Antarctic Bottom Water (AABW) is the coldest, densest, most prolific water mass in the global ocean. AABW forms at several distinct regions along the Antarctic coast and feeds into the bottom limb of the meridional overturning circulation, filling most of the global deep ocean. AABW has warmed, freshened, and declined in volume around the globe in recent decades, which has implications for the global heat and sea level rise budgets. Over the past three decades, the use of tracers, especially time-varying tracers such as chlorofluorocarbons, has been essential to our understanding of the formation, circulation, and variability of AABW. Here, we review three decades of temperature, salinity, and tracer data and analysis that have led to our current knowledge of AABW and how the southern component of deep-ocean ventilation is changing with time.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aoki S, Rintoul SR, Ushio S, Watanabe S, Bindoff NL. 2005. Freshening of the Adélie Land bottom water near 140°E. Geophys. Res. Lett. 32:L23601 [Google Scholar]
  2. Arrigo KR, van Dijken G, Long M. 2008. Coastal Southern Ocean: a strong anthropogenic CO2 sink. Geophys. Res. Lett. 35:L21602 [Google Scholar]
  3. Baines PG, Condie S. 1998. Observations and modelling of Antarctic downslope flows: a review. See Jacobs & Weiss 1998 29–49
  4. Bindoff NL, McDougall TJ. 1994. Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr. 24:1137–52 [Google Scholar]
  5. Bretherton FP, Davis RE, Fandry CB. 1976. A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr. 23:559–82 [Google Scholar]
  6. Broecker WS, Peng T. 1982. Tracers in the Sea Palisades, NY: Lamont-Doherty Geol. Obs. [Google Scholar]
  7. Bullister JL. 1989. Chlorofluorocarbons as time dependent tracers in the ocean. Oceanography 2:212–17 [Google Scholar]
  8. Bullister JL. 2015. Atmospheric Histories 1765–2015 for CFC-11, CFC-12, CFC-113, CCl4, SF6 and N2O NDP-095 Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., US Dep. Energy Oak Ridge, Tenn: https://www.nodc.noaa.gov/ocads/oceans/CFC_ATM_Hist2015.html [Google Scholar]
  9. Bullister JL, Weiss RF. 1983. Anthropogenic chlorofluoromethanes in the Greenland and Norwegian Seas. Science 221:265–68 [Google Scholar]
  10. Cheon WG, Lee SK, Gordon AL, Liu Y, Cho CB, Park JJ. 2015. Replicating the 1970s’ Weddell Polynya using a coupled ocean-sea ice model with reanalysis surface flux fields. Geophys. Res. Lett. 42:5411–18 [Google Scholar]
  11. Coles VJ, McCartney MS, Olson DB, Smethie WM Jr.. 1996. Changes in Antarctic Bottom Water properties in the western South Atlantic in the late 1980s. J. Geophys. Res. 101:8957–70 [Google Scholar]
  12. Desbruyères DG, Purkey SG, McDonagh EL, Johnson GC, King BA. 2016. Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys. Res. Lett. 43:10356–65 [Google Scholar]
  13. Doney SC, Bullister JL. 1992. A chlorofluorocarbon section in the eastern North Atlantic. Deep-Sea Res. A 39:1857–83 [Google Scholar]
  14. Doney SC, Jenkins WJ. 1994. Ventilation of the deep western boundary current and abyssal western North Atlantic: estimates from tritium and 3He distributions. J. Phys. Oceanogr. 24:638–59 [Google Scholar]
  15. Fahrbach E, Hoppema M, Rohardt G, Boebel O, Klatt O, Wisotzki A. 2011. Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: the Weddell gyre as a heat buffer. Deep-Sea Res. II 58:2509–23 [Google Scholar]
  16. Fahrbach E, Hoppema M, Rohardt G, Schroder M, Wisotzki A. 2004. Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dyn 54:77–91 [Google Scholar]
  17. Fahrbach E, Rohardt G, Scheele N, Schröder M, Strass V, Wisotzki A. 1995. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. J. Mar. Res. 534:515–38 [Google Scholar]
  18. Fine RA, Molinari RL. 1988. A continuous deep western boundary current between Abaco (26.5°N) and Barbados (13°N). Deep-Sea Res. A 35:1441–50 [Google Scholar]
  19. Fine RA, Rhein M, Andrie C. 2003. Using a CFC effective age to estimate propagation and storage of climate anomalies in the deep western North Atlantic Ocean. Geophys. Res. Lett. 29:2227 [Google Scholar]
  20. Foster TD, Carmack EC. 1976. Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res. Oceanogr. Abstr. 23:301–17 [Google Scholar]
  21. Fukasawa M, Freeland H, Perkin R, Watanabe T. 2004. Bottom water warming in the North Pacific Ocean. Nature 427:825–27 [Google Scholar]
  22. Gebbie G, Huybers P. 2011. How is the ocean filled?. Geophys. Res. Lett. 38:L06604 [Google Scholar]
  23. Gordon AL. 1966. Potential temperature, oxygen and circulation of bottom water in the Southern Ocean. Deep-Sea Res. Oceanogr. Abstr. 13:1125–38 [Google Scholar]
  24. Gordon AL. 1974. Varieties and variability of Antarctic Bottom Water. Processus de Formation des Eaux Oceaniques Profondes en Particulier en Mediterranee Occidentale33–47 Paris: CNRS [Google Scholar]
  25. Gordon AL. 1978. Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr. 8:600–12 [Google Scholar]
  26. Gordon AL. 1998. Western Weddell Sea thermohaline stratification. See Jacobs & Weiss 1998 215–40
  27. Gordon AL. 2013. Bottom water formation. Encyclopedia of Ocean Sciences JH Steele, KK Turekian, SA Thorpe 415–21 San Diego, CA: Academic, 2nd ed. https://doi.org/10.1016/B978-0-12-409548-9.04019-7 [Crossref] [Google Scholar]
  28. Gordon AL. 2014. Oceanography: Southern Ocean polynya. Nat. Clim. Change 4:249–50 [Google Scholar]
  29. Gordon AL, Huber BA, Busecke J. 2015. Bottom water export from the western Ross Sea, 2007 through 2010. Geophys. Res. Lett. 42:5387–94 [Google Scholar]
  30. Gordon AL, Huber BA, Hellmer H, Ffield A. 1993. Deep and Bottom Water of the Weddell Sea's western rim. Science 262:95–97 [Google Scholar]
  31. Gordon AL, Huber BA, McKee D, Visbeck MH. 2010. A seasonal cycle in the export of bottom water from the Weddell Sea. Nat. Geosci. 3:551–56 [Google Scholar]
  32. Gordon AL, Orsi AH, Muench R, Huber BA, Zambianchi E, Visbeck M. 2009. Western Ross Sea continental slope gravity currents. Deep-Sea Res. II 56:796–817 [Google Scholar]
  33. Gordon AL, Tchernia P. 1972. Waters of the continental margin off Adélie Coast, Antarctica. Antarctica Oceanology II: The Australian-New Zealand Sector DE Hayes 59–69 Antarct. Res. Ser 19 Washington, DC: Am. Geophys. Union [Google Scholar]
  34. Gordon AL, Visbeck M, Comiso JC. 2007. A possible link between the Weddell Polynya and the Southern Annular Mode. J. Clim. 20:2558–71 [Google Scholar]
  35. Gordon AL, Zambianchi E, Orsi A, Visbeck M, Giulivi CF. et al. 2004. Energetic plumes over the western Ross Sea continental slope. Geophys. Res. Lett. 31:L21302 [Google Scholar]
  36. Gouretski VV, Koltermann KP. 2004. WOCE global hydrographic climatology Tech. Rep. 35 Ber. Bundesamtes Seeschifffahrt Hydrogr. Hamburg, Ger.: [Google Scholar]
  37. Haine TW, Watson AJ, Liddicoat MI, Dickson RR. 1998. The flow of Antarctic bottom water to the southwest Indian Ocean estimated using CFCs. J. Geophys. Res. 103:27637–53 [Google Scholar]
  38. Heywood KJ, Schmidtko S, Heuzé C, Kaiser J, Jickells TD. et al. 2014. Ocean processes at the Antarctic continental slope. Philos. Trans. R. Soc. A 372:20130047 [Google Scholar]
  39. Holzer M, Primeau FW, Smethie WM Jr., Khatiwala S. 2010. Where and how long ago was water in the western North Atlantic ventilated? Maximum entropy inversions of bottle data from WOCE line A20. J. Geophys. Res. 115:C07005 [Google Scholar]
  40. Huhn O, Hellmer HH, Rhein M, Rodehacke C, Roether W. et al. 2008. Evidence of deep- and bottom-water formation in the western Weddell Sea. Deep-Sea Res. II 558–59:1098–116 [Google Scholar]
  41. Huhn O, Rhein M, Hoppema M, van Heuven S. 2013. Decline of deep and bottom water ventilation and slowing down of anthropogenic carbon storage in the Weddell Sea 1984–2011. Deep-Sea Res. I 76:66–84 [Google Scholar]
  42. Jacobs SS. 2002. Freshening of the Ross Sea during the late 20th century. Science 297:386–89 [Google Scholar]
  43. Jacobs SS. 2004. Bottom water production and its links with the thermohaline circulation. Antarct. Sci. 164:427–37 [Google Scholar]
  44. Jacobs SS, Amos AF, Bruchhausen PM. 1970. Ross Sea oceanography and Antarctic Bottom Water formation. Deep-Sea Res. Oceanogr. Abstr. 176:935–62 [Google Scholar]
  45. Jacobs SS, Comiso JC. 1989. Sea ice and oceanic processes on the Ross Sea continental shelf. J. Geophys. Res. 94:18195–211 [Google Scholar]
  46. Jacobs SS, Fairbanks RG, Horibe Y. 1985. Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O/H216O ratio in seawater. Oceanology of the Antarctic Continental Shelf SS Jacobs 59–85 Antarct. Res. Ser 43 Washington, DC: Am. Geophys. Union [Google Scholar]
  47. Jacobs SS, Giulivi CF. 2010. Large multidecadal salinity trends near the Pacific-Antarctic continental margin. J. Clim. 2317:4508–24 [Google Scholar]
  48. Jacobs SS, Weiss RF. 1998. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin Antarct. Res. Ser 75 Washington, DC: Am. Geophys. Union [Google Scholar]
  49. Johnson GC, Doney SC. 2006. Recent western South Atlantic bottom water warming. J. Geophys. Res. 33:L14614 [Google Scholar]
  50. Johnson GC, McTaggart KE, Wanninkhof R. 2014. Antarctic Bottom Water temperature changes in the western South Atlantic from 1989–2014. J. Geophys. Res. 119:8567–77 [Google Scholar]
  51. Johnson GC, Mecking S, Sloyan BM, Wijffels SE. 2007. Recent bottom water warming in the Pacific Ocean. J. Clim. 20:5365–75 [Google Scholar]
  52. Johnson GC, Purkey SG. 2013. Slowdown of the lower, southern limb of the meridional overturning circulation in recent decades. Bull. Am. Meteorol. Soc. 94:S68–69 [Google Scholar]
  53. Johnson GC, Purkey SG, Bullister JL. 2008. Warming and freshening in the abyssal southeastern Indian Ocean. J. Clim. 21:5351–63 [Google Scholar]
  54. Jullion L, Jones SC, Naveira Garabato AC, Meredith MP. 2010. Wind-controlled export of Antarctic Bottom Water from the Weddell Sea. Geophys. Res. Lett. 379:L09609 [Google Scholar]
  55. Jullion L, Naveira Garabato AC, Meredith MP, Holland PR, Courtois P, King BA. 2013. Decadal freshening of the Antarctic Bottom Water exported from the Weddell Sea. J. Clim. 26:8111–25 [Google Scholar]
  56. Katsumata K, Nakano H, Kumamoto Y. 2015. Dissolved oxygen change and freshening of Antarctic Bottom Water along 62°S in the Australian-Antarctic Basin between 1995/1996 and 2012/2013. Deep-Sea Res. II 114:27–38 [Google Scholar]
  57. Kawano T, Fukasawa M, Kouketsu S, Uchida H, Doi T. et al. 2006. Bottom water warming along the pathway of Lower Circumpolar Deep Water in the Pacific Ocean. Geophys. Res. Lett. 3323:L23613 [Google Scholar]
  58. Klatt O, Roether W, Hoppema M, Bulsiewicz K, Fleischmann U. et al. 2002. Repeated CFC sections at the Greenwich Meridian in the Weddell Sea. J. Geophys. Res. 107:3030 [Google Scholar]
  59. Kouketsu S, Doi T, Kawano T, Masuda S, Sugiura N. et al. 2011. Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res. 116:C03012 [Google Scholar]
  60. Kouketsu S, Fukasawa M, Kaneko I, Kawano T, Uchida H. et al. 2009. Changes in water properties and transports along 24°N in the North Pacific between 1985 and 2005. J. Geophys. Res. 114:C01008 [Google Scholar]
  61. LeBel DA, Smethie WM Jr., Rhein M, Kieke D, Fine RA. et al. 2008. The distribution of CFC-11 in the North Atlantic during WOCE: inventories and calculated water mass formation rates. Deep-Sea Res. I 55:891–910 [Google Scholar]
  62. Legg S, Briegleb B. Chang Y, Chassignet E, Danabasoglu G et al. 2009. Improving oceanic overflow representation in climate models: the Gravity Current Entrainment Climate Process Team. Bull. Am. Meteorol. Soc. 905:657–70 [Google Scholar]
  63. Loose B, Schlosser P, Smethie WM Jr., Jacobs S. 2009. An optimized estimate of glacial melt from the Ross Ice Shelf using noble gases, stable isotopes, and CFC transient tracers. J. Geophys. Res. 114:C08007 [Google Scholar]
  64. Masuda S, Awaji T, Sugiura N, Matthews JP, Toyoda T. et al. 2010. Simulated rapid warming of abyssal North Pacific waters. Science 329:319–22 [Google Scholar]
  65. McKee D, Yuan X, Gordon AL, Huber BA, Dong Z. 2011. Climate impact on interannual variability of Weddell Sea Bottom Water. J. Geophys. Res. 116:C05020 [Google Scholar]
  66. Menezes VV, Macdonald AM, Schatzman C. 2017. Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean. Sci. Adv. 31:e1601426 [Google Scholar]
  67. Mensch M, Bayer R, Bullister JL, Schlosser P, Weis RF. 1996. The distribution of tritium and CFCs in the Weddell Sea during the mid-1980s. Prog. Oceanogr. 38:377–415 [Google Scholar]
  68. Meredith MP, Gordon AL, Naveira Garabato AC, Abrahamsen EP, Huber BA. et al. 2011. Synchronous intensification and warming of Antarctic Bottom Water outflow from the Weddell Gyre. Geophys. Res. Lett. 383:L03603 [Google Scholar]
  69. Meredith MP, Jullion L, Brown PJ, Naveira Garabato AC, Couldrey MP. 2014. Dense waters of the Weddell and Scotia Seas: recent changes in properties and circulation. Philos. Trans. R. Soc. A 372:20130041 [Google Scholar]
  70. Meredith MP, Naveira Garabato AC, Gordon A, Johnson GC. 2008. Evolution of the Deep and Bottom Waters of the Scotia Sea, Southern Ocean, during 1995–2005. J. Clim. 21:3327–43 [Google Scholar]
  71. Meredith MP, Watson AJ, Van Scoy K, Haine TWN. 2001. Chlorofluorocarbon-derived formation rates of the deep and bottom waters of the Weddell Sea. J. Geophys. Res. 106:2899–919 [Google Scholar]
  72. Nihashi S, Ohshima KI. 2015. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability. J. Clim. 28:3650–70 [Google Scholar]
  73. Ohshima KI, Fukamachi Y, Williams GD, Nihashi S, Roquet F. et al. 2013. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley Polynya. Nat. Geosci. 6:235–40 [Google Scholar]
  74. Olsen A, Key R, van Heuven S, Lauvset SK, Velo A. et al. 2016. The Global Ocean Data Analysis Project version 2 (GLODAPv2)—an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8:297–323 [Google Scholar]
  75. Orsi AH, Jacobs SS, Gordon AL, Visbeck M. 2001. Cooling and ventilating the abyssal ocean. Geophys. Res. Lett. 28:2923–26 [Google Scholar]
  76. Orsi AH, Johnson GC, Bullister JL. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 431:55–109 [Google Scholar]
  77. Orsi AH, Smethie WM Jr., Bullister JL. 2002. On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. 107:31–114 [Google Scholar]
  78. Orsi AH, Wiederwohl CL. 2009. A recount of Ross Sea waters. Deep-Sea Res. II 56:778–95 [Google Scholar]
  79. Ozaki H, Obata H, Naganobu M, Gamo T. 2009. Long-term bottom water warming in the north Ross Sea. J. Oceanogr. 652:235–44 [Google Scholar]
  80. Paul S, Willmes S, Heinemann G. 2015. Long-term polynya dynamics in the southern Weddell Sea from MODIS thermal-infrared imagery. Cryosphere 9:2027–41 [Google Scholar]
  81. Pickart RS, Hogg NG, Smethie WM Jr.. 1989. Determining the strength of the deep western boundary current using the chlorofluoromethane ratio. J. Phys. Oceanogr. 19:940–51 [Google Scholar]
  82. Purkey SG, Johnson GC. 2010. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23:6336–51 [Google Scholar]
  83. Purkey SG, Johnson GC. 2012. Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Clim. 25:5830–44 [Google Scholar]
  84. Purkey SG, Johnson GC. 2013. Antarctic Bottom Water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26:6105–22 [Google Scholar]
  85. Rhein M, Fischer J, Smethie WM Jr., Smythe-Wright D, Weiss RF. et al. 2002. Labrador Sea Water: pathways, CFC inventory and formation rates. J. Phys. Oceanogr. 322:648–65 [Google Scholar]
  86. Rhein M, Stramma L, Krahmann G. 1998. The spreading of Antarctic bottom water in the tropical Atlantic. Deep-Sea Res. I 45:507–27 [Google Scholar]
  87. Rintoul SR. 1998. On the origin and influence of Adélie Land bottom water. See Jacobs & Weiss 2013 151–71
  88. Rivaro P, Massolo S, Bergamasco A, Castagno P, Budillon G. 2010. Chemical evidence of the changes of the Antarctic Bottom Water ventilation in the western Ross Sea between 1997 and 2003. Deep-Sea Res. I 57:639–52 [Google Scholar]
  89. Robertson R, Visbeck M, Gordon AL. 2002. Long-term temperature trends in the deep waters of the Weddell Sea. Deep-Sea Res. II 49:4791–806 [Google Scholar]
  90. Rodehacke CB, Roether W, Hellmer H, Hall T. 2009. Temporal variations and trends of CFC11 and CFC12 surface-water saturations in Antarctic marginal seas: results of a regional ocean circulation model. Deep-Sea Res. I 57:175–98 [Google Scholar]
  91. Roemmich D, Hautala S, Rudnick D. 1996. Northward abyssal transport through the Samoan Passage and adjacent regions. J. Geophys. Res. 101:14039–55 [Google Scholar]
  92. Schlosser P. 1986. Helium: a new tracer in Antarctic oceanography. Nature 321:233–35 [Google Scholar]
  93. Schlosser P, Bayer R, Foldvik A, Gammelsrød T, Rohardt G, Münnich KO. 1990. Oxygen 18 and helium as tracers of ice shelf water and water/ice interaction in the Weddell Sea. J. Geophys. Res. 95:3253–63 [Google Scholar]
  94. Schlosser P, Bullister JL, Bayer R. 1991. Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers. Mar. Chem. 35:97–122 [Google Scholar]
  95. Smethie WM Jr.. 1993. Tracing the thermohaline circulation in the western North Atlantic, using chlorofluorocarbons. Prog. Oceanogr. 31:51–99 [Google Scholar]
  96. Smethie WM Jr., Fine RA. 2001. Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res. I 48:189–215 [Google Scholar]
  97. Smethie WM Jr., Fine RA, Putzka A, Jones EP. 2000. Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons. J. Geophys. Res. 105:14299–323 [Google Scholar]
  98. Smethie WM Jr., Jacobs SS. 2005. Circulation and melting under the Ross Ice Shelf: estimates from evolving CFC, salinity and temperature fields in the Ross Sea. Deep-Sea Res. I 526:959–78 [Google Scholar]
  99. Steinfeldt RM, Rhein M, Bullister JL, Tanhua T. 2009. Inventory changes in anthropogenic carbon from 1997–2003 in the Atlantic Ocean between 20°S and 65°N. Glob. Biogeochem. Cycles 23:GB3010 [Google Scholar]
  100. Stewart AL, Thompson AF. 2012. Sensitivity of the ocean's deep overturning circulation to easterly Antarctic winds. Geophys. Res. Lett. 39:L18604 [Google Scholar]
  101. Stewart AL, Thompson AF. 2013. Connecting Antarctic cross-slope exchange with Southern Ocean overturning. J. Phys. Oceanogr. 43:1453–71 [Google Scholar]
  102. Stewart AL, Thompson AF. 2015. Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett. 42:432–40 [Google Scholar]
  103. Sverdrup HU, Johnson MW, Fleming RH. 1942. The Oceans: Their Physics, Chemistry, and General Biology New York: Prentice-Hall http://ark.cdlib.org/ark:/13030/kt167nb66r [Google Scholar]
  104. Swift J, Orsi AH. 2012. Sixty-four days of hydrography and storms: RVIB Nathaniel B. Palmer’s 2011 S04P Cruise. Oceanography 25:354–55 [Google Scholar]
  105. Talley LD, Feely RA. Sloyan BM, Wanninkhof R, Baringer MO et al. 2016. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8:185–215 [Google Scholar]
  106. Trumbore SE, Jacobs SS, Smethie WM Jr.. 1991. Chloro-fluorocarbon evidence for rapid ventilation of the Ross Sea. Deep-Sea Res 38:845–70 [Google Scholar]
  107. Van Sebille E, Spence P, Mazloff MR, England MH, Rintoul SS, Saenko OA. 2013. Abyssal connections of Antarctic Bottom Water in a Southern Ocean state estimate. Geophys. Res. Lett. 40:2177–82 [Google Scholar]
  108. van Wijk EM, Rintoul SS. 2014. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. Geophys. Res. Lett. 415:1657–64 [Google Scholar]
  109. Wang Z, Wu Y, Lin X, Liu C, Xie Z. 2017. Impacts of open ocean deep convection in the Weddell Sea on coastal and bottom water temperature. Clim. Dyn. 48:2967–81 [Google Scholar]
  110. Warner MJ, Weiss RF. 1985. Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res. II 32:1485–97 [Google Scholar]
  111. Waugh DW, Haine TWN, Hall TM. 2004. Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean. Deep-Sea Res. I 51:1475–91 [Google Scholar]
  112. Waugh DW, Hall TM. 2005. Propagation of tracer signals in boundary currents. J. Phys. Oceanogr. 35:1538–52 [Google Scholar]
  113. Weiss RF, Bullister JL, Gammon RH, Warner MJ. 1985. Atmospheric chlorofluoromethanes in the deep equatorial Atlantic. Nature 314:608–10 [Google Scholar]
  114. Weiss RF, Ostlund HG, Craig H. 1979. Geochemical studies of the Weddell Sea. Deep-Sea Res. A 26:1093–120 [Google Scholar]
  115. Weppernig R, Schlosser P, Khatiwala S, Fairbanks RG. 1996. Isotope data from Ice Station Weddell: implications for deep water formation in the Weddell Sea. J. Geophys. Res. 101:25723–39 [Google Scholar]
  116. Williams GD, Aoki S, Jacobs SS, Rintoul SR, Tamura T, Bindoff NL. 2010. Antarctic Bottom Water from the Adélie and George V Land coast, East Antarctica (140–149°E). J. Geophys. Res. 115:C04027 [Google Scholar]
  117. Williams GD, Bindoff NL, Marsland SJ, Rintoul SR. 2008. Formation and export of dense shelf water from the Adélie Depression, East Antarctica. J. Geophys. Res. 113:C04039 [Google Scholar]
  118. Yabuki T, Suga T, Hanawa K, Matsuoka K, Kiwada H, Watanabe T. 2006. Possible source of the Antarctic Bottom Water in the Prydz Bay region. J. Oceanogr. 62:649 [Google Scholar]
  119. Zenk W, Morozov E. 2007. Decadal warming of the coldest Antarctic Bottom Water flow through the Vema Channel. Geophys. Res. Lett. 34:L14607 [Google Scholar]
  120. Zenk W, Visbeck M. 2013. Structure and evolution of the abyssal jet in the Vema Channel of the South Atlantic. Deep-Sea Res. II 85:244–60 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error