Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis—it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allen JRL. 1979. A model for the interpretation of wave ripple-marks using their wavelength, textural composition, and shape. J. Geol. Soc. Lond. 136:673–82 [Google Scholar]
  2. Andréfouët S. 2011. Reef typology. Encyclopedia of Modern Coral Reefs: Structure, Form and Process D Hopley 906–10 Berlin: Springer [Google Scholar]
  3. Andréfouët S, Gilbert A, Yan L, Remoissenet G, Payri C. et al. 2005. The remarkable population size of the endangered clam Tridacna maxima assessed in Fangatau Atoll (Eastern Tuamotu, French Polynesia) using in situ and remote sensing data. ICES J. Mar. Sci. 62:1037–48 [Google Scholar]
  4. Andréfouët S, Kramer P, Torres-Pulliza D, Joyce KE, Hochberg EJ. et al. 2003. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens. Environ. 88:128–43 [Google Scholar]
  5. Brock JC, Danielson JJ, Purkis SJ. 2013. Emerging methods for the study of coastal ecosystem landscape structure and change. Int. J. Remote Sens. 34:6283–85 [Google Scholar]
  6. Brock JC, Purkis SJ. 2009. The emerging role of LiDAR remote sensing in coastal research and resource management. J. Coast. Res. 53:1–5 [Google Scholar]
  7. Brock JC, Wright CW, Clayton TD, Nayegandhi A. 2004. LiDAR optical rugosity of coral reefs in Biscayne National Park, Florida. Coral Reefs 23:48–59 [Google Scholar]
  8. Brock JC, Wright CW, Kuffner IB, Hernandez R, Thompson P. 2006. Airborne LiDAR sensing of massive stony coral colonies on patch reefs in the northern Florida reef tract. Remote Sens. Environ. 104:31–42 [Google Scholar]
  9. Bruckner A, Rowlands G, Riegl B, Purkis SJ, Williams A. et al. 2011. Khaled bin Sultan Living Oceans Foundation Atlas of Saudi Arabian Red Sea Marine Habitats. Phoenix, AZ: Panoramic [Google Scholar]
  10. Chirayath V, Earle SA. 2016. Drones that see through waves-preliminary results from airborne fluid lensing for centimeter‐scale aquatic conservation. Aquat. Conserv. 26:237–50 [Google Scholar]
  11. Chollett I, Mumby PJ. 2012. Predicting the distribution of Montastraea reefs using wave exposure. Coral Reefs 32:493–503 [Google Scholar]
  12. Collen JD, Garton DW, Gardner JPA. 2009. Shoreline changes and sediment redistribution at Palmyra atoll (equatorial Pacific Ocean): 1874–present. J. Coast. Res. 25:711–22 [Google Scholar]
  13. Conger CL, Hochberg EJ, Fletcher CH, Atkinson MJ. 2006. Decorrelating remote sensing color bands from bathymetry in optically shallow waters. IEEE Trans. Geosci. Remote Sens. 44:1655–60 [Google Scholar]
  14. Correa TBS, Eberli GP, Grasmueck M, Reed JK, Verwer K, Purkis SJ. 2012. Variability of cold-water coral mounds in a high sediment input and tidal current regime, Straits of Florida. Sedimentology 59:1278–304 [Google Scholar]
  15. Costa BM, Battista TA, Pittman SJ. 2009. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sens. Environ. 113:1082–100 [Google Scholar]
  16. Duce S, Vila-Concejo A, Hamylton SM, Webster JM, Bruce E, Beaman RJ. 2016. A morphometric assessment and classification of coral reef spur and groove morphology. Geomorphology 265:68–83 [Google Scholar]
  17. Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G. et al. 2010. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLOS ONE 5:e13969 [Google Scholar]
  18. Ekebom J, Laihonen P, Suominen T. 2003. A GIS-based step-wise procedure for assessing physical exposure in fragmented archipelagos. Estuar. Coast. Shelf Sci. 57:887–98 [Google Scholar]
  19. Ford MR, Kench PS. 2014. Formation and adjustment of typhoon-impacted reef islands interpreted from remote imagery: Nadikdik atoll, Marshall Islands. Geomorphology 214:216–22 [Google Scholar]
  20. Ginsburg RN. 1974. Introduction to comparative sedimentology of carbonates. Am. Assoc. Pet. Geol. Bull. 58:781–86 [Google Scholar]
  21. Gledhill DK, Wanninkhof R, Millero FJ, Eakin M. 2008. Ocean acidification of the greater Caribbean region 1996–2006. J. Geophys. Res. 113:C10031 [Google Scholar]
  22. Glynn PW, D'Croz L. 1990. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8:181–91 [Google Scholar]
  23. Goodman JA, Purkis SJ, Phinn SR. 2013. Coral Reef Remote Sensing: A Guide for Mapping, Monitoring and Management Berlin: Springer [Google Scholar]
  24. Goodman JA, Ustin SL. 2007. Classification of benthic composition in a coral reef environment using spectral unmixing. J. Appl. Remote Sens. 1:011501 [Google Scholar]
  25. Graus RR, Macintyre IG. 1989. The zonation patterns of Caribbean coral reefs as controlled by wave and light energy input, bathymetric setting and reef morphology: computer simulation experiments. Coral Reefs 8:9–18 [Google Scholar]
  26. Hamylton SM, Pescud A, Leon JX, Callaghan DP. 2013. A geospatial assessment of the relationship between reef flat community calcium carbonate production and wave energy. Coral Reefs 32:1025–39 [Google Scholar]
  27. Harborne AR, Mumby PJ, Żychaluk K, Hedley JD, Blackwell PG. 2006. Modeling the beta diversity of coral reefs. Ecology 87:2871–81 [Google Scholar]
  28. Harris PM, Purkis SJ, Ellis J. 2011. Analyzing spatial patterns in modern carbonate sand bodies from Great Bahama Bank. J. Sediment. Res. 81:185–206 [Google Scholar]
  29. Harris PM, Purkis SJ, Ellis J, Swart PK, Reijmer JJG. 2015. Mapping bathymetry and depositional facies on Great Bahama Bank. Sedimentology 62:566–89 [Google Scholar]
  30. Hedley JD, Mumby PJ, Joyce KE, Phinn SR. 2004. Spectral unmixing of coral reef benthos under ideal conditions. Coral Reefs 23:60–73 [Google Scholar]
  31. Hedley JD, Roelfsema CM, Chollett I, Harborne AR, Heron SF. et al. 2016. Remote sensing of coral reefs for monitoring and management: a review. Remote Sens 8:118 [Google Scholar]
  32. Hernández-Cruz LR, Purkis SJ, Riegl BM. 2006. Documenting decadal spatial changes in seagrass and Acropora palmata cover by aerial photography analysis in Vieques, Puerto Rico: 1937–2000. Bull. Mar. Sci. 79:401–14 [Google Scholar]
  33. Hochberg EJ, Atkinson MJ, Andréfouët S. 2003. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sens. Environ. 85:159–73 [Google Scholar]
  34. Hostetler CA, Behrenfeld MJ, Hu Y, Hair JW, Schulien JA. 2018. Spaceborne lidar in the study of marine systems. Annu. Rev. Mar. Sci 10121–47 [Google Scholar]
  35. Immenhauser A. 2009. Estimating palaeo-water depth from the physical rock record. Earth Sci. Rev. 96:107–39 [Google Scholar]
  36. Knudby A, Roelfsema C, Lyons M, Phinn S, Jupiter S. 2011. Mapping fish community variables by integrating field and satellite data, object-based image analysis and modeling in a traditional Fijian fisheries management area. Remote Sens 3:460–83 [Google Scholar]
  37. Kutser T, Dekker AG, Skirving W. 2003. Modeling spectral discrimination of Great Barrier Reef benthic communities by remote sensing instruments. Limnol. Oceanogr. 48:497–510 [Google Scholar]
  38. Leiper I, Phinn S, Dekker AG. 2012. Spectral reflectance of coral reef benthos and substrate assemblages on Heron Reef, Australia. Int. J. Remote Sens. 33:3946–65 [Google Scholar]
  39. Liu G, Meyer JE, Guch IC, Toscano MA. 2001. NOAA's satellite coral reef bleaching early warning products aimed at local reef sites around the globe. Reef Encount 30:10–13 [Google Scholar]
  40. Lokier SW, Fiorini F. 2016. Temporal evolution of a coastal system, Abu Dhabi, United Arab Emirates. Mar. Geol. 381:102–13 [Google Scholar]
  41. Lyzenga D, Malinas N, Tanis F. 2006. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 44:2251–59 [Google Scholar]
  42. Madden RHC, Wilson MEJ, O'Shea M. 2013. Modern fringing reef carbonates from equatorial SE Asia: an integrated environmental, sediment and satellite characterization study. Mar. Geol. 344:163–85 [Google Scholar]
  43. McNeil MA, Webster JM, Beaman RJ, Graham TL. 2016. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 35:1343–55 [Google Scholar]
  44. Monaco ME, Andersen SM, Battista TA, Kendall MS, Rohmann SO. et al. 2012. National summary of NOAA's shallow-water benthic habitat mapping of U.S. coral reef ecosystems NOAA Tech. Memo. NOS NCCOS 122, NCCOS Cent. Coast. Monit. Assess. Biogeogr Branch, Silver Spring: MD [Google Scholar]
  45. Mumby PJ, Skirving W, Strong AE, Hardy JT, LeDrew EF. et al. 2004. Remote sensing of coral reefs and their physical environment. Mar. Pollut. Bull. 48:219–28 [Google Scholar]
  46. NASA Ocean Biol. 2014. Mean annual sea surface chlorophyll-a concentration for the period 2009-2013 Composite data set created by UN Environ. Programme World Conserv. Monit. Cent (UNEP-WCMC), Cambridge, UK, from data obtained from the Moderate Resol. Imaging Spectroradiom. (MODIS) Aqua Ocean Color website, NASA Ocean Biol. Distrib. Act. Arch. Cent. (NASA OB.DAAC), Greenbelt, MD ( http://oceancolor.gsfc.nasa.gov/cgi/l3), retrieved November 28, 2014. http://data.unep-wcmc.org/datasets/37 [Google Scholar]
  47. Pe'eri S, McLeod A, Lavoie P, Ackerman S, Gardner J, Parrish C. 2013. Field calibration and validation of remote-sensing surveys. Int. J. Remote Sens. 34:6423–36 [Google Scholar]
  48. Phillips S. 2012. 4 km AVHRR Pathfinder v5.0 global day-night sea surface temperature monthly and yearly averages, 1985–2009 (NODC Accession 0077816) Data set, Natl. Oceanogr. Atmos. Adm. (NOAA), Silver Spring, MD, updated Feb. 1, 2012, retrieved May 8, 2017. https://data.noaa.gov/dataset/4-km-avhrr-pathfinder-v5-0-global-day-night-sea-surface-temperature-monthly-and-yearly-averages [Google Scholar]
  49. Phinn SR, Roelfsema CM, Mumby PJ. 2012. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int. J. Remote Sens. 33:3768–97 [Google Scholar]
  50. Pittman SJ, Costa B, Wedding LM. 2013. LiDAR applications. See Goodman et al. 2013 145–69
  51. Pratchett M. 2005. Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Mar. Biol. 148:373–82 [Google Scholar]
  52. Purkis SJ. 2005. A “reef-up” approach to classifying coral habitats from IKONOS imagery. IEEE Trans. Geosci. Remote Sens. 43:1375–90 [Google Scholar]
  53. Purkis SJ. 2006. Fractal patterns of coral communities: evidence from remote sensing. Proceedings of the 10th International Coral Reef Symposium Y Suzuki, T Nakamori, M Hidaka, H Kayanne, BE Casareto 1753–62 Tokyo: Jpn. Coral Reef Soc. [Google Scholar]
  54. Purkis SJ, Brock JC. 2013. LiDAR overview. See Goodman et al. 2013 115–38
  55. Purkis SJ, Casini G, Hunt D, Colpaert A. 2015a. Morphometric patterns in Modern carbonate platforms can be applied to the ancient rock record: similarities between Modern Alacranes Reef and Upper Palaeozoic platforms of the Barents Sea. Sediment. Geol. 321:49–69 [Google Scholar]
  56. Purkis SJ, Gardiner R, Johnston MW, Sheppard CRC. 2016. A half-century of coastline change in Diego Garcia—the largest atoll island in the Chagos. Geomorphology 261:282–98 [Google Scholar]
  57. Purkis SJ, Harris PM. 2017. Quantitative interrogation of a fossilized carbonate sand body—the Pleistocene Miami oolite of South Florida. Sedimentology 64:1439–64 [Google Scholar]
  58. Purkis SJ, Harris PM, Ellis J. 2012a. Patterns of sedimentation in the contemporary Red Sea as an analog for ancient carbonates in rift settings. J. Sediment. Res. 82:859–70 [Google Scholar]
  59. Purkis SJ, Kerr J, Dempsey A, Calhoun A, Metsamaa L. et al. 2014. Large-scale carbonate platform development of Cay Sal Bank, Bahamas, and implications for associated reef geomorphology. Geomorphology 222:25–38 [Google Scholar]
  60. Purkis SJ, Klemas V. 2011. Remote Sensing and Global Environmental Change Oxford, UK: Wiley-Blackwell [Google Scholar]
  61. Purkis SJ, Kohler KE. 2008. The role of topography in promoting fractal patchiness in a carbonate shelf landscape. Coral Reefs 27:977–89 [Google Scholar]
  62. Purkis SJ, Kohler KE, Riegl BM, Rohmann SO. 2007. The statistics of natural shapes in modern coral reef landscapes. J. Geol. 115:493–508 [Google Scholar]
  63. Purkis SJ, Riegl B, Andréfouët S. 2005. Remote sensing of geomorphology and facies patterns on a modern carbonate ramp (Arabian Gulf, Dubai, U.A.E.). J. Sediment. Res. 75:861–76 [Google Scholar]
  64. Purkis SJ, Rivers J, Strohmenger CJ, Warren C, Yousif R. et al. 2017a. Complex interplay between depositional and petrophysical environments in Holocene tidal carbonates (Al Ruwais, Qatar). Sedimentology 64:1646–75 [Google Scholar]
  65. Purkis SJ, Roelfsema CM. 2015. Remote sensing of submerged aquatic vegetation and coral reefs. Wetlands Remote Sensing: Applications and Advances R Tiner, M Lang, V Klemas 223–41 Boca Raton, FL: CRC [Google Scholar]
  66. Purkis SJ, Rowlands G, Kerr JM. 2015b. Unravelling the influence of water depth and wave energy on the facies diversity of shelf carbonates. Sedimentology 62:541–65 [Google Scholar]
  67. Purkis SJ, van de Koppel J, Burgess PM. 2017b. Spatial self-organization in carbonate depositional environments. Autogenic Dynamics in Sedimentary Systems DA Budd, E Hajek, SJ Purkis 53–66 SEPM Spec. Publ. 106 Tulsa, OK: Soc. Sediment. Geol. [Google Scholar]
  68. Purkis SJ, Vlaswinkel B. 2012. Visualizing lateral anisotropy in modern carbonates. AAPG Bull 96:1665–85 [Google Scholar]
  69. Purkis SJ, Vlaswinkel B, Gracias N. 2012b. Vertical-to-lateral transitions among Cretaceous carbonate facies—a means to 3-D framework construction via Markov analysis. J. Sediment. Res. 82:232–43 [Google Scholar]
  70. Rankey EC. 2002. Spatial patterns of sediment accumulation on a Holocene carbonate tidal flat, northwest Andros Island, Bahamas. J. Sediment. Res 72:591–601 [Google Scholar]
  71. Rankey EC. 2011. Nature and stability of atoll island shorelines: Gilbert Island chain, Kiribati, equatorial Pacific. Sedimentology 58:1831–59 [Google Scholar]
  72. Rankey EC. 2016. On facies belts and facies mosaics: Holocene isolated platforms, South China Sea. Sedimentology 63:2190–216 [Google Scholar]
  73. Rankey EC, Reeder SL. 2011. Holocene oolitic marine sand complexes of the Bahamas. J. Sediment. Res. 81:97–117 [Google Scholar]
  74. Riegl B, Moyer RP, Morris LJ, Virnstein RW, Purkis SJ. 2005. Distribution and seasonal biomass of drift macroalgae in the Indian River Lagoon (Florida, USA) estimated with acoustic seafloor classification (QTCView, Echoplus). J. Exp. Mar. Biol. Ecol. 326:89–104 [Google Scholar]
  75. Riegl B, Purkis SJ. 2005. Detection of shallow subtidal corals from IKONOS satellite and QTC View (50, 200 kHz) single-beam sonar data (Arabian Gulf; Dubai, UAE). Remote Sens. Environ. 95:96–114 [Google Scholar]
  76. Riegl BM, Halfar J, Purkis SJ, Godinez-Orta L. 2007. Sedimentary facies of the eastern Pacific's northernmost reef-like setting (Cabo Pulmo, Mexico). Mar. Geol. 236:61–77 [Google Scholar]
  77. Roelfsema CM, Lyons M, Kovacs EM, Maxwell P, Saunders MI. et al. 2014. Multi-temporal mapping of seagrass cover, species and biomass: a semi-automated object based image analysis approach. Remote Sens. Environ. 150:172–87 [Google Scholar]
  78. Roelfsema CM, Phinn S, Jupiter S, Comley J. 2013. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 18:6367–88 [Google Scholar]
  79. Rogers JS, Monismith SG, Feddersen F, Storlazzi CD. 2013. Hydrodynamics of spur and groove formations on a coral reef. J. Geophys. Res. Oceans 118:3059–73 [Google Scholar]
  80. Rowlands G, Purkis SJ, Bruckner A. 2014. Diversity in the geomorphology of shallow-water carbonate depositional systems in the Saudi Arabian Red Sea. Geomorphology 222:3–13 [Google Scholar]
  81. Rowlands G, Purkis SJ, Bruckner A. 2016. Tight coupling between coral reef morphology and mapped resilience in the Red Sea. Mar. Pollut. Bull. 105:575–85 [Google Scholar]
  82. Saul S, Purkis SJ. 2015. Semi-automated object-based classification of coral reef habitat using discrete choice models. Remote Sens 7:15894–916 [Google Scholar]
  83. Schlager W. 2003. Benthic carbonate factories of the Phanerozoic. Int. J. Earth Sci. 92:445–64 [Google Scholar]
  84. Schlager W, Purkis SJ. 2013. Bucket structure in carbonate accumulations of the Maldive, Chagos and Laccadive archipelagos. Int. J. Earth Sci. 102:2225–38 [Google Scholar]
  85. Schlager W, Purkis SJ. 2015. Reticulate reef patterns—antecedent karst versus self-organization. Sedimentology 62:501–15 [Google Scholar]
  86. Sheppard CRC. 1982. Coral populations on reef slopes and their major controls. Mar. Ecol. Prog. Ser. 7:83–115 [Google Scholar]
  87. Strong AE, Liu G, Meyer J, Hendee JC, Sasko D. 2004. Coral Reef Watch 2002. Bull. Mar. Sci. 75:259–68 [Google Scholar]
  88. Stumpf RP, Holderied K, Sinclair M. 2003. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 48:547–56 [Google Scholar]
  89. Sundquist B. 1982. Palaeobathymetric interpretation of wave ripple-marks in a Ludlovian grainstone of Gotland. Geol. Fören. Stockh. Förh. 104:157–66 [Google Scholar]
  90. Suosaari EP, Reid RP, Playford PE, Foster JS, Stolz JF. et al. 2016. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci. Rep. 6:20557 [Google Scholar]
  91. Taylor KH, Purkis SJ. 2012. Evidence for the southward migration of mud banks in Florida Bay. Mar. Geol. 311:52–56 [Google Scholar]
  92. Vila-Concejo A, Harris DL, Shannon AM, Webster JM, Power HE. 2013. Coral reef sediment dynamics: evidence of sand-apron evolution on a daily and decadal scale. J. Coast. Res. 65:606–11 [Google Scholar]
  93. Walker BK, Gilliam DS. 2013. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County). PLOS ONE 8:e80439 [Google Scholar]
  94. Walther J. 1894. Einleitung in die Geologie als historische Wissenschaft Jena, Ger.: Verlag von Gustav Fisher [Google Scholar]
  95. Wang C-K, Philpot WD. 2007. Using airborne bathymetric LiDAR to detect bottom type variation in shallow waters. Remote Sens. Environ. 106:123–35 [Google Scholar]
  96. Warren C, DuPont J, Abdel-Moati M, Hobeichi S, Palandro D, Purkis SJ. 2016. Toward the development of a remote sensing and field data framework to aid management decisions in the State of Qatar coastal environment. Mar. Pollut. Bull. 105:641–53 [Google Scholar]
  97. Wehrmann A, Hertweck G, Brocke R, Jansen U, Konigshof P. et al. 2005. Paleoenvironment of an Early Devonian land-sea transition: a case study from the southern margin of the Old Red Continent (Mosel Valley, Germany). Palaios 20:101–20 [Google Scholar]
  98. White WH, Harborne AR, Sotheran IS, Walton R, Foster-Smith RL. 2003. Using an acoustic ground discrimination system to map coral reef benthic classes. Int. J. Remote Sens. 24:2641–60 [Google Scholar]
  99. Wilkinson BH, Drummond CN, Diedrich NW, Rothman ED. 1999. Poisson processes of carbonate accumulation on Paleozoic and Holocene platforms. J. Sediment. Res. 69:338–50 [Google Scholar]
  100. Yates KK, Zawada DG, Smiley NA, Tiling-Range G. 2017. Divergence of seafloor elevation and sea level rise in coral reef ecosystems. Biogeosciences 14:1739–72 [Google Scholar]
  101. Zawada DG, Brock JC. 2009. A multiscale analysis of coral reef topographic complexity using LiDAR-derived bathymetry. J. Coast. Res. 53:6–15 [Google Scholar]
  102. Zhang C, Selch D, Xie Z, Roberts C, Cooper H, Chen G. 2013. Object-based benthic habitat mapping in the Florida Keys from hyperspectral imagery. Estuar. Coast. Shelf Sci. 134:88–97 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error