1932

Abstract

Coccolithophores are major contributors to phytoplankton communities and ocean biogeochemistry and are strong modulators of the optical field in the sea. New discoveries are changing paradigms about these calcifiers. A new role for silicon in coccolithophore calcification is coupling carbonate and silicon cycles. Phosphorus and iron play key roles in regulating coccolithophore growth. Comparing molecular phylogenies with coccolith morphometrics is forcing the reconciliation of biological and geological observations. Mixotrophy may be a possible life strategy for deep-dwelling species, which has ramifications for biological pump and alkalinity pump paradigms. Climate, ocean temperatures, and pH appear to be affecting coccolithophores in unexpected ways. Global calcification is approximately 1–3% of primary productivity and affects CO budgets. New measurements of the backscattering cross section of coccolithophores have improved satellite-based algorithms and their application in case I and case II optical waters. Remote sensing has allowed the detection of basin-scale coccolithophore features in the Southern Ocean.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063319
2018-01-03
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/marine/10/1/annurev-marine-121916-063319.html?itemId=/content/journals/10.1146/annurev-marine-121916-063319&mimeType=html&fmt=ahah

Literature Cited

  1. Alvain S, Moulin C, Dandonneau Y, Loisel H. 2008. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob. Biogeochem. Cycles 22:GB3001 [Google Scholar]
  2. Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ. 2009. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. PNAS 106:17071–76 [Google Scholar]
  3. Archer DE, Johnson K. 2000. A model of the iron cycle in the ocean. Glob. Biogeochem. Cycles 14:269–79 [Google Scholar]
  4. Bach LT, Boxhammer T, Larsen A, Hildebrandt N, Schulz KG, Riebesell U. 2016. Influence of plankton community structure on the sinking velocity of marine aggregates. Glob. Biogeochem. Cycles 30:1145–65 [Google Scholar]
  5. Bach LT, Riebesell U, Gutowska MA, Federwisch L, Schulz KG. 2015. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Prog. Oceanogr. 135:125–38 [Google Scholar]
  6. Bach LT, Riebesell U, Schulz KG. 2011. Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 56:2040–50 [Google Scholar]
  7. Balch WM. 2004. Re-evaluation of the physiological ecology of coccolithophores. Coccolithophores: From Molecular Processes to Global Impact HR Thierstein, JR Young 165–90 Berlin: Springer-Verlag [Google Scholar]
  8. Balch WM, Bates NR, Lam PJ, Twining BS, Rosengard SZ. et al. 2016. Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance. Glob. Biogeochem. Cycles 30:1124–44 [Google Scholar]
  9. Balch WM, Drapeau DT, Bowler BC, Booth ES. 2007. Prediction of pelagic calcification rates using satellite-measurements. Deep-Sea Res. II 54:478–95 [Google Scholar]
  10. Balch WM, Drapeau DT, Bowler BC, Booth ES, Lyczskowski E, Alley D. 2011. The contribution of coccolithophores to the optical and inorganic carbon budgets during the Southern Ocean Gas Experiment: new evidence in support of the “Great Calcite Belt” hypothesis. J. Geophys. Res. 116:C00F06 [Google Scholar]
  11. Balch WM, Drapeau DT, Bowler BC, Lyczskowski E, Lubelczyk LC. et al. 2014. Surface biological, chemical, and optical properties of the Patagonian Shelf coccolithophore bloom, the brightest waters of the Great Calcite Belt. Limnol. Oceanogr. 59:1715–32 [Google Scholar]
  12. Balch WM, Drapeau DT, Cucci TL, Vaillancourt RD, Kilpatrick KA, Fritz JJ. 1999. Optical backscattering by calcifying algae—separating the contribution by particulate inorganic and organic carbon fractions. J. Geophys. Res. 104:1541–58 [Google Scholar]
  13. Balch WM, Gordon HR, Bowler BC, Drapeau DT, Booth ES. 2005. Calcium carbonate budgets in the surface global ocean based on MODIS data. J. Geophys. Res. 110:C07001 [Google Scholar]
  14. Balch WM, Holligan PM, Ackleson SG, Voss KJ. 1991. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnol. Oceanogr. 36:629–43 [Google Scholar]
  15. Balch WM, Kilpatrick KA, Holligan PM. 1993. Coccolith formation and detachment by Emiliania huxleyi (Prymnesiophyceae). J. Phycol. 29:566–75 [Google Scholar]
  16. Balch WM, Utgoff P. 2009. Potential interactions among ocean acidification, coccolithophores and the optical properties of seawater. Oceanography 22:4146–59 [Google Scholar]
  17. Beaufort L, Probert I, de Garidel-Thoron T, Bendif EM, Ruiz-Pino D. et al. 2011. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476:80–83 [Google Scholar]
  18. Bendif EM, Probert I, Young JR, von Dassow P. 2015. Morphological and phylogenetic characterization of new Gephyrocapsa isolates suggests introgressive hybridization in the Emiliania/Gephyrocapsa complex (Haptophyta). Protist 166:323–36 [Google Scholar]
  19. Bendif EM, Young J. 2014. On the ultrastructure of Gephyrocapsa oceanica (Haptophyta) life stages. Cryptogam. Algologie 35:379–88 [Google Scholar]
  20. Berner RA, Lasaga AC, Garrels RM. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283:641–83 [Google Scholar]
  21. Berner RA, Maasch KA. 1996. Chemical weathering and controls on atmospheric O2 and CO2: Fundamental principles were enunciated by J. J. Ebelmen in 1845. Geochim. Cosmochim. Acta 60:1633–37 [Google Scholar]
  22. Binding CE, Greenberg TA, Watson SB, Rastin S, Gould J. 2015. Long term water clarity changes in North America's Great Lakes from multi-sensor satellite observations. Limnol. Oceanogr. 60:1976–95 [Google Scholar]
  23. Blanco-Ameijeiras S, Lebrato M, Stoll HM, Iglesias-Rodríguez D, Müller MN. et al. 2016. Phenotypic variability in the coccolithophore Emiliania huxleyi. PLOS ONE 11:e0157697 [Google Scholar]
  24. Blunden J, Arndt DS. 2015. State of the climate in 2014. Bull. Am. Meteorol. Soc. 96:S1–267 [Google Scholar]
  25. Boyd PW, Strzepek R, Fu F, Hutchins DA. 2010. Environmental control of open-ocean phytoplankton groups: now and in the future. Limnol. Oceanogr. 55:1353–76 [Google Scholar]
  26. Brand LE, Sunda WG, Guillard RRL. 1983. Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol. Oceanogr. 28:1182–98 [Google Scholar]
  27. Broecker WS, Sanyal A, Takahashi T. 2000. The origin of Bahamian whitings revisited. Geophys. Res. Lett. 27:3759–60 [Google Scholar]
  28. Broecker WS, Takahashi T. 1966. Calcium carbonate precipitation on the Bahama Banks. J. Geophys. Res. 71:1575–602 [Google Scholar]
  29. Broerse ATC, Tyrrell T, Young JR, Poulton AJ, Merico A. et al. 2003. The cause of bright waters in the Bering Sea in winter. Cont. Shelf Res. 23:1579–96 [Google Scholar]
  30. Brown CW, Yoder JA. 1994. Coccolithophorid blooms in the global ocean. J. Geophys. Res. 99:7467–82 [Google Scholar]
  31. Brown MS. 2014. Impacts of bubbles on optical estimates of calcium carbonate in the great calcite belt MS Thesis, Dalhousie Univ Halifax, Can.: [Google Scholar]
  32. Brussaard CPD. 2004. Viral control of phytoplankton populations—a review. J. Eukaryot. Microbiol. 51:125–38 [Google Scholar]
  33. Brutemark A, Granéli E. 2011. Role of mixotrophy and light for growth and survival of the toxic haptophyte Prymnesium parvum. Harmful Algae 10:388–94 [Google Scholar]
  34. Brzezinski M, Baines SB, Balch WM, Beucher CP, Chai F. et al. 2011. Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific. Deep-Sea Res. II 58:493–511 [Google Scholar]
  35. Bustos-Serrano H, Morse JW, Millero FJ. 2009. The formation of whitings on the Little Bahama Bank. Mar. Chem. 113:1–8 [Google Scholar]
  36. Carr M-E, Friedrichs MAM, Schmeltz M, Noguchi Aita M, Antoine D. et al. 2006. A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res. II 53:741–70 [Google Scholar]
  37. Cerovečki I, Talley LD, Mazloff MR, Maze G. 2013. Subantarctic mode water formation, destruction, and export in the eddy-permitting southern ocean state estimate. J. Phys. Oceanogr. 43:1485–511 [Google Scholar]
  38. Cherukuru N, Brando VE, Schroeder T, Clementson LA, Dekker AG. 2014. Influence of river discharge and ocean currents on coastal optical properties. Cont. Shelf Res. 84:188–203 [Google Scholar]
  39. Cros L, Estrada M. 2013. Holo-heterococcolithophore life cycles: ecological implications. Mar. Ecol. Prog. Ser. 492:57–68 [Google Scholar]
  40. Cros L, Kleinjne A, Zeltner A, Billard C, Young JR. 2000. New examples of holococcolith–heterococcolith combination coccospheres and their implications for coccolithiphorid biology. Mar. Micropaleontol. 39:1–34 [Google Scholar]
  41. Daniels CJ, Poulton AJ, Young JR, Esposito M, Humphreys MP. et al. 2016. Species-specific calcite production reveals Coccolithus pelagicus as the key calcifier in the Arctic Ocean. Mar. Ecol. Prog. Ser. 555:29–47 [Google Scholar]
  42. Daniels CJ, Sheward RM, Poulton AJ. 2014. Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species. Biogeosciences 11:6915–25 [Google Scholar]
  43. Dierssen HM, Smith RC, Vernet M. 2002. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. PNAS 99:1790–95 [Google Scholar]
  44. Dierssen HM, Zimmerman RC, Burdige DJ. 2009. Optics and remote sensing of Bahamian carbonate sediment whitings and potential relationship to wind-driven Langmuir circulation. Biogeosciences 6:487–500 [Google Scholar]
  45. Durak GM, Taylor AR, Walker CE, Probert I, De Vargas C. et al. 2016. A role for diatom-like silicon transporters in calcifying coccolithophores. Nat. Commun. 7:10543 [Google Scholar]
  46. Evans C, Archer SD, Jacquet S, Wilson WH. 2003. Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population. Aquat. Microb. Ecol. 30:207–19 [Google Scholar]
  47. Evans C, Kadner SV, Darroch LJ, Wilson WH, Liss PS, Malin G. 2007. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study. Limnol. Oceanogr. 52:1036–45 [Google Scholar]
  48. Feely R, Doney SC, Cooley SR. 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:436–47 [Google Scholar]
  49. Francois R, Honjo S, Krishfield R, Manganini S. 2002. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Glob. Biogeochem. Cycles 16:1087 [Google Scholar]
  50. Galí M, Devred E, Levasseur M, Royer SJ, Babin M. 2015. A remote sensing algorithm for planktonic dimethylsulfoniopropionate (DMSP) and an analysis of global patterns. Remote Sens. Environ. 171:171–84 [Google Scholar]
  51. Gao K, Helbling EW, Häder DP, Hutchins DA. 2012. Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar. Ecol. Prog. Ser. 470:167–89 [Google Scholar]
  52. Garcia CAE, Garcia VMT, Dogliotti AI, Ferreira A, Romero SI. et al. 2011. Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf. J. Geophys. Res. 116:C03025 [Google Scholar]
  53. Geisen M, Billard C, Broerse ATC, Cros L, Probert I, Young JR. 2002. Life-cycle associations involving pairs of holococcolithophorid species: intraspecific variation or cryptic speciation. Eur. J. Phycol. 37:531–50 [Google Scholar]
  54. Gerecht AC, Šupraha L, Edvardsen B, Probert I, Henderiks J. 2014. High temperature decreases the PIC/POC ratio and increases phosphorus requirements in Coccolithus pelagicus (Haptophyta). Biogeosciences 11:3531–45 [Google Scholar]
  55. Gledhill M, van den Berg CMG. 1994. Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar. Chem. 47:41–54 [Google Scholar]
  56. Gordon HR, Boynton GC, Balch WM, Groom SB, Harbour DS, Smyth TJ. 2001. Retrieval of coccolithophore calcite concentration from SeaWiFS imagery. Geochem. Res. Lett. 28:1587–90 [Google Scholar]
  57. Gordon HR, Du T. 2001. Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi. Limnol. Oceanogr. 46:1438–54 [Google Scholar]
  58. Gordon HR, Smyth TJ, Balch WM, Boynton GC, Tarran GA. 2009. Light scattering by coccoliths detached from Emiliania huxleyi. Appl. Opt. 48:6059–72 [Google Scholar]
  59. Hagino K, Young JR. 2015. Biology and paleontology of coccolithophores (Haptophytes). In Marine Protists: Diversity and Dynamics. S Ohtsuka, T Suzaki, T Horiguchi, N Suzuki, F Not 311–30 Tokyo: Springer Jpn.
  60. Hagino K, Young JR, Bown PR, Godrijan J, Kulhanek DK. et al. 2015. Re-discovery of a “living fossil” coccolithophore from the coastal waters of Japan and Croatia. Mar. Micropaleontol. 116:28–37 [Google Scholar]
  61. Hartnett A, Böttger LH, Matzanke BF, Carrano CJ. 2012. Iron transport and storage in the coccolithophore: Emiliania huxleyi. Metallomics 4:1160–66 [Google Scholar]
  62. Harvey EL, Bidle KD, Johnson MD. 2015. Consequences of strain variability and calcification in Emiliania huxleyi on microzooplankton grazing. J. Plankton Res. 37:1137–48 [Google Scholar]
  63. Heinze C, Maier-Reimer E, Winn K. 1991. Glacial pCO2 reduction by the world ocean: experiments with the Hamburg carbon cycle model. Paleoceanography 6:395–430 [Google Scholar]
  64. Holligan PM, Charalampopoulou A, Hutson R. 2010. Seasonal distributions of the coccolithophore, Emilianiahuxleyi, and of particulate inorganic carbon in surface waters of the Scotia Sea. J. Mar. Syst. 82:195–205 [Google Scholar]
  65. Holligan PM, Viollier M, Dupouy C, Aikens J. 1983. Satellite studies on the distributions of chlorophyll and dinoflagellate blooms in the western English Channel. Cont. Shelf Res. 2:81–96 [Google Scholar]
  66. Hopkins J, Henson SA, Painter SC, Tyrrell T, Poulton AJ. 2015. Phenological characteristics of global coccolithophore blooms. Glob. Biogeochem. Cycles 29:239–53 [Google Scholar]
  67. Hopkinson BM, Xu Y, Shi D, McGinn PJ, Morel FMM. 2010. The effect of CO2 on the photosynthetic physiology of phytoplankton in the Gulf of Alaska. Limnol. Oceanogr. 55:2011–24 [Google Scholar]
  68. Houdan A, Probert I, Zatylny C, Véron B, Billard C. 2006. Ecology of oceanic coccolithophores. I. Nutritional preferences of the two stages in the life cycle of Coccolithus braarudii and Calcidiscus leptoporus. Aquat. Microb. Ecol. 44:291–301 [Google Scholar]
  69. Hovland EK, Hancke K, Alver MO, Drinkwater K, Høkedal J. et al. 2014. Optical impact of an Emiliania huxleyi bloom in the frontal region of the Barents Sea. J. Mar. Syst. 130:228–40 [Google Scholar]
  70. Inouye I, Kawachi M. 1994. The haptonema. The Haptophyte Algae JC Green, BSC Leadbeater 73–89 Oxford, UK: Clarendon [Google Scholar]
  71. Jin P, Gao K. 2016. Reduced resilience of a globally distributed coccolithophore to ocean acidification: confirmed up to 2000 generations. Mar. Pollut. Bull. 103:101–8 [Google Scholar]
  72. Jin X, Liu C, Poulton AJ, Dai M, Guo X. 2016. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content. Biogeosciences 13:4843–61 [Google Scholar]
  73. Jones HLJ, Leadbeater BSC, Green JC. 1994. Mixotrophy in haptophytes. The Haptophyte Algae JC Green, BSC Leadbeater 247–63 Oxford, UK: Clarendon [Google Scholar]
  74. Kimmance SA, Wilson WH, Archer SD. 2007. Modified dilution technique to estimate viral versus grazing mortality of phytoplankton: limitations associated with method sensitivity in natural waters. Aquat. Microb. Ecol. 49:207–22 [Google Scholar]
  75. Kopelevich OV, Burenkov VI, Sheberstov SV, Vazyulya SV, Kravchishina M. et al. 2014. Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color data. Remote Sens. Environ. 146:113–23 [Google Scholar]
  76. Kopelevich OV, Burenkov VI, Sheberstov SV, Vazyulya SV, Sahling IV. 2015a. Summarized results of field and satellite biooptical studies in the north-eastern part of the Black Sea in spring-summer period 2004-2008 Presented at Int. Conf. Mediterr. Coast. Environ., 12th, Varna, BulgOct. 6–10 [Google Scholar]
  77. Kopelevich OV, Vazyulya SV, Saling IV, Sheberstov SV, Burenkov VI. 2015b. Electronic atlas “biooptical characteristics of the Russian Seas from satellite ocean color data of 1998–2014. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 12:99–110 [Google Scholar]
  78. Krueger-Hadfield SA, Balestreri C, Schroeder J, Highfield A, Helaouët P. et al. 2014. Genotyping an Emiliania huxleyi (Prymnesiophyceae) bloom event in the North Sea reveals evidence of asexual reproduction. Biogeosciences 11:5215–34 [Google Scholar]
  79. Krumhardt KM, Lovenduski NS, Freeman NM, Bates NR. 2016. Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014. Biogeosciences 13:1163–77 [Google Scholar]
  80. Leblanc K, Hare CE, Feng Y, Berg GM, DiTullio GR. et al. 2009. Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom. Biogeosciences 6:2155–79 [Google Scholar]
  81. Lehahn Y, Koren I, Schatz D, Frada M, Sheyn U. et al. 2014. Decoupling physical from biological processes to assess the impact of viruses on a mesoscale algal bloom. Curr. Biol. 24:2041–46 [Google Scholar]
  82. Lundgren VM, Glibert PM, Granéli E, Vidyarathna NK, Fiori E. et al. 2016. Metabolic and physiological changes in Prymnesium parvum when grown under, and grazing on prey of, variable nitrogen: phosphorus stoichiometry. Harmful Algae 55:1–12 [Google Scholar]
  83. Mandal SK, Patel VR, Temkar G, George BM, Raman M. 2015. Bio-optic characterization of Discosphaera tubifer bloom occurs in an overcrowded fishing harbour at Veraval, India. Environ. Monit. Assess. 187:597 [Google Scholar]
  84. Marañón E, Balch WM, Cermeño P, González N, Sobrino C. et al. 2016. Pelagic calcification and carbonate chemistry in the tropical ocean. Limnol. Oceanogr. 61:1345–57 [Google Scholar]
  85. Marañón E, Moore CM, Ribera D'Alcalá M, Schulz K. 2017. Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments. Estuar. Coast. Shelf Sci. 186: Part A [Google Scholar]
  86. Marchetti A, Maldonado MT. 2016. Iron. The Physiology of Microalgae MA Borowitzka, J Beardall, JA Raven 233–79 Cham, Switz.: Springer [Google Scholar]
  87. Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1:493–509 [Google Scholar]
  88. Maugendre L, Gattuso JP, Poulton AJ, Dellisanti W, Gaubert M. et al. 2017. No detectable effect of ocean acidification on plankton metabolism in the NW oligotrophic Mediterranean Sea: results from two mesocosm studies. Estuar. Coast. Shelf Sci. 186:89–99 [Google Scholar]
  89. Meyer J, Riebesell U. 2015. Reviews and syntheses: responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences 12:1671–82 [Google Scholar]
  90. Milliman J, Troy PJ, Balch W, Adams AK, Li Y-H, MacKenzie FT. 1999. Biologically mediated dissolution of calcium carbonate above the chemical lysocline. Deep-Sea Res. I 46:1653–69 [Google Scholar]
  91. Mitchell BG. 1992. Predictive bio-optical relationships for polar oceans and marginal ice zones. J. Mar. Syst. 3:91–105 [Google Scholar]
  92. Mitra A, Flynn KJ, Burkholder JM, Berge T, Calbet A. et al. 2014. The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005 [Google Scholar]
  93. Mizukawa Y, Miyashita Y, Satoh M, Shiraiwa Y, Iwasaka M. 2015. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator. Sci. Rep. 5:13577 [Google Scholar]
  94. Mobley CD. 1994. Light and Water: Radiative Transfer in Natural Waters New York: Academic [Google Scholar]
  95. Mobley CD, Stramski D, Bissett WP, Boss E. 2004. Optical modeling of ocean waters: Is the Case 1 - Case 2 classification still useful?. Oceanography 17:260–67 [Google Scholar]
  96. Monteiro FM, Bach LT, Brownlee C, Bown P, Rickaby REM. et al. 2016. Why marine phytoplankton calcify. Sci. Adv. 2:e1501822 [Google Scholar]
  97. Moore TS, Dowell MD, Franz BA. 2012. Detection of coccolithophore blooms in ocean color satellite imagery: a generalized approach for use with multiple sensors. Remote Sens. Environ. 117:249–63 [Google Scholar]
  98. Nissimov JI, Napier JA, Allen MJ, Kimmance SA. 2016. Intragenus competition between coccolithoviruses: an insight on how a select few can come to dominate many. Environ. Microbiol. 18:133–45 [Google Scholar]
  99. Nuester J, Shema S, Vermont A, Fields DM, Twining BS. 2014. The regeneration of highly bioavailable iron by meso- and microzooplankton. Limnol. Oceanogr. 59:1399–409 [Google Scholar]
  100. Parke M, Manton I, Clarke B. 1956. Studies on marine flagellates: III. Three further species of Chrysochromulina. J. Mar. Biol. Assoc. UK 35:387–414 [Google Scholar]
  101. Passow U, De La Rocha CL. 2006. Accumulation of mineral ballast on organic aggregates. Glob. Biogeochem. Cycles 20:GB1013 [Google Scholar]
  102. Peng F, Effler SW. 2017. Characterizations of calcite particles and evaluations of their light scattering effects in lacustrine systems. Limnol. Oceanogr. 62:645–64 [Google Scholar]
  103. Perrin L, Probert I, Langer G, Aloisi G. 2016. Growth of the coccolithophore Emiliania huxleyi in light and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores. Biogeosciences 13:5983–6001 [Google Scholar]
  104. Poulton AJ, Holligan PM, Charalampopoulou A, Adey TR. 2017. Coccolithophore ecology in the tropical and subtropical Atlantic Ocean: new perspectives from the Atlantic meridional transect (AMT) programme. Prog. Oceanogr. In press. https://doi.org/10.1016/j.pocean.2017.01.003 [Crossref] [Google Scholar]
  105. Poulton AJ, Young JR, Bates NR, Balch WM. 2011. Biometry of detached Emiliania huxleyi coccoliths along the Patagonian Shelf. Mar. Ecol. Prog. Ser. 443:1–17 [Google Scholar]
  106. Randolph K, Dierssen HM, Twardowski M, Cifuentes-Lorenzen A, Zappa CJ. 2014. Optical measurements of small deeply penetrating bubble populations generated by breaking waves in the Southern Ocean. J. Geophys. Res. 119:757–76 [Google Scholar]
  107. Riebesell U, Bach LT, Bellerby RGJ, Bermúdez Monsalve JR, Boxhammer T. et al. 2016. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nat. Geosci. 10:19–23 [Google Scholar]
  108. Riebesell U, Gattuso JP, Thingstad TF, Middelburg JJ. 2013. Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study. Biogeosciences 10:5619–26 [Google Scholar]
  109. Riebesell U, Kortzinger A, Oschlies A. 2009. Sensitivities of marine carbon fluxes to ocean change. PNAS 106:20602–9 [Google Scholar]
  110. Rivero-Calle S, Gnanadesikan A, Del Castillo CE, Balch WM, Guikema SD. 2015. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 350:1533–37 [Google Scholar]
  111. Rosengard SZ, Lam PJ, Balch WM, Auro ME, Pike SM. et al. 2015. Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt. Biogeosciences 12:3953–71 [Google Scholar]
  112. Rosenwasser S, Mausz MA, Schatz D, Sheyn U, Malitsky S. et al. 2014. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean. Plant Cell 26:2689–707 [Google Scholar]
  113. Rousseaux CS, Gregg WW. 2015. Recent decadal trends in global phytoplankton composition. Glob. Biogeochem. Cycles 29:1674–88 [Google Scholar]
  114. Sarmiento JL, Dunne J, Gnanadesikan A, Key RM, Matsumoto K, Slater R. 2002. A new estimate of the CaCO3 to organic carbon export ratio. Glob. Biogeochem. Cycles 16:1107 [Google Scholar]
  115. Segovia M, Lorenzo MR, Maldonado MT, Larsen A, Berger SA. et al. 2017. Iron availability modulates the effects of future CO2 levels within the marine planktonic food web. Mar. Ecol. Prog. Ser. 565:17–33 [Google Scholar]
  116. Sett S, Bach LT, Schulz KG, Koch-Klavsen S, Lebrato M, Riebesell U. 2014. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLOS ONE 9:e88308 [Google Scholar]
  117. Sheward RM, Poulton AJ, Gibbs SJ, Daniels CJ, Bown PR. 2017. Physiology regulates the relationship between coccosphere geometry and growth phase in coccolithophores. Biogeosciences 14:1493–509 [Google Scholar]
  118. Shutler JD, Grant MG, Miller PI, Rushton E, Anderson K. 2010. Coccolithophore bloom detection in the north east Atlantic using SeaWiFS: algorithm description, application and sensitivity analysis. Remote Sens. Environ. 114:1008–16 [Google Scholar]
  119. Siegel H, Ohde T, Gerth M, Lavik G, Leipe T. 2007. Identification of coccolithophore blooms in the SE Atlantic Ocean off Namibia by satellites and in-situ methods. Cont. Shelf Res. 27:258–74 [Google Scholar]
  120. Smith HEK, Balch WM, Twining B, Bates N, Hopkins J, Poulton AJ. 2017. The contribution of mineralising phytoplankton to carbon export in the Great Calcite Belt. Biogeosciences. In press. https://doi.org/10.5194/bg-2017-110 [Crossref] [Google Scholar]
  121. Smith HEK, Tyrrell T, Charalampopoulou A, Dumousseaud C, Legge OJ. et al. 2012. Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay. PNAS 109:8845–49 [Google Scholar]
  122. Smith SV, Gattuso JP. 2011. Balancing the oceanic calcium carbonate cycle: consequences of variable water column Ψ. Aquat. Geochem. 17:327–37 [Google Scholar]
  123. Smith SV, Mackenzie FT. 2016. The role of CaCO3 reactions in the contemporary oceanic CO2 cycle. Aquat. Geochem. 22:153–75 [Google Scholar]
  124. Smyth TJ, Blackman TM, Illingworth AJ. 1999. Observations of oblate hail using dual polarization radar and implications for hail-detection schemes. Q. J. R. Meteorol. Soc. 125:993–1016 [Google Scholar]
  125. Šupraha L, Ljubešić Z, Mihanović H, Henderiks J. 2016. Coccolithophore life-cycle dynamics in a coastal Mediterranean ecosystem: seasonality and species-specific patterns. J. Plankton Res. 38:1178–93 [Google Scholar]
  126. Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA. 2017. The integral role of iron in ocean biogeochemistry. Nature 543:51–59 [Google Scholar]
  127. Talley LD, Feely RA, Sloyan BM, Wanninkhof R, Baringer MO. et al. 2016. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8:185–215 [Google Scholar]
  128. Taylor AR, Brownlee C, Wheeler G. 2017. Coccolithophore cell biology: chalking up progress. Annu. Rev. Mar. Sci. 9:283–310 [Google Scholar]
  129. Taylor AR, Chrachri A, Wheeler G, Goddard H, Brownlee C. 2011. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. PLOS Biol 9:e1001085 [Google Scholar]
  130. Terrill EJ, Melville WK, Stramski D. 2001. Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J. Geophys. Res. 106:815–16 [Google Scholar]
  131. Thamatrakoln K, Hildebrand M. 2008. Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiol 146:1397–407 [Google Scholar]
  132. Tyrrell T, Merico A. 2004. Emiliania huxleyi: bloom observations and the conditions that induce them. Coccolithophores: From Molecular Processes to Global Impact HR Thierstein, JR Young 75–97 Berlin: Springer-Verlag [Google Scholar]
  133. Urey HC. 1952. The Planets: Their Origin and Development New Haven, CT: Yale Univ. Press [Google Scholar]
  134. Vaughn JM, Novotny JF, Balch WM, Vining CL, Drapeau DT. et al. 2010. Isolation of Emiliania huxleyi viruses from the Gulf of Maine. Appl. Environ. Microbiol. 58:109–16 [Google Scholar]
  135. Vehmaa A, Almén AK, Brutemark A, Paul A, Riebesell U. et al. 2016. Ocean acidification challenges copepod phenotypic plasticity. Biogeosciences 13:6171–82 [Google Scholar]
  136. Vidyarathna NK, Fiori E, Lundgren VM, Granéli E. 2014. The effects of aeration on growth and toxicity of Prymnesium parvum grown with and without algal prey. Harmful Algae 39:55–63 [Google Scholar]
  137. von Dassow P, van den Engh G, Iglesias-Rodríguez MD, Gittins JR. 2012. Calcification state of coccolithophores can be assessed by light scatter depolarization measurements with flow cytometry. J. Plankton Res. 34:1011–27 [Google Scholar]
  138. Winter A, Henderiks J, Beaufort L, Rosalind EM, Rickaby REM, Brown CW. 2013. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36:316–25 [Google Scholar]
  139. Winter A, Jordan RW, Roth PH. 1994. Biogeography of living coccolithophores in ocean waters. Coccolithophores A Winter, WG Siesser 161–77 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  140. Wollast R, Garrels RM, Mackenzie FT. 1980. Calcite-seawater reactions in ocean surface waters. Am. J. Sci. 280:831–48 [Google Scholar]
  141. Xu J, Bach LT, Schulz KG, Zhao W, Gao K, Riebesell U. 2016. The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation. Biogeosciences 13:4637–43 [Google Scholar]
  142. Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K. 2009. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:1098–100 [Google Scholar]
  143. Young JR. 1994. Functions of coccoliths. Coccolithophores A Winter, WG Siesser 63–82 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  144. Young JR, Geisen M, Cros L, Kleijne A, Sprengel C. et al. 2003. A guide to extant coccolithophore taxonomy. J. Nannoplankton Res. Spec. Issue 1, Int. Nannoplankton Assoc. [Google Scholar]
  145. Young JR, Liu H, Probert I, Aris-Brosou S, Vargas CD. 2014. Morphospecies versus phylospecies concepts for evaluating phytoplankton diversity: the case of the coccolithophores. Cryptogam. Algologie 35:353–77 [Google Scholar]
  146. Zhai P, Hu Y, Trepte C, Winker D, Josset D. et al. 2013. Inherent optical properties of the coccolithophore: Emiliania huxleyi. Opt. Express 21:17625–38 [Google Scholar]
  147. Zhang X, Lewis M, Johnson B. 1998. Influence of bubbles on scattering of light in the ocean. Appl. Opt. 37:6525–36 [Google Scholar]
  148. Zhang Y, Klapper R, Lohbeck KT, Bach LT, Schulz KG. et al. 2014. Between- and within-population variations in thermal reaction norms of the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 59:1570–80 [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063319
Loading
/content/journals/10.1146/annurev-marine-121916-063319
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error