1932

Abstract

In this review, we show how climate affects species, communities, and ecosystems, and why many responses from the species to the biome level originate from the interaction between the species’ ecological niche and changes in the environmental regime in both space and time. We describe a theory that allows us to understand and predict how marine species react to climate-induced changes in ecological conditions, how communities form and are reconfigured, and so how biodiversity is arranged and may respond to climate change. Our study shows that the responses of species to climate change are therefore intelligible—that is, they have a strong deterministic component and can be predicted.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063304
2018-01-03
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/marine/10/1/annurev-marine-121916-063304.html?itemId=/content/journals/10.1146/annurev-marine-121916-063304&mimeType=html&fmt=ahah

Literature Cited

  1. Aruda AM, Baumgartner MF, Reitzel AM, Tarrant AM. 2011. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. J. Insect Physiol. 57:665–75 [Google Scholar]
  2. Atkinson D. 1994. Temperature and organism size—a biological law for ectotherms?. Adv. Ecol. Res. 3:1–58 [Google Scholar]
  3. Batten SD, Mackas DL. 2009. Shortened duration of the annual Neocalanus plumchrus biomass peak in the northeast Pacific. Mar. Ecol. Prog. Ser. 393:189–98 [Google Scholar]
  4. Baumgartner MF, Tarrant AM. 2017. The physiology and ecology of dipause in marine copepods. Annu. Rev. Mar. Sci. 9:387–411 [Google Scholar]
  5. Beaugrand G. 2009. Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas. Deep-Sea Res. II 56:656–73 [Google Scholar]
  6. Beaugrand G. 2012. Unanticipated biological changes and global warming. Mar. Ecol. Prog. Ser. 445:293–301 [Google Scholar]
  7. Beaugrand G. 2014. Theoretical basis for predicting climate-induced abrupt shifts in the oceans. Philos. Trans. R. Soc. B 370:20130264 [Google Scholar]
  8. Beaugrand G. 2015. Marine Biodiversity, Climatic Variability and Global Change London: Routledge [Google Scholar]
  9. Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC. 2003. Plankton effect on cod recruitment in the North Sea. Nature 426:661–64 [Google Scholar]
  10. Beaugrand G, Edwards M, Brander K, Luczak C, Ibañez F. 2008. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecol. Lett. 11:1157–68 [Google Scholar]
  11. Beaugrand G, Edwards M, Legendre L. 2010. Marine biodiversity, ecosystem functioning and the carbon cycles. PNAS 107:10120–24 [Google Scholar]
  12. Beaugrand G, Edwards M, Raybaud V, Goberville E, Kirby RR. 2015. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5:695–701 [Google Scholar]
  13. Beaugrand G, Goberville E, Luczak C, Kirby RR. 2014. Marine biological shifts and climate. Proc. R. Soc. B 281:20133350 [Google Scholar]
  14. Beaugrand G, Kirby RR. 2016. Quasi-deterministic responses of marine species to climate change. Clim. Res. 69:117–28 [Google Scholar]
  15. Beaugrand G, Lindley JA, Helaouët P, Bonnet D. 2007. Macroecological study of Centropages typicus in the North Atlantic Ocean. Prog. Oceanogr. 72:259–73 [Google Scholar]
  16. Beaugrand G, Luczak C, Edwards M. 2009. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Change Biol. 15:1790–803 [Google Scholar]
  17. Beaugrand G, McQuatters-Gollop A, Edwards M, Goberville E. 2013a. Long-term responses of North Atlantic calcifying plankton to climate change. Nat. Clim. Change 3:263–67 [Google Scholar]
  18. Beaugrand G, Reid PC, Ibañez F, Lindley JA, Edwards M. 2002. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–94 [Google Scholar]
  19. Beaugrand G, Rombouts I, Kirby RR. 2013b. Towards an understanding of the pattern of biodiversity in the oceans. Glob. Ecol. Biogeogr. 22:440–49 [Google Scholar]
  20. Behrenfeld MJ. 2010. Abandoning Sverdrup's critical depth hypothesis on phytoplankton blooms. Ecology 91:977–89 [Google Scholar]
  21. Bigg GR. 1996. The Oceans and Climate Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  22. Brander K, Blom G, Borges MF, Erzini K, Henderson G. et al. 2003. Changes in fish distribution in the eastern North Atlantic: Are we seeing a coherent response to changing temperature. ICES Mar. Sci. Symp. 219:261–70 [Google Scholar]
  23. Brown JH. 1984. On the relationship between abundance and distribution of species. Am. Nat. 124:255–79 [Google Scholar]
  24. Brown JH. 1995. Macroecology Chicago: Univ. Chicago Press [Google Scholar]
  25. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–89 [Google Scholar]
  26. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES. et al. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–55 [Google Scholar]
  27. Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A. et al. 2014. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:492–96 [Google Scholar]
  28. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–51 [Google Scholar]
  29. Chevaldonné P, Lejeusne C. 2003. Regional warming-induced species shift in north-west Mediterranean marine caves. Ecol. Lett. 6:371–79 [Google Scholar]
  30. Comiso JC, Parkinson CL, Gersten R, Stock L. 2008. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 35:L01703 [Google Scholar]
  31. Conover DO, Schultz ET. 1995. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol. Evol. 10:248–53 [Google Scholar]
  32. Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ. et al. 2009. Phylogenetic biome conservatism on a global scale. Nature 458:754–56 [Google Scholar]
  33. Dickson R, Lazier J, Meincke J, Rhines P, Swift J. 1996. Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr. 38:241–95 [Google Scholar]
  34. Dietrich G. 1964. Oceanic polar front survey. Res. Geophys. 2:291–308 [Google Scholar]
  35. Dobrowski SZ. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Change Biol. 17:1022–35 [Google Scholar]
  36. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F. et al. 2012. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4:11–37 [Google Scholar]
  37. Edwards M, Richardson AJ. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–84 [Google Scholar]
  38. Feely RA, Doney SC, Cooley SR. 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:436–47 [Google Scholar]
  39. Frederich M, Pörtner HO. 2000. Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in the spider crab. Maja squinado. Am. J. Physiol. 279:R1531–38 [Google Scholar]
  40. Fromentin J-M, Reygondeau G, Bonhommeau S, Beaugrand G. 2014. Oceanographic changes and exploitation drive the spatio-temporal dynamics of Atlantic bluefin tuna (Thunnus thynnus). Fish. Oceanogr. 23:147–56 [Google Scholar]
  41. Gaston KJ, Blackburn TM. 2000. Pattern and Process in Macroecology Padstow, UK: Blackwell [Google Scholar]
  42. Gaston KJ, Spicer JI. 2004. Biodiversity: An Introduction Hong Kong: Blackwell [Google Scholar]
  43. Gause GF. 1934. The Struggle for Coexistence Baltimore, MD: Williams & Wilkins [Google Scholar]
  44. Guilford T, Meade J, Willis J, Phililips RA, Boyle D. et al. 2009. Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffinus: insights from machine learning. Proc. R. Soc. B 276:1215–23 [Google Scholar]
  45. Gunderson AR, Stillman JH. 2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282:20150401 [Google Scholar]
  46. Heath MR, Backhaus JO, Richardson K, McKenzie E, Slagstad D. et al. 1999. Climate fluctuations and the invasion of the North Sea by Calanus finmarchicus. Fish. Oceanogr. 8:Suppl. 1163–76 [Google Scholar]
  47. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12:450–55 [Google Scholar]
  48. Hiddink JG, ter Hofstede R. 2008. Climate induced increases in species richness of marine fishes. Glob. Change Biol. 14:453–60 [Google Scholar]
  49. Huey RB, Hertz PE, Sinervo B. 2003. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161:357–66 [Google Scholar]
  50. Hutchinson GE. 1957. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22:415–27 [Google Scholar]
  51. Jablonski D. 1991. Extinctions: a paleontological perspective. Science 253:754–57 [Google Scholar]
  52. Ji R, Edwards M, Mackas DL, Runge JA, Thomas AC. 2010. Marine plankton phenology and life history in a changing climate: current research and future directions. J. Plankton Res. 32:1355–68 [Google Scholar]
  53. Jónasdóttir SH, Koski M. 2011. Biological processes in the North Sea: comparison of Calanus helgolandicus and Calanus finmarchicus vertical distribution and production. J. Plankton Res. 33:85–103 [Google Scholar]
  54. Jones MC, Cheung WWL. 2015. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72:741–52 [Google Scholar]
  55. Kirby RR, Beaugrand G. 2009. Trophic amplification of climate warming. Proc. R. Soc. Lond. B 276:4095–103 [Google Scholar]
  56. Kirby RR, Beaugrand G, Lindley JA. 2008. Climate-induced effects on the meroplankton and the benthic-pelagic ecology of the North Sea. Limnol. Oceanogr. 53:1805–15 [Google Scholar]
  57. Kirby RR, Beaugrand G, Lindley JA, Richardson AJ, Edwards M, Reid PC. 2007. Climate effects and benthic-pelagic coupling in the North Sea. Mar. Ecol. Prog. Ser. 330:31–38 [Google Scholar]
  58. Knell RJ, Thackeray SJ. 2016. Voltinism and resilience to climate-induced phenological mismatch. Clim. Change 137:525–39 [Google Scholar]
  59. Lenoir S, Beaugrand G, Lecuyer E. 2011. Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. Glob. Change Biol. 17:115–29 [Google Scholar]
  60. Lindley JA, Daykin S. 2005. Variations in the distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the north-eastern Atlantic Ocean and western European shelf waters. ICES J. Mar. Sci. 62:869–77 [Google Scholar]
  61. Lineweaver CH, Schwartzman D. 2004. Cosmic thermobiology: thermal constraints on the origin and evolution of life in the universe. Origins J Seckbach 233–48 Dordrecht, Neth.: Kluwer [Google Scholar]
  62. Lomolino MV, Riddle BR, Brown JH. 2006. Biogeography Sunderland, MA: Sinauer [Google Scholar]
  63. Longhurst A. 1998. Ecological Geography of the Sea London: Academic [Google Scholar]
  64. Luczak C, Beaugrand G, Jaffré M, Lenoir S. 2011. Climate change impact on Balearic shearwater through a trophic cascade. Biol. Lett. 7:702–5 [Google Scholar]
  65. Luczak C, Beaugrand G, Lindley JA, Dewarumez J-M, Dubois PJ, Kirby RR. 2012. North Sea ecosystem changes from swimming crabs to seagulls. Biol. Lett. 8:821–24 [Google Scholar]
  66. Mackas DL, Greve W, Edwards M, Chiba S, Tadokoro K. et al. 2012. Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology. Prog. Oceanogr. 97–100:31–62 [Google Scholar]
  67. MacLeod CD. 2009. Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. Endanger. Species Res. 7:125–36 [Google Scholar]
  68. McGinty N, Power AM, Johnson MP. 2011. Variation among northeast Atlantic regions in the responses of zooplankton to climate change: not all areas follow the same path. J. Exp. Mar. Biol. Ecol. 400:120–31 [Google Scholar]
  69. McQuinn IH. 1997. Metapopulations and the Atlantic herring. Rev. Fish Biol. Fish. 7:297–329 [Google Scholar]
  70. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A. et al. 2006. European phenological resonse to climate change matches the warming pattern. Glob. Change Biol. 12:1969–76 [Google Scholar]
  71. Overpeck J, Whitlock C, Huntley B. 2003. Terrestrial biosphere dynamics in the climate system: past and future. Paleoclimate, Global Change and the Future KD Alverson, RS Bradley, TF Pedersen 81–111 Heidelberg, Ger.: Springer-Verlag [Google Scholar]
  72. Padfield D, Yvon-Durocher G, Buckling A, Jennings S, Yvon-Durocher G. 2016. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 19:133–42 [Google Scholar]
  73. Parmesan C. 2005. Biotic response: range and abundance changes. Climate Change and Biodiversity TE Lovejoy, L Hannah 41–55 New Haven, CT: Yale Univ. Press [Google Scholar]
  74. Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42 [Google Scholar]
  75. Perry AI, Low PJ, Ellis JR, Reynolds JD. 2005. Climate change and distribution shifts in marine fishes. Science 308:1912–15 [Google Scholar]
  76. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS. et al. 2013. Global imprint of climate change on marine life. Nat. Clim. Change 3:919–25 [Google Scholar]
  77. Pörtner HO. 2001. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–46 [Google Scholar]
  78. Przybylo R, Sheldon BC, Merilä J. 2000. Climatic effects on breeding and morphology: evidence for phenotypic plasticity. J. Anim. Ecol. 69:395–403 [Google Scholar]
  79. Quintero I, Wiens JJ. 2013. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16:1095–103 [Google Scholar]
  80. Raybaud V, Beaugrand G, Goberville E, Delebecq G, Destombe C. et al. 2013. Decline in kelp in west Europe and climate. PLOS ONE 8:e66044 [Google Scholar]
  81. Reygondeau G, Longhurst A, Beaugrand G, Martinez E, Antoine D, Maury O. 2013. Toward dynamic biogeochemical provinces. Glob. Biogeochem. Cycles 27:1046–58 [Google Scholar]
  82. Richardson AJ, Schoeman DS. 2004. Climate impact on plankton ecosystems in the northeast Atlantic. Science 305:1609–12 [Google Scholar]
  83. Rohde K. 2005. Nonequilibrium Ecology Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  84. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC. et al. 2004. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18:1–23 [Google Scholar]
  85. Schwartzman D, Lineweaver CH. 2005. Temperature, biogenesis and biospheric self-organization. Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth and Beyond A Kleidon, R Lorenz 207–17 Berlin: Springer [Google Scholar]
  86. Shama LNS, Campero-Paz M, Wegner KM, de Block M, Stoks R. 2011. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate. Mol. Ecol. 20:2929–41 [Google Scholar]
  87. Shelford VE. 1931. Some concepts of bioecology. Ecology 12:455–67 [Google Scholar]
  88. Sims DW, Wearmouth VJ, Southall EJ, Hill JM, Moore P. et al. 2006. Hunt warm, rest cool: bioenergetic strategy underlying diel vertical migration of a benthic shark. J. Anim. Ecol. 75:176–90 [Google Scholar]
  89. Sorte CJB, Williams SL, Carlton J. 2010. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 19:303–16 [Google Scholar]
  90. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK. et al. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS 111:5610–15 [Google Scholar]
  91. ter Braak CJF. 1996. Unimodal Models to Relate Species to Environment Wageningen, Neth.: DLO Agric. Math. Group [Google Scholar]
  92. Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS. et al. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535:241–45 [Google Scholar]
  93. Thomas CD. 2010. Climate, climate change and range boundaries. Divers. Distrib. 16:488–95 [Google Scholar]
  94. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ. et al. 2004. Extinction risk from climate change. Nature 427:145–48 [Google Scholar]
  95. Thomas CD, Lennon JJ. 1999. Birds extend their ranges northwards. Nature 399:213 [Google Scholar]
  96. Thomas MK, Kremer CT, Klausmeier CA, Litchman E. 2012. A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–88 [Google Scholar]
  97. van der Spoel S. 1994. The basis for boundaries in pelagic biogeography. Prog. Oceanogr. 34:121–33 [Google Scholar]
  98. Visser ME, Both C. 2005. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. B 272:2561–69 [Google Scholar]
  99. Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA. et al. 2011. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400:7–16 [Google Scholar]
  100. Whittaker RH. 1975. Communities and Ecosystems New York: Macmillan [Google Scholar]
  101. Winder M, Shindler DE, Essington TE, Litt AH. 2009. Disrupted seasonal clockwork in the population dynamics of a freshwater copepod by climate warming. Limnol. Oceanogr. 54:2493–505 [Google Scholar]
  102. Zmiri A, Kahan D, Hochstein S, Reiss Z. 1974. Phototaxis and thermotaxis in some species of Amphistegina (Foraminifera). J. Eukaryot. Microbiol. 21:133–38 [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063304
Loading
/content/journals/10.1146/annurev-marine-121916-063304
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error