1932

Abstract

Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50–100 years, but with greater oxygen declines in intermediate waters (100–600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. Changes in respiration, circulation (including upwelling), nutrient inputs, and possibly methane release contribute to oxygen loss, often indirectly through stimulation of biological production and biological consumption. Microbes mediate many feedbacks in oxygen minimum zones that can either exacerbate or ameliorate deoxygenation via interacting nitrogen, sulfur, and carbon cycles. The paleo-record reflects drivers of and feedbacks to deoxygenation that have played out through the Phanerozoic on centennial, millennial, and hundred-million-year timescales. Natural oxygen variability has made it difficult to detect the emergence of a climate-forced signal of oxygen loss, but new modeling efforts now project emergence to occur in many areas in 15–25 years. Continued global deoxygenation is projected for the next 100 or more years under most emissions scenarios, but with regional heterogeneity. Notably, even small changes in oxygenation can have significant biological effects. New efforts to systematically observe oxygen changes throughout the open ocean are needed to help address gaps in understanding of ocean deoxygenation patterns and drivers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063359
2018-01-03
2024-05-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/10/1/annurev-marine-121916-063359.html?itemId=/content/journals/10.1146/annurev-marine-121916-063359&mimeType=html&fmt=ahah

Literature Cited

  1. Altieri AH, Gedan KB. 2015. Climate change and dead zones. Glob. Change Biol. 21:1395–406 [Google Scholar]
  2. Andrews OD, Bindoff NL, Halloran PR, Ilyina T, Le Quéré C. 2013. Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method. Biogeosciences 10:1799–813 [Google Scholar]
  3. Andrews OD, Buitenhuis E, Le Quéré C, Suntharalingam P. 2017. Biogeochemical modeling of dissolved oxygen in a changing ocean. Philos. Trans. R. Soc. A 375:20160328 [Google Scholar]
  4. Arévalo-Martínez DL, Kock A, Löscher CR, Schmitz RA, Bange HW. 2015. Massive nitrous oxide emissions from the tropical South Pacific Ocean.. Nat. Geosci. 8:530–35 [Google Scholar]
  5. Bailleul F, Vacquie-Garcia J, Guinet C. 2015. Dissolved oxygen sensor in animal borne instruments: an innovation for monitoring the health of oceans and investigating the functioning of marine ecosystems. PLOS ONE 10:e0132681 [Google Scholar]
  6. Bakun A. 1990. Global climate change and the intensification of coastal upwelling. Science 247:198–201 [Google Scholar]
  7. Belmadani A, Echevin V, Codron F, Takahashi K, Junquas C. 2014. What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile. Clim. Dyn. 43:1893–914 [Google Scholar]
  8. Beman JM, Carolan MT. 2013. Deoxygenation alters bacterial diversity and community composition in the ocean's largest oxygen minimum zone. Nat. Commun. 4:2705 [Google Scholar]
  9. Bianchi D, Dunne JP, Sarmiento JL, Galbraith ED. 2012. Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2. Glob. Biogeochem. Cycles 26:GB2009 [Google Scholar]
  10. Bianchi D, Galbraith ED, Carozza DA, Mislan AS, Stock CA. 2013. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6:545–48 [Google Scholar]
  11. Biogeochem.-Argo Plan. Group. 2016. The Scientific Rationale, Design and Implementation Plan for a Biogeochemical-Argo Float Array Ed. K Johnson, H Claustre Issy-les-Moulineaux, Fr.: IFREMER
  12. Bittig H, Kortzinger A, Johnson K, Claustre H, Emerson S. et al. 2015. SCOR WG 142: quality control procedures for oxygen and other biogeochemical sensors on floats and gliders. Recommendation for oxygen measurements from Argo floats, implementation of in-air-measurement routine to assure highest long-term accuracy. Rep., Sci. Comm. Ocean. Res., Int. Counc. Sci Paris: https://doi.org/10.13155/45917 [Crossref]
  13. Boetius A, Wenzhöfer F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci. 6:725–34 [Google Scholar]
  14. Bograd SJ, Buil MP, Di Lorenzo E, Castro CG, Schroeder ID. et al. 2015. Changes in source waters to the Southern California Bight. Deep-Sea Res. II 112:42–52 [Google Scholar]
  15. Bograd SJ, Castro CG, Di Lorenzo E, Palacios DM, Bailey H. et al. 2008. Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophys. Res. Lett. 35:L12607 [Google Scholar]
  16. Bopp L, Le Quéré C, Heimann M, Manning AC, Monfray P. 2002. Climate-induced oceanic oxygen fluxes: implications for the contemporary carbon budget. Glob. Biogeochem. Cycles 16:6–113 [Google Scholar]
  17. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP. et al. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–45 [Google Scholar]
  18. Bopp L, Resplandy L, Untersee A, Le Mezo P Kageyama M. 2017. Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth System models. Philos. Trans. R. Soc. A 375:20160323 [Google Scholar]
  19. Bowyer F, Wood RA, Poulton SW. 2017. Controls on the evolution of Ediacaran metazoan ecosystems: a redox perspective. Geobiology 2017:1–36 [Google Scholar]
  20. Brandt P, Hormann V, Kortzinger A, Visbeck M, Krahmann G, Stramma L. 2012. Changes in the ventilation of the oxygen minimum zone of the tropical North Atlantic. J. Phys. Oceanogr. 40:1784–801 [Google Scholar]
  21. Brennecka GA, Herrmann AD, Algeo TJ, Anbar AD. 2011. Rapid expansion of oceanic anoxia immediately before the end Permian mass extinction. PNAS 108:17631–34 [Google Scholar]
  22. Brewer PG, Peltzer ET. 2016. Ocean chemistry, ocean warming, and emerging hypoxia. J. Geophys. Res. Oceans 121:3659–67 [Google Scholar]
  23. Brewer PG, Peltzer ET. 2017. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth. Philos. Trans. R. Soc. A 375:20160319 [Google Scholar]
  24. Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD. et al. 2016. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. PNAS 113:10601–6 [Google Scholar]
  25. Cabre A, Marinov I, Bernardello R, Bianchi D. 2015. Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends. Biogeosciences 12:5429–54 [Google Scholar]
  26. Capotondi AM, Alexander A, Bond NA, Curchitser EN, Scott JD. 2012. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Oceans 117:C04031 [Google Scholar]
  27. Caswell B, Coe A. 2013. Primary productivity controls on opportunistic bivalves during Early Jurassic oceanic deoxygenation. Geology 41:1163–66 [Google Scholar]
  28. Cocco VF, Joos M, Steinacher TL, Frölicher TL, Bopp L. et al. 2013. Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences 10:1849–68 [Google Scholar]
  29. Codispoti LA, Brandes JA, Christensen JP, Devol AH, Naqvi SWA. et al. 2001. The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the Anthropocene. Sci. Mar. 65:85–105 [Google Scholar]
  30. Coffey DM, Holland KN. 2015. First autonomous recording of in situ dissolved oxygen from free-ranging fish. Anim. Biotelem. 3:47 [Google Scholar]
  31. Cooley SR. 2012. How human communities could ‘feel’ changing ocean biogeochemistry. Curr. Opin. Environ. Sustain. 4:258–63 [Google Scholar]
  32. Crawford WR, Peña MA. 2013. Declining oxygen on the British Columbia continental shelf. Atmos.-Ocean 51:88–103 [Google Scholar]
  33. Dale AW, Graco M, Wallmann K. 2017. Strong and dynamic benthic-pelagic coupling and feedbacks in a coastal upwelling system (Peruvian Shelf). Front. Mar. Sci. 4:29 [Google Scholar]
  34. De Leo FC, Gauthier M, Nephin J, Mihaly S, Juniper SK. 2016. Bottom trawling and oxygen minimum zone influences on continental slope benthic community structure off Vancouver Island (NE Pacific). Deep-Sea Res. II 137:404–19 [Google Scholar]
  35. Deutsch C, Berelson W, Thunell R, Weber T, Tems C. et al. 2014. Centennial changes in North Pacific anoxia linked to tropical trade winds. Science 345:665–68 [Google Scholar]
  36. Deutsch C, Brix H, Ito T, Frenzel H, Thompson L. 2011. Climate-forced variability of ocean hypoxia. Science 333:336–39 [Google Scholar]
  37. Deutsch C, Emerson S, Thompson L. 2006. Physical-biological interactions in North Pacific oxygen variability. J. Geophys. Res. Oceans 111:C09S90 [Google Scholar]
  38. Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB. 2015. Climate change tightens a metabolic constraint on marine habitats. Science 348:1132–35 [Google Scholar]
  39. Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–29 [Google Scholar]
  40. Dickson AJ, Cohen AS, Coe AL. 2012. Seawater oxygenation during the Paleocene-Eocene Thermal Maximum. Geology 40:639–42 [Google Scholar]
  41. Diffenbaugh NS, Snyder MA, Sloan LC. 2004. Could CO2-induced land-cover feedbacks alter near-shore upwelling regimes. PNAS 101:27–32 [Google Scholar]
  42. D'Souza NA, Subramaniam A, Juhl AR, Hafez M, Chekalyuk A. et al. 2016. Elevated surface chlorophyll associated with natural oil seeps in the Gulf of Mexico. Nat. Geosci. 9:215–18 [Google Scholar]
  43. Du M, Kessler JD. 2012. Assessment of the spatial and temporal variability of bulk hydrocarbon respiration following the Deepwater Horizon oil spill. Environ. Sci. Technol. 46:10499–507 [Google Scholar]
  44. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR. et al. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–97 [Google Scholar]
  45. Duteil O, Böning CW, Oschlies A. 2014. Variability in subtropical-tropical cells drives oxygen levels in the tropical Pacific Ocean. Geophys. Res. Lett. 41:8926–34 [Google Scholar]
  46. Dutkiewicz S, Scott JR, Follows MJ. 2013. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27:463–77 [Google Scholar]
  47. Ekau W, Auel H, Pörtner HO, Gilbert D. 2010. Impacts of hypoxia on the structure and processes in the pelagic community (zooplankton, macro-invertebrates and fish). Biogeosciences 7:1669–99 [Google Scholar]
  48. Emerson S, Watanabe YW, Ono T, Mecking S. 2004. Temporal trends in apparent oxygen utilization in the upper pycnocline of the North Pacific: 1980-2000. J. Oceanogr. 60:139–47 [Google Scholar]
  49. Frölicher TL, Joos F, Plattner G-K, Steinacher M, Doney SC. 2009. Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle-climate model ensemble. Glob. Biogeochem. Cycles 23:GB1003 [Google Scholar]
  50. Frölicher TL, Rodgers KB, Stock CA, Cheung WL. 2016. Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Glob. Biogeochem. Cycles 30:1224–43 [Google Scholar]
  51. Gallo ND, Levin LA. 2016. Fish ecology and evolution in the world's oxygen minimum zones and implications of ocean deoxygenation. Advances in Marine Biology 74 BE Curry 117–98 London: Academic [Google Scholar]
  52. Gallo ND, Victor DG, Levin LA. 2017. Ocean commitments under the Paris Agreement. Nat. Clim. Change. In press
  53. Garcia HE, Boyer TP, Levitus S, Locarnini RA, Antonov J. 2005. On the variability of dissolved oxygen and apparent oxygen utilization content for the upper world ocean: 1955 to 1998. Geophys. Res. Lett. 32:L09604 [Google Scholar]
  54. García-Reyes M, Sydeman WJ, Schoeman DS, Rykaczewski RR, Black BA. et al. 2015. Under pressure: climate change, upwelling and eastern boundary upwelling ecosystems. Front. Mar. Sci. 2:109 [Google Scholar]
  55. Garreaud RD, Falvey M. 2009. The coastal winds off western subtropical South America in future climate scenarios. Int. J. Climatol. 29:543–54 [Google Scholar]
  56. Gilbert D, Rabalais NN, Diaz RJ, Zhang J. 2010. Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 7:2283–96 [Google Scholar]
  57. Gilbert D, Sundby B, Gobeil C, Mucci A, Tremblay GH. 2005. A seventy-two year record of diminishing deep-water oxygen in the St. Lawrence estuary: the northwest Atlantic connection. Limnol. Oceanogr. 50:1654–66 [Google Scholar]
  58. Gilly WF, Beman JM, Litvin SY, Robison BH. 2013. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu. Rev. Mar. Sci. 5:393–420 [Google Scholar]
  59. Glecker PJ, Durack PJ, Stouffer RJ, Johnson GC, Forest CE. 2016. Industrial-era global ocean heat uptake doubles in recent decades. Nat. Clim. Change 6:394–98 [Google Scholar]
  60. Gnanadesikan AD, Bianchi D, Pradal MA. 2013. Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters. Geophys. Res. Lett. 40:5194–98 [Google Scholar]
  61. Goericke R, Bograd S, Grundle DS. 2015. Denitrification and flushing of the Santa Barbara Basin bottom waters. Deep-Sea Res. II 112:53–60 [Google Scholar]
  62. Gooday AJ, Jorissen F, Levin LA, Middelburg JJ, Naqvi W. et al. 2009. Historical records of coastal eutrophication and hypoxia. Biogeosciences 6:1707–45 [Google Scholar]
  63. Gruber N. 2008. The marine nitrogen cycle: overview and challenges. Nitrogen in the Marine Environment DG Capone, DA Bronk, MR Mulholland, EJ Carpenter 1–50 San Diego, CA: Academic, 2nd ed.. [Google Scholar]
  64. Gruber N. 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. R. Soc. A 369:1980–86 [Google Scholar]
  65. Gruber N, Doney SC, Emerson SR, Gilbert D, Kobayashi T. et al. 2010. Adding oxygen to ARGO: developing a global in situ observatory for ocean deoxygenation and biogeochemistry. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009 2 Community White Papers J Hall, DE Harrison, D Stammer, chap. 39. ESA Publ. WPP-306 Paris: Eur. Space Agency http://www.oceanobs09.net/proceedings/cwp/cwp39/ [Google Scholar]
  66. Hall POJ, Almroth Rosell E, Bonaglia S, Dale AW, Hylén A. et al. 2017. Influence of natural oxygenation of Baltic Proper deep water on benthic recycling and removal of phosphorus, nitrogen, silicon and carbon. Front. Mar. Sci. 4:27 [Google Scholar]
  67. Hansman RL, Thurber AR, Levin LA, Aluwihare LI. 2017. Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America. Deep-Sea Res. I 120:122–31 [Google Scholar]
  68. Harrison CS, Hales B, Siedlecki S, Samelson RM. 2016. Potential and timescales for oxygen depletion in coastal upwelling systems: a box-model analysis. J. Geophys. Res. Oceans 121:3202–27 [Google Scholar]
  69. Hasselmann K. 1993. Optimal fingerprints for the detection of time-dependent climate change. J. Clim. 6:1957–71 [Google Scholar]
  70. Helm KP, Bindoff NL, Church JA. 2011. Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett. 38:L23602 [Google Scholar]
  71. Henson SA, Beaulieu C, Ilyina T, John JG, Long M. et al. 2017. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8:14682 [Google Scholar]
  72. Hofmann M, Schellnhuber HJ. 2009. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. PNAS 106:3017–22 [Google Scholar]
  73. Holding JM, Duarte CM, Arrieta M, Vaquer-Sunyer R, Coello-Camba A. et al. 2013. Experimentally determined temperature thresholds for Arctic plankton community metabolism. Biogeosciences 10:357–70 [Google Scholar]
  74. IOC (Intergov. Oceanogr. Comm.). 2017. Deoxygenation – open ocean and coastal waters http://www.unesco.org/new/en/natural-sciences/ioc-oceans/sections-and-programmes/ocean-sciences/global-ocean-oxygen-network
  75. IPCC (Intergov. Panel Clim. Change). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al. Cambridge, UK: Cambridge Univ. Press
  76. Ito T, Deutsch C. 2010. A conceptual model for the temporal spectrum of oceanic oxygen variability. Geophys. Res. Lett. 37:L03601 [Google Scholar]
  77. Ito T, Nenes A, Johnson MS, Meskhidze N, Deutsch C. 2016. Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants. Nat. Geosci. 9:443–47 [Google Scholar]
  78. Karstensen J, Fiedler B, Schute F, Brandt P, Kortzinger A. et al. 2015. Open ocean dead zones in the tropical North Atlantic Ocean. Biogeosciences 12:2597–605 [Google Scholar]
  79. Keeling RF, Garcia HE. 2002. The change in oceanic O2 inventory associated with recent global warming. PNAS 99:7848–53 [Google Scholar]
  80. Keeling RF, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2:199–229 [Google Scholar]
  81. Kim TW, Lee K, Najjar RG, Jeong HD, Jeong HJ. 2011. Increasing N abundance in the northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science 334:505–9 [Google Scholar]
  82. Knoll AH, Carroll SB. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–37 [Google Scholar]
  83. Kvenvolden K, Rogers B. 2005. Gaia's breath: global methane exhalations. Mar. Petrol. Geol. 22:579–90 [Google Scholar]
  84. Le Quéré CO, Aumont OA, Monfray P, Orr J. 2003. Propagation of climatic events on ocean stratification, marine biology, and CO2: case studies over the 1979–1999 period. J. Geophys. Res. Oceans 108:3375 [Google Scholar]
  85. Levin LA. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. 41:1–45 [Google Scholar]
  86. Levin LA, Breitburg D. 2015. Connecting coasts and seas to address ocean deoxygenation. Nat. Clim. Change 5:401–3 [Google Scholar]
  87. Levin LA, Ekau W, Gooday A, Jorrisen F, Middelburg J. et al. 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6:2063–98 [Google Scholar]
  88. Levin LA, Liu KK, Emeis KC, Breitburg DL, Cloern J. et al. 2015. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins. J. Mar. Syst. 141:3–17 [Google Scholar]
  89. Levin LA, Mengerink K, Gjerde KM, Rowden AA, Van Dover CL. et al. 2016. Defining “serious harm” to the marine environment in the context of deep-seabed mining. Mar. Policy 74:245–59 [Google Scholar]
  90. Levin LA, Orphan VJ, Rouse GW, Ussler W, Rathburn AE. et al. 2012. A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems. Proc. R. Soc. B 279:2580–88 [Google Scholar]
  91. Levin LA, Whitcraft C, Mendoza GF, Gonzalez J, Cowie G. 2009. Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan Margin oxygen minimum zone (700–1100 m). Deep-Sea Res. II 56:449–71 [Google Scholar]
  92. Long MC, Deutsch C, Ito T. 2016. Finding forced trends in oceanic oxygen. Glob. Biogeochem. Cycles 30:381–97 [Google Scholar]
  93. Löscher CR, Fischer MA, Neulinger SC, Fiedler B, Philippi M. et al. 2015. Hidden biosphere in an oxygen-deficient Atlantic open-ocean eddy: future implications of ocean deoxygenation on primary production in the eastern tropical North Atlantic. Biogeosciences 12:7467–82 [Google Scholar]
  94. Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15 [Google Scholar]
  95. Matear RJ, Hirst AC, McNeil BI. 2000. Changes in dissolved oxygen in the Southern Ocean with climate change. Geochem. Geophys. Geosyst. 1:1050 [Google Scholar]
  96. McClatchie S, Goericke R, Cosgrove R, Auad G, Vetter R. 2010. Oxygen in the Southern California Bight: multidecadal trends and implications for demersal fisheries. Geophys. Res. Lett. 37:L19602 [Google Scholar]
  97. McCormick LR, Levin LA. 2017. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms. Philos. Trans. R. Soc. A 375:20160322 [Google Scholar]
  98. McDonagh EL, Bryden HL, King BA, Sanders RJ, Cunningham SA, Marsh R. 2005. Decadal changes in the south Indian Ocean thermocline. J. Clim. 18:1575–90 [Google Scholar]
  99. McInerney FA, Wing SL. 2011. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39:489–516 [Google Scholar]
  100. Mecking S, Langdon C, Feely RA, Sabine CL, Deutsch CA, Min DH. 2008. Climate variability in the North Pacific thermocline diagnosed from oxygen measurements: an update based on the U.S. CLIVAR/CO2 Repeat Hydrography cruises. Glob. Biogeochem. Cycles 22:GB3015 [Google Scholar]
  101. Meinvielle M, Johnson GC. 2013. Decadal water-property trends in the California Undercurrent, with implications for ocean acidification. J. Geophys. Res. Oceans 118:6687–703 [Google Scholar]
  102. Moffitt SE, Hill TM, Roopnarine PD, Kennett JP. 2015a. Response of seafloor ecosystems to abrupt global climate change. PNAS 112:4684–89 [Google Scholar]
  103. Moffitt SE, Moffitt RA, Sauthoff W, Davis CV, Hewett K, Hill TM. 2015b. Paleoceanographic insights on recent oxygen minimum zone expansion: lessons for modern oceanography. PLOS ONE 10:e0115246 [Google Scholar]
  104. Montes E, Muller-Karger FE, Cianca A, Lomas MW, Lorenzoni L, Habtes S. 2016. Decadal variability in the oxygen inventory of North Atlantic subtropical underwater captured by sustained, long-term oceanographic time series observations. Glob. Biogeochem. Cycles 30:460–78 [Google Scholar]
  105. Montes I, Dewitte B, Gutknecht E, Paulmier A, Dadou I. et al. 2014. High-resolution modeling of the Eastern Tropical Pacific oxygen minimum zone: sensitivity to the tropical oceanic circulation. J. Geophys. Res. Oceans 119:5515–32 [Google Scholar]
  106. Moore JK, Lindsay K, Doney S, Long MC, Misumi K. et al. 2013. Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1(BGC)]: comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios. J. Clim. 26:9291–312 [Google Scholar]
  107. Mora C, Wei C-L, Rollo A, Amaro T, Baco AR. et al. 2013. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLOS Biol 11:e1001682 [Google Scholar]
  108. Myhre SE, Kroeker KJ, Hill TM, Roopnarine P, Kennett JP. 2017. Community benthic paleoecology from high-resolution climate records: Mollusca and foraminifera in post-glacial environments of the California margin. Quat. Sci. Rev. 155:179–97 [Google Scholar]
  109. Nakanowatari T, Ohshima KI, Wakatsuchi M. 2007. Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1955–2004. Geophys. Res. Lett. 34:L04602 [Google Scholar]
  110. Naqvi SWA, Bange HW, Farias L, Monteiro PMA, Scranton MI, Zhang J. 2010. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7:2159–90 [Google Scholar]
  111. Naqvi SWA, Naik H, Jayakumar DA, Shailaja MS, Narvekar PV. 2006. Seasonal oxygen deficiency over the western continental shelf of India. Past and Present Water Column Anoxia LN Neretin 195–224 Dordrecht, Neth.: Springer [Google Scholar]
  112. Netburn AN, Koslow JA. 2015. Dissolved oxygen as a constraint on daytime deep scattering layer depth in the southern California current ecosystem. Deep-Sea Res. I 104:149–58 [Google Scholar]
  113. O'Connor FM, Boucher O, Gedney N, Jones CD, Folberth GA. et al. 2010. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev. Geophys. 48:RG4005 [Google Scholar]
  114. Ono T, Midorikawa T, Watanabe YW, Tadokoro K, Saino T. 2001. Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 to 1998. Geophys. Res. Lett. 28:3285–88 [Google Scholar]
  115. Oschlies A, Duteil O, Getzlaff J, Koeve W, Landolfi A, Schmidtko S. 2017. Patterns of deoxygenation: sensitivity to natural and anthropogenic drivers. Philos. Trans. R. Soc. A 375:20160325 [Google Scholar]
  116. Oschlies A, Schulz KG, Riebesell U, Schmittner A. 2008. Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export. Glob. Biogeochem. Cycles 22:GB4008 [Google Scholar]
  117. Ostrander CM, Owens JD, Nielsen SG. 2017. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ∼94 Ma). Sci. Adv. 3:e1701020 [Google Scholar]
  118. Papiol V, Hendrickx ME, Serrano D. 2017. Effects of latitudinal changes in the oxygen minimum zone of the northeast Pacific on the distribution of bathyal benthic decapod crustaceans. Deep-Sea Res. II 137:113–30 [Google Scholar]
  119. Paulmier AD, Ruiz-Pino D, Garcon V. 2008. The oxygen minimum zone (OMZ) off Chile as intense source of CO2 and N2O. Cont. Shelf Res. 28:2746–56 [Google Scholar]
  120. Phrampus BJ, Hornbach MJ. 2012. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature 490:527–30 [Google Scholar]
  121. Pierce SD, Barth JA, Shearman RK, Erofeev A. 2012. Declining oxygen in the Northeast Pacific. J. Phys. Oceanogr. 42:495–501 [Google Scholar]
  122. Plattner GK, Joos F, Stocker TF, Marchal O. 2001. Feedback mechanisms and sensitivities of ocean carbon under global warming. Tellus B 53:564–92 [Google Scholar]
  123. Praetorius SK, Mix AC, Walczak MH, Wolhowe MD, Addison JA. et al. 2015. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527:362–66 [Google Scholar]
  124. Prather MJ, Ehhalt D, Dentener F, Derwent R, Dlugokencky E. et al. 2001. Atmospheric chemistry and greenhouse gases. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden et al.239–87 Cambridge, UK: Cambridge Univ. Press. [Google Scholar]
  125. Rabalais NN, Cai WJ, Carstensen J, Conley DJ, Fry B. et al. 2014. Eutrophication-driven deoxygenation in the coastal ocean. Oceanography 27:1172–83 [Google Scholar]
  126. Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A. et al. 2015. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5:475–80 [Google Scholar]
  127. Ren A. 2016. Declining dissolved oxygen in the central California Current region MS Thesis, Univ. Maine, Orono. http://digitalcommons.library.umaine.edu/etd/2539
  128. Ricke KL, Caldeira K. 2014. Natural climate variability and future climate policy. Nat. Clim. Change 4:333–38 [Google Scholar]
  129. Ruppel CD, Kessler JD. 2017. The interaction of climate change and methane hydrates. Rev. Geophys. 55:126–68 [Google Scholar]
  130. Rykaczewski RR, Dunne JP. 2010. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophys. Res. Lett. 37:L21606 [Google Scholar]
  131. Rykaczewski RR, Dunne JP, Sydeman WJ, García-Reyes M, Black BA, Bograd SJ. 2015. Poleward displacement of coastal upwelling-favorable winds in the ocean's eastern boundary currents through the 21st century. Geophys. Res. Lett. 42:6424–31 [Google Scholar]
  132. Santos GC, Kerr R, Azevedo JLL, Mendes CRB, da Cunha LC. 2016. Influence of Antarctic Intermediate Water on the deoxygenation of the Atlantic Ocean. Dyn. Atmos. Oceans 76:72–82 [Google Scholar]
  133. Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S. 1998. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–49 [Google Scholar]
  134. Sasano D, Takatani N, Kosugi N, Nakano T, Midorikawa M, Ishii M. 2015. Multidecadal trends of oxygen and their controlling factors in the western North Pacific. Glob. Biogeochem. Cycles 2:935–56 [Google Scholar]
  135. Sato KN, Levin LA, Schiff K. 2017. Habitat compression and expansion of sea urchins in response to changing climate conditions on the California continental shelf and slope (1994–2013). Deep-Sea Res. II 137:377–89 [Google Scholar]
  136. Schaffer G, Olsen SM, Pedersen JOP. 2009. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels. Nat. Geosci. 2:105–9 [Google Scholar]
  137. Schmidtko S, Johnson GC. 2012. Multidecadal warming and shoaling of Antarctic Intermediate Water. J. Clim. 25:207–21 [Google Scholar]
  138. Schmidtko S, Stramma L, Visbeck M. 2017. Decline in global oceanic oxygen content during the past five decades. Nature 542:335–39 [Google Scholar]
  139. Schmittner A, Galbraith ED, Hostetler SW, Pederson TF, Zhang R. 2007. Large fluctuations of dissolved oxygen in the Indian and Pacific Oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction. Paleoceanography 22:PA3207 [Google Scholar]
  140. Scholz F, McManus J, Mix AC, Hensen C, Schneider RR. et al. 2014. The impact of ocean deoxygenation on iron release from continental margin sediments. Nat. Geosci. 7:433–37 [Google Scholar]
  141. Seibel BA. 2011. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J. Exp. Biol. 214:326–36 [Google Scholar]
  142. Seibel BA, Schneider J, Kaartvedt S, Wishner KF, Daly KL. 2016. Hypoxia tolerance and metabolic suppression in oxygen minimum zone euphausiids: implications for ocean deoxygenation and biogeochemical cycles. Integr. Comp. Biol. 56:510–23 [Google Scholar]
  143. Sekerci Y, Petrovskii S. 2016. Mathematical modeling of plankton–oxygen dynamics under the climate change. Bull. Math. Biol. 77:2325–53 [Google Scholar]
  144. Siedlecki SA, Banas NS, Davis KA, Giddings S, Hickey B. et al. 2015. Seasonal and interannual oxygen variability on the Washington and Oregon continental shelves. J. Geophys. Res. Oceans 120:608–33 [Google Scholar]
  145. Siedlecki SA, Kaplan IC, Hermann AJ, Nguyen TT, Bond NA. et al. 2016. Experiments with seasonal forecasts of ocean conditions for the northern region of the California Current upwelling system. Sci. Rep. 6:27203 [Google Scholar]
  146. Sluijs AL, van Roij L, Harrington GL, Schouten S, Sessa JA. et al. 2014. Warming, euxinia and sea level rise during the Paleocene-Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. Clim. Past 10:1421–39 [Google Scholar]
  147. Sperling EA, Frieder CA, Levin LA. 2016. Biodiversity response to natural gradients of multiple stressors on continental margins. Proc. R. Soc. B 283:20160637 [Google Scholar]
  148. Sperling EA, Frieder CA, Raman A, Girguis PR, Levin LA, Knoll AH. 2013. Oxygen, ecology and the Cambrian radiation of animals. PNAS 110:13446–51 [Google Scholar]
  149. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I. et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:1259855 [Google Scholar]
  150. Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P. et al. 2010. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005 [Google Scholar]
  151. Stendardo I, Gruber N. 2012. Oxygen trends over five decades in the North Atlantic. J. Geophys. Res. Oceans 117:C11004 [Google Scholar]
  152. Stevens SW, Johnson RJ, Bates NR, Parsons RJ. 2016. Physical and biogeochemical factors affecting deep oxygen minimum zone variability at the Bermuda Atlantic Time Series Site Presented at Ocean Sci. Meet New Orleans, LA: Feb. 21–26
  153. Stramma L, Johnson GC, Sprintall J, Mohrholz V. 2008. Expanding oxygen minimum zones in the tropical oceans. Science 320:655–58 [Google Scholar]
  154. Stramma L, Oschlies A, Schmidtko S. 2012. Mismatch between observed and modeled trends in dissolved upper-ocean oxygen over the last 50 yr. Biogeosciences 9:4045–57 [Google Scholar]
  155. Stramma L, Prince ED, Schmidtko S, Luo J, Hoolihan JP. et al. 2011. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2:33–37 [Google Scholar]
  156. Stramma L, Schmidtko S, Levin LA, Johnson GC. 2010. Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res. I 57:1–9 [Google Scholar]
  157. Stramma L, Visbeck M, Brandt P, Tanhua T, Wallace D. 2009. Deoxygenation in the oxygen minimum zone of the eastern tropical North Atlantic. Geophys. Res. Lett. 36:L20607 [Google Scholar]
  158. Sweetman AK, Chelsky A, Pitt KA, Andrade H, van Oevelen D, Renaud PE. 2016. Jellyfish decomposition at the seafloor rapidly alters biogeochemical cycling and carbon flow through benthic food-webs. Limnol. Oceanogr. 61:1449–61 [Google Scholar]
  159. Sweetman AK, Thurber AR, Smith CR, Levin LA, Mora C. et al. 2017. Major impacts of climate change on deep-sea benthic ecosystems. Elementa Sci. Anthr. 5:4 [Google Scholar]
  160. Sydeman WJ, García-Reyes M, Schoeman DS, Rykaczewski RR, Thompson SA. et al. 2014. Climate change and wind intensification in coastal upwelling ecosystems. Science 345:77–80 [Google Scholar]
  161. Tagliabue A, Bopp L, Gehlen M. 2011. The response of marine carbon and nutrient cycles to ocean acidification: large uncertainties related to phytoplankton physiological assumptions. Glob. Biogeochem. Cycles 25:GB3017 [Google Scholar]
  162. Takatani Y, Sasano D, Nakano T, Midorikawa T, Ishii M. 2012. Decrease of dissolved oxygen after the mid-1980s in the western North Pacific subtropical gyre along the 137°E repeat section. Glob. Biogeochem. Cycles 26:GB2013 [Google Scholar]
  163. Talley L, Feely R, Sloyan B, Wanninkhof R, Baringer M. et al. 2016. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8:185–215 [Google Scholar]
  164. Thomas MK, Kremer CT, Klausmeier CA, Litchman E. 2012. A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–88 [Google Scholar]
  165. Valentine DL. 2011. Emerging topics in marine methane biogeochemistry. Annu. Rev. Mar. Sci. 3:147–71 [Google Scholar]
  166. Valentine DL, Fisher GB, Pizararo O, Kaiser CL, Yoerger D. et al. 2016. Autonomous marine robotic technology reveals an expansive benthic bacterial community relevant to regional nitrogen biogeochemistry. Environ. Sci. Technol. 50:11057–65 [Google Scholar]
  167. Vaquer-Sunyer R, Duarte CM. 2008. Thresholds of hypoxia for marine biodiversity. PNAS 105:15452–57 [Google Scholar]
  168. Vaquer-Sunyer R, Duarte CM. 2011. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17:1788–97 [Google Scholar]
  169. Vaquer-Sunyer R, Duarte CM, Regaudie-de-Gioux A, Holding J, García-Corral LS. et al. 2013. Seasonal patterns in Arctic planktonic metabolism (Fram Strait-Svalbard region). Biogeosciences 10:1451–69 [Google Scholar]
  170. Wallmann K, Pinero E, Burwicz E, Haeckel M, Hensen C. et al. 2012. The global inventory of methane hydrate in marine sediments: a theoretical approach. Energies 5:2449–98 [Google Scholar]
  171. Wang D, Gouhier T, Menge B, Ganguly A. 2015. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518:390–94 [Google Scholar]
  172. Watson AJ. 2016. Oceans on the edge of anoxia. Science 354:1529–30 [Google Scholar]
  173. Whitney FA, Bograd SJ, Ono T. 2013. Nutrient enrichment of the subarctic Pacific Ocean pycnocline. Geophys. Res. Lett. 40:2200–5 [Google Scholar]
  174. Whitney FA, Freeland HJ, Robert M. 2007. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog. Oceanogr. 75:179–99 [Google Scholar]
  175. Wishner KF, Outram DM, Seibel BA, Daly KL, Williams RL. 2013. Zooplankton in the eastern tropical North Pacific: boundary effects of oxygen minimum zone expansion. Deep-Sea Res. I 79:122–40 [Google Scholar]
  176. Wright JJ, Konwar KM, Hallam SJ. 2012. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10:381–94 [Google Scholar]
  177. Yamamoto A, Abe-Ouchi A, Shigemitsu M, Oka A, Takahashi K. et al. 2015. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long-term global warming. Glob. Biogeochem. Cycles 29:1801–15 [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063359
Loading
/content/journals/10.1146/annurev-marine-121916-063359
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error