenni B, Pol K, Braconnot P, Cattani O. et al. 2010. EPICA Dome C record of glacial and interglacial intensities. Quat. Sci. Rev. 29:113–28 [Google Scholar]
  64. Myhre G, Highwood EJ, Shine KP, Stordal F. 1998. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25:2715–18 [Google Scholar]
  65. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J. et al. 2013. Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.659–740 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  66. Pagani M, Liu ZH, LaRiviere J, Ravelo AC. 2010. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci. 3:27–30 [Google Scholar]
  67. PALAEOSENS. 2012. Making sense of palaeoclimate sensitivity. Nature 491:683–91 [Google Scholar]
  68. Poulsen CJ, Jacob RL, Pierrehumbert RT, Huynh TT. 2002. Testing paleogeographic controls on a Neoproterozoic snowball Earth. Geophys. Res. Lett. 29:10–14 [Google Scholar]
  69. Proistosescu C, Huybers PJ. 2017. Slow climate mode reconciles historical and model-based estimates of climate sensitivity. Sci. Adv. 3:e1602821 [Google Scholar]
  70. Rohling EJ, Grant K, Bolshaw M, Roberts AP, Siddall M. et al. 2009. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci. 2:500–4 [Google Scholar]
  71. Rohling EJ, Haigh ID, Foster GL, Roberts AP, Grant KM. 2013. A geological perspective on potential future sea-level rise. Sci. Rep. 3:3461 [Google Scholar]
  72. Rohling EJ, Medina-Elizalde M, Shepherd JG, Siddall M, Stanford JD. 2012. Sea surface and high-latitude temperature sensitivity to radiative forcing of climate over several glacial cycles. J. Clim. 25:1635–56 [Google Scholar]
  73. Rose BEJ, Rayborn L. 2016. The effects of ocean heat uptake on transient climate sensitivity. Curr. Clim. Change Rep. 2:190–201 [Google Scholar]
  74. Royer DL. 2016. Climate sensitivity in the geologic past. Annu. Rev. Earth Planet. Sci. 44:277–93 [Google Scholar]
  75. Rugenstein MAA, Caldeira K, Knutti R. 2016a. Dependence of global radiative feedbacks on evolving patterns of surface heat fluxes. Geophys. Res. Lett. 43:9877–85 [Google Scholar]
  76. Rugenstein MAA, Gregory JM, Schaller N, Sedlacek J, Knutti R. 2016b. Multiannual ocean-atmosphere adjustments to radiative forcing. J. Clim. 29:5643–59 [Google Scholar]
  77. Schmidt GA, Severinghaus J, Abe-Ouchi A, Alley RB, Broecker W. et al. 2017. Overestimate of committed warming. Nature 547:E16–17 [Google Scholar]
  78. Schmittner A, Urban NM, Shakun JD, Mahowald NM, Clark PU. et al. 2011. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334:1385–88 [Google Scholar]
  79. Schneider von Deimling T, Held H, Ganopolski A, Rahmstorf S. 2006. Climate sensitivity estimated from ensemble simulations of glacial climate. Clim. Dyn. 27:149–63 [Google Scholar]
  80. Shackleton NJ. 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289:1897–902 [Google Scholar]
  81. Shakun JD, Clark PU, He F, Marcott SA, Mix AC. et al. 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54 [Google Scholar]
  82. Sherwood SC, Bony S, Dufresne JL. 2014. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505:37–42 [Google Scholar]
  83. Skinner L. 2012. A long view on climate sensitivity. Science 337:917–19 [Google Scholar]
  84. Snyder CW. 2016. Evolution of global temperature over the past two million years. Nature 538:226–28 [Google Scholar]
  85. Stevens B, Sherwood SC, Bony S, Webb MJ. 2016. Prospects for narrowing bounds on Earth's equilibrium climate sensitivity. Earth's Future 4:512–22 [Google Scholar]
  86. Stocker TF. 1998. The seesaw effect. Science 282:61–62 [Google Scholar]
  87. Stocker TF, Johnsen SJ. 2003. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18:1087 [Google Scholar]
  88. Storelvmo T, Leirvik T, Lohmann U, Phillips PCB, Wild M. 2016. Disentangling greenhouse warming and aerosol cooling to reveal Earth's climate sensitivity. Nat. Geosci. 9:286–89 [Google Scholar]
  89. Tzedakis PC, Crucifix M, Mitsui T, Wolff EW. 2017. A simple rule to determine which insolation cycles lead to interglacials. Nature 542:427–32 [Google Scholar]
  90. van de Wal RSW, de Boer B, Lourens LJ, Köhler P, Bintanja R. 2011. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 7:1459–69 [Google Scholar]
  91. Vial J, Dufresne JL, Bony S. 2013. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim. Dyn. 41:3339–62 [Google Scholar]
  92. von der Heydt AS, Ashwin P. 2016. State dependence of climate sensitivity: attractor constraints and palaeoclimate regimes. Dyn. Stat. Clim. Syst. 1:dzx001 [Google Scholar]
  93. von der Heydt AS, Dijkstra HA, van de Wal RSW, Caballero R, Crucifix M. et al. 2016. Lessons on climate sensitivity from past climate changes. Curr. Clim. Change Rep. 2:148–58 [Google Scholar]
  94. von der Heydt AS, Köhler P, van de Wal RSW, Dijkstra HA. 2014. On the state dependency of fast feedback processes in (paleo) climate sensitivity. Geophys. Res. Lett. 41:6484–92 [Google Scholar]
  95. Whitmarsh F, Zika J, Czaja A. 2015. Ocean heat uptake and the global surface temperature record Grantham Inst. Brief. Pap. 14, Grantham Inst., Imperial Coll. Lond. https://www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/briefing-papers/Ocean-heat-uptake—Grantham-BP-15.pdf [Google Scholar]
  96. Zachos JC, Schouten S, Bohaty S, Quattlebaum T, Sluijs A. et al. 2006. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: inferences from TEX86 and isotope data. Geology 34:737–40 [Google Scholar]
  97. Zeebe RE. 2013. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions. PNAS 110:13739–44 [Google Scholar]
  98. Zeebe RE, Ridgwell A, Zachos JC. 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci. 9:325–29 [Google Scholar]
  99. Zeebe RE, Zachos JC, Dickens GR. 2009. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nat. Geosci. 2:576–80 [Google Scholar]
  100. Zhou C, Zelinka MD, Klein SA. 2016. Impact of decadal cloud variations on the Earth's energy budget. Nat. Geosci. 9:871–74 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error