Anchovy and sardine populated productive ocean regions over hundreds of thousands of years under a naturally varying climate, and are now subject to climate change of equal or greater magnitude occurring over decades to centuries. We hypothesize that anchovy and sardine populations are limited in size by the supply of nitrogen from outside their habitats originating from upwelling, mixing, and rivers. Projections of the responses of anchovy and sardine to climate change rely on a range of model types and consideration of the effects of climate on lower trophic levels, the effects of fishing on higher trophic levels, and the traits of these two types of fish. Distribution, phenology, nutrient supply, plankton composition and production, habitat compression, fishing, and acclimation and adaptation may be affected by ocean warming, acidification, deoxygenation, and altered hydrology. Observations of populations and evaluation of model skill are essential to resolve the effects of climate change on these fish.

Keyword(s): changefishmixingnitrateriverupwellingvariability

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agostini VN, Bakun A. 2002. ‘Ocean triads’ in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11:129–42 [Google Scholar]
  2. Alheit J, Bakun A. 2010. Population synchronies within and between ocean basins: apparent teleconnections and implications as to physical-biological linkage mechanisms. J. Mar. Syst. 79:267–85 [Google Scholar]
  3. Alheit J, Niquen M. 2004. Regime shifts in the Humboldt Current ecosystem. Prog. Oceanogr. 60:201–22 [Google Scholar]
  4. Alheit J, Pohlmann T, Casini M, Greve W, Hinrichs R. et al. 2012. Climate variability drives anchovies and sardines into the North and Baltic Seas. Prog. Oceanogr. 96:128–39 [Google Scholar]
  5. Alheit J, Roy C, Kifani S. 2009. Decadal-scale variability in populations. See Checkley et al. 2009a 64–87
  6. Anderson JJ, Gurarie E, Bracis C, Burke BJ, Laidre KL. 2013. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Model. 264:83–97 [Google Scholar]
  7. Asch RG. 2015. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. PNAS 112:E4065–74 [Google Scholar]
  8. Atkinson A, Hill SL, Barange M, Pakhomov EA, Raubenheimer D. et al. 2014. Sardine cycles, krill declines, and locust plagues: revisiting ‘wasp-waist’ food webs. Trends Ecol. Evol. 29:309–16 [Google Scholar]
  9. Ayon P, Purca S, Guevara-Carrasco R. 2004. Zooplankton volume trends off Peru between 1964 and 2001. ICES J. Mar. Sci. 61:478–84 [Google Scholar]
  10. Ayon P, Swartzman G, Bertrand A, Gutierrez M, Bertrand S. 2008. Zooplankton and forage fish species off Peru: large-scale bottom-up forcing and local-scale depletion. Prog. Oceanogr. 79:208–14 [Google Scholar]
  11. Barange M, Bernal M, Cergole MC, Cubillos LA, Daskalov GM. et al. 2009a. Current trends in the assessment and management of stocks. See Checkley et al. 2009a 191–255
  12. Barange M, Coetzee J, Takasuka A, Hill K, Gutierrez M. et al. 2009b. Habitat expansion and contraction in anchovy and sardine populations. Prog. Oceanogr. 83:251–60 [Google Scholar]
  13. Barange M, Merino G, Blanchard JL, Scholtens J, Harle J. et al. 2014. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4:211–16 [Google Scholar]
  14. Baumgartner TR, Soutar A, Ferreira-Bartrina V. 1992. Reconstruction of the history of Pacific sardine and northern anchovy populations over the past two millennia from sediments of the Santa Barbara Basin, California. CalCOFI Rep. 33:24–40 [Google Scholar]
  15. Beare D, Burns F, Jones E, Peach K, Portilla E. et al. 2004. An increase in the abundance of anchovies and sardines in the north-western North Sea since 1995. Glob. Change Biol. 10:1209–13 [Google Scholar]
  16. Bednaršek N, Feely RA, Reum JCP, Peterson B, Menkel J. et al. 2014. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B 281:20140123 [Google Scholar]
  17. Bellier E, Planque B, Petitgas P. 2007. Historical fluctuations in spawning location of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in the Bay of Biscay during 1967–73 and 2000–2004. Fish. Oceanogr. 16:1–15 [Google Scholar]
  18. Bertrand A, Chaigneau A, Peraltilla S, Ledesma J, Graco M. et al. 2011. Oxygen: a fundamental property regulating pelagic ecosystem structure in the coastal southeastern tropical Pacific. PLOS ONE 6:e29558 [Google Scholar]
  19. Bertrand A, Segura M, Gutierrez M, Vasquez L. 2004. From small-scale habitat loopholes to decadal cycles: a habitat-based hypothesis explaining fluctuation in pelagic fish populations off Peru. Fish Fish. 5:296–316 [Google Scholar]
  20. Blaxter JHS, Hunter JR. 1982. The biology of the clupeoid fishes. Advances in Marine Biology 20 JHS Blaxter, FS Russell, M Yonge 1–223 London: Academic [Google Scholar]
  21. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP. et al. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–45 [Google Scholar]
  22. Bowen BW, Grant WS. 1997. Phylogeography of the sardines (Sardinops spp.): assessing biogeographic models and population histories in temperate upwelling zones. Evolution 51:1601–10 [Google Scholar]
  23. Boyer DC, Boyer HJ, Fossen I, Kreiner A. 2001. Changes in abundance of the northern Benguela sardine stock during the decade 1990–2000, with comments on the relative importance of fishing and the environment. S. Afr. J. Mar. Sci. 23:67–84 [Google Scholar]
  24. Boyer DC, Hampton I. 2001. An overview of the living marine resources of Namibia. S. Afr. J. Mar. Sci. 23:5–35 [Google Scholar]
  25. Brochier T, Echevin V, Tam J, Chaigneau A, Goubanova K, Bertrand A. 2013. Climate change scenarios experiments predict a future reduction in small pelagic fish recruitment in the Humboldt Current system. Glob. Change Biol. 19:1841–53 [Google Scholar]
  26. Carvalho FM, Castello JP. 2013. Argentine anchovy (Engraulis anchoita) stock identification and incipient exploitation in southern Brazil. Lat. Am. J. Aquat. Res. 41:820–27 [Google Scholar]
  27. Chavez FP, Ryan J, Lluch-Cota SE, Niquen M. 2003. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299:217–21 [Google Scholar]
  28. Checkley DM Jr., Alheit J, Oozeki Y, Roy C. 2009a. Climate Change and Small Pelagic Fish Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  29. Checkley DM Jr., Ayon P, Baumgartner TR, Bernal M, Coetzee JC. et al. 2009b. Habitats. See Checkley et al. 2009a 12–44
  30. Checkley DM Jr., Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R. 2009c. Elevated CO2 enhances otolith growth in young fish. Science 324:1683 [Google Scholar]
  31. Chelton DB, Schlax MG, Freilich MH, Milliff RF. 2004. Satellite measurements reveal persistent small-scale features in ocean winds. Science 303:978–83 [Google Scholar]
  32. Cheung WWL, Frölicher TL, Asch RG, Jones MC, Pinsky ML. et al. 2016. Building confidence in projections of the responses of living marine resources to climate change. ICES J. Mar. Sci. 73:1283–96 [Google Scholar]
  33. Condon RH, Duarte CM, Pitt KA, Robinson KL, Lucas CH. et al. 2013. Recurrent jellyfish blooms are a consequence of global oscillations. PNAS 110:1000–5 [Google Scholar]
  34. Cury PM, Bakun A, Crawford RJM, Jarre A, Quinones RA. et al. 2000. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57:603–18 [Google Scholar]
  35. Cury PM, Boyd IL, Bonhommeau S, Anker-Nilssen T, Crawford RJM. et al. 2011. Global seabird response to forage fish depletion: one-third for the birds. Science 334:1703–6 [Google Scholar]
  36. Daskalov GM, Boyer DC, Roux JP. 2003. Relating sardine Sardinops sagax abundance to environmental indices in northern Benguela. Prog. Oceanogr. 59:257–74 [Google Scholar]
  37. Daskalov GM, Grishin AN, Rodionov S, Mihneva V. 2007. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. PNAS 104:10518–23 [Google Scholar]
  38. de Macedo-Soares LCP, Eiras Garcia CA, Freire AS, Muelbert JH. 2014. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf. PLOS ONE 9:e91241 [Google Scholar]
  39. Demer DA, Zwolinski JP, Byers KA, Cutter GR, Renfree JS. et al. 2012. Prediction and confirmation of seasonal migration of Pacific sardine (Sardinops sagax) in the California Current Ecosystem. Fish. Bull. 110:52–70 [Google Scholar]
  40. Deyle ER, Fogarty M, Hsieh C-H, Kaufman L, MacCall AD. et al. 2013. Predicting climate effects on Pacific sardine. PNAS 110:6430–35 [Google Scholar]
  41. Dimmlich WF, Breed WG, Geddes M, Ward TM. 2004. Relative importance of gulf and shelf waters for spawning and recruitment of Australian anchovy, Engraulis australis, in South Australia. Fish. Oceanogr. 13:310–23 [Google Scholar]
  42. Dugdale RC, Goering JJ. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12:677–80 [Google Scholar]
  43. Durant JM, Hjermann DO, Ottersen G, Stenseth NC. 2007. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33:271–83 [Google Scholar]
  44. Emmett RL, Brodeur RD, Miller TW, Pool SS, Krutzikowsky GK. et al. 2005. Pacific sardine (Sardinops sagax) abundance, distribution, and ecological relationships in the Pacific Northwest. CalCOFI Rep. 46:122–43 [Google Scholar]
  45. Enghoff IB, MacKenzie BR, Nielsen EE. 2007. The Danish fish fauna during the warm Atlantic period (ca. 7000–3900 BC): forerunner of future changes?. Fish. Res. 87:167–80 [Google Scholar]
  46. Essington TE, Moriarty PE, Froehlich HE, Hodgson EE, Koehn LE. et al. 2015. Fishing amplifies forage fish population collapses. PNAS 112:6648–52 [Google Scholar]
  47. Estes J, Demaster D, Doak D, Williams T, Brownell R. 2006. Whales, Whaling and Ecosystems Berkeley: Univ. Calif. Press [Google Scholar]
  48. FAO (Food Agric. Organ. UN) 2014. The State of World Fisheries and Aquaculture Rome: FAO [Google Scholar]
  49. FAO (Food Agric. Organ. UN) 2016. Fishery statistics collection: global production Accessed Apr. 5, 2016. FAO, Rome. http://www.fao.org/fishery/statistics/global-production/en [Google Scholar]
  50. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–92 [Google Scholar]
  51. Fiechter J, Rose KA, Curchitser EN, Hedstrom KS. 2015. The role of environmental controls in determining sardine and anchovy population cycles in the California Current: analysis of an end-to-end model. Prog. Oceanogr. 138:381–98 [Google Scholar]
  52. Field DB, Baumgartner TR, Ferreira V, Gutierrez D, Lozano-Montes H. et al. 2009. Variability from scales in marine sediments and other historical records. See Checkley et al. 2009a 45–63
  53. Field JC, Francis RC, Aydin K. 2006. Top-down modeling and bottom-up dynamics: linking a fisheries-based ecosystem model with climate. Prog. Oceanogr. 68:238–70 [Google Scholar]
  54. Finney BP, Alheit J, Emeis K-C, Field DB, Gutierrez D, Struck U. 2010. Paleoecological studies on variability in marine fish populations: a long-term perspective on the impacts of climatic change on marine ecosystems. J. Mar. Syst. 79:316–26 [Google Scholar]
  55. Flood M, Stobutzki I, Andrews J, Ashby C, Begg G. et al. 2014. Status of key Australian fish stocks reports 2014 Rep., Fish. Res. Dev. Corp., Canberra, Aust. http://www.fish.gov.au/reports/Documents/SAFS_Reports_2014.pdf [Google Scholar]
  56. Friederich GE, Ledesma J, Ulloa O, Chavez FP. 2008. Air-sea carbon dioxide fluxes in the coastal southeastern tropical Pacific. Prog. Oceanogr. 79:156–66 [Google Scholar]
  57. Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL. et al. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:aac4722 [Google Scholar]
  58. Glaser SM. 2011. Do albacore exert top-down pressure on northern anchovy? Estimating anchovy mortality as a result of predation by juvenile North Pacific albacore in the California Current system. Fish. Oceanogr. 20:242–57 [Google Scholar]
  59. Goericke R, Bograd SJ, Grundle DS. 2015. Denitrification and flushing of the Santa Barbara Basin bottom waters. Deep-Sea Res. II 112:53–60 [Google Scholar]
  60. Goldsworthy SD, Page B, Rogers PJ, Bulmand C, Wiebkin A. et al. 2013. Trophodynamics of the eastern Great Australian Bight ecosystem: ecological change associated with the growth of Australia's largest fishery. Ecol. Model. 255:38–57 [Google Scholar]
  61. Grant WS, Bowen BW. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89:415–26 [Google Scholar]
  62. Grant WS, Bowen BW. 2006. Living in a tilted world: climate change and geography limit speciation in Old World anchovies (Engraulis; Engraulidae). Biol. J. Linn. Soc. 88:673–89 [Google Scholar]
  63. Grant WS, Leslie RW, Bowen BW. 2005. Molecular genetic assessment of bipolarity in the anchovy genus Engraulis. J. Fish Biol. 67:1242–65 [Google Scholar]
  64. Guiñez M, Valdés J, Sifeddine A, Boussafir M, Dávila PM. 2014. Anchovy population and ocean-climatic fluctuations in the Humboldt Current System during the last 700 years and their implications. Palaeogeogr. Palaeoclim. Palaeoecol. 415:210–24 [Google Scholar]
  65. Guraslan C, Fach BA, Oguz T. 2014. Modeling the impact of climate variability on Black Sea anchovy recruitment and production. Fish. Oceanogr. 23:436–57 [Google Scholar]
  66. Gutierrez M, Swartzman G, Bertrand A, Bertrand S. 2007. Anchovy (Engraulis ringens) and sardine (Sardinops sagax) spatial dynamics and aggregation patterns in the Humboldt Current ecosystem, Peru, from 1983–2003. Fish. Oceanogr. 16:155–68 [Google Scholar]
  67. Halouani G, Gascuel D, Hattab T, Lasram FBR, Coll M. et al. 2015. Fishing impact in Mediterranean ecosystems: an EcoTroph modeling approach. J. Mar. Syst. 150:22–33 [Google Scholar]
  68. Hawkins E, Sutton R. 2009. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90:1095–107 [Google Scholar]
  69. Henson SA, Sarmiento JL, Dunne JP, Bopp L, Lima I. et al. 2010. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 7:621–40 [Google Scholar]
  70. Herrick SF Jr., Norton JG, Hannesson R, Sumaila UR, Ahmed M, Pena-Torres J. 2009. Global production and economics. See Checkley et al. 2009a 256–74
  71. Holmgrenurba D, Baumgartner TR. 1993. A 250-year history of pelagic fish abundances from the anaerobic sediments of the central Gulf of California. CalCOFI Rep. 34:60–68 [Google Scholar]
  72. Hughes JM, Stewart J, Lyle JM, Suthers IM. 2014. Top-down pressure on small pelagic fish by eastern Australian salmon Arripis trutta; estimation of daily ration and annual prey consumption using multiple techniques. J. Exp. Mar. Biol. Ecol. 459:190–98 [Google Scholar]
  73. IPCC (Intergov. Panel Clim. Change) 2013. Summary for policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al. , pp. 1–30 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  74. Irigoien X, de Roos A. 2011. The role of intraguild predation in the population dynamics of small pelagic fish. Mar. Biol. 158:1683–90 [Google Scholar]
  75. Ishimura G, Herrick S, Sumaila UR. 2013. Stability of cooperative management of the Pacific sardine fishery under climate variability. Mar. Policy 39:333–40 [Google Scholar]
  76. Jacobson LD, Bograd SJ, Parrish RH, Mendelssohn R, Schwing FB. 2005. An ecosystem-based hypothesis for climatic effects on surplus production in California sardine (Sardinops sagax) and environmentally dependent surplus production models. Can. J. Fish. Aquat. Sci. 62:1782–96 [Google Scholar]
  77. Jahncke J, Checkley DM, Hunt GL. 2004. Trends in carbon flux to seabirds in the Peruvian upwelling system: effects of wind and fisheries on population regulation. Fish. Oceanogr. 13:208–23 [Google Scholar]
  78. Jones WA. 2016. The Santa Barbara Basin fish assemblage in the last two millennia inferred from otoliths in sediment cores PhD Thesis, Univ. Calif., San Diego [Google Scholar]
  79. Kaltenberg AM, Benoit-Bird KJ. 2009. Diel behavior of sardine and anchovy schools in the California Current System. Mar. Ecol. Prog. Ser. 394:247–62 [Google Scholar]
  80. Kamykowski D. 2012. 20th century variability of Atlantic meridional overturning circulation: planetary wave influences on world ocean surface phosphate utilization and synchrony of small pelagic fisheries. Deep-Sea Res. I 65:85–99 [Google Scholar]
  81. Kaplan IC, Williams GD, Bond NA, Hermann AJ, Siedlecki SA. 2016. Cloudy with a chance of sardines: forecasting sardine distributions using regional climate models. Fish. Oceanogr. 25:15–27 [Google Scholar]
  82. Kasapidis P. 2014. Phylogeography and population genetics. Biology and Ecology of Sardines and Anchovies K Ganias 43–75 Boca Raton, FL: CRC Press [Google Scholar]
  83. Keeling R. 2016. The Keeling curve Accessed Apr. 5, 2016. Univ. Calif., San Diego. https://scripps.ucsd.edu/programs/keelingcurve [Google Scholar]
  84. Kelleher K. 2005. Discards in the world's marine fisheries: an update Fish. Tech. Pap. 470, Food Agric. Organ. UN, Rome [Google Scholar]
  85. Kirchner CH, Bartholomae CH, Kreiner A. 2009. Use of environmental parameters to explain the variability in spawner-recruitment relationships of Namibian sardine Sardinops sagax. Afr. J. Mar. Sci. 31:157–70 [Google Scholar]
  86. Koslow JA, Davison P, Lara-Lopez A, Ohman MD. 2014. Epipelagic and mesopelagic fishes in the southern California Current System: ecological interactions and oceanographic influences on their abundance. J. Mar. Syst. 138:20–28 [Google Scholar]
  87. Lecomte F, Grant WS, Dodson JJ, Rodriguez-Sanchez R, Bowen BW. 2004. Living with uncertainty: genetic imprints of climate shifts in East Pacific anchovy (Engraulis mordax) and sardine (Sardinops sagax). Mol. Ecol. 13:2169–82 [Google Scholar]
  88. Lindegren M, Checkley DM Jr., Rouyer T, MacCall AD, Stenseth NC. 2013. Climate, fishing, and fluctuations of sardine and anchovy in the California Current. PNAS 110:13672–77 [Google Scholar]
  89. Lloret J, Palomera I, Salat J, Sole I. 2004. Impact of freshwater input and wind on landings of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in shelf waters surrounding the Ebre (Ebro) River delta (north-western Mediterranean). Fish. Oceanogr. 13:102–10 [Google Scholar]
  90. Lluch-Belda D, Lluch-Cota DB, Lluch-Cota SE. 2003. Baja California's biological transition zones: refuges for the California sardine. J. Oceanogr. 59:503–13 [Google Scholar]
  91. Lynam CP, Gibbons MJ, Axelsen BE, Sparks CAJ, Coetzee J. et al. 2006. Jellyfish overtake fish in a heavily fished ecosystem. Curr. Biol. 16:R492–93 [Google Scholar]
  92. MacCall AD. 1990. Dynamic Geography of Marine Fish Populations Seattle: Wash. Sea Grant Program [Google Scholar]
  93. MacCall AD. 2009. Mechanisms of low-frequency fluctuations in sardine and anchovy populations. See Checkley et al. 2009a 285–99
  94. MacCall AD, Sydeman WJ, Davison PC, Thayer JA. 2016. Recent collapse of northern anchovy biomass off California. Fish. Res. 175:87–94 [Google Scholar]
  95. MacDonald GM, Case RA. 2005. Variations in the Pacific Decadal Oscillation over the past millennium. Geophys. Res. Lett. 32:L08703 [Google Scholar]
  96. Marinov I, Doney SC, Lima ID. 2010. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences 7:3941–59 [Google Scholar]
  97. Merino G, Barange M, Mullon C. 2010. Climate variability and change scenarios for a marine commodity: modelling small pelagic fish, fisheries and fishmeal in a globalized market. J. Mar. Syst. 81:196–205 [Google Scholar]
  98. Minobe S. 1997. A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett. 24:683–86 [Google Scholar]
  99. Montero-Serra I, Edwards M, Genner MJ. 2015. Warming shelf seas drive the subtropicalization of European pelagic fish communities. Glob. Change Biol. 21:144–53 [Google Scholar]
  100. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS. et al. 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. PNAS 106:1848–52 [Google Scholar]
  101. Munday PL, Warner RR, Monro K, Pandolfi JM, Marshall DJ. 2013. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16:1488–500 [Google Scholar]
  102. Murphy GI. 1968. Pattern in life history and the environment. Am. Nat. 102:391–403 [Google Scholar]
  103. Natl. Acad. Sci. Eng. Med 2016. Attribution of Extreme Weather Events in the Context of Climate Change Washington, DC: Natl. Acad. Press [Google Scholar]
  104. Netburn AN, Koslow JA. 2015. Dissolved oxygen as a constraint on daytime deep scattering layer depth in the southern California current ecosystem. Deep-Sea Res. I 104:149–58 [Google Scholar]
  105. Nishikawa H, Yasuda I. 2008. Japanese sardine (Sardinops melanostictus) mortality in relation to the winter mixed layer depth in the Kuroshio Extension region. Fish. Oceanogr. 17:411–20 [Google Scholar]
  106. Nishikawa H, Yasuda I. 2011. Long-term variability of winter mixed layer depth and temperature along the Kuroshio jet in a high-resolution ocean general circulation model. J. Oceanogr. 67:503–18 [Google Scholar]
  107. NOAA (Natl. Ocean. Atmos. Adm.) 2016. Climate at a glance. Accessed Apr. 5, 2016. NOAA Natl. Cent. Environ. Info., Asheville, NC. http://www.ncdc.noaa.gov/cag/time-series/global/globe/land_ocean/ytd
  108. O'Donoghue SH, Whittington PA, Dyer BM, Peddemors VM. 2010. Abundance and distribution of avian and marine mammal predators of sardine observed during the 2005 KwaZulu-Natal sardine run survey. Afr. J. Mar. Sci. 32:361–74 [Google Scholar]
  109. Oguz T, Fach B, Salihoglu B. 2008. Invasion dynamics of the alien ctenophore Mnemiopsis leidyi and its impact on anchovy collapse in the Black Sea. J. Plankton Res. 30:1385–97 [Google Scholar]
  110. Okunishi T, Ito S, Hashioka T, Sakamoto TT, Yoshie N. et al. 2012. Impacts of climate change on growth, migration and recruitment success of Japanese sardine (Sardinops melanostictus) in the western North Pacific. Clim. Change 115:485–503 [Google Scholar]
  111. Oozeki Y, Takasuka A, Kubota H, Barange M. 2007. Characterizing spawning habitats of Japanese sardine (Sardinops melanostictus), Japanese anchovy (Engraulis japonicus), and Pacific round herring (Etrumeus teres) in the northwestern Pacific. CalCOFI Rep. 48:191–203 [Google Scholar]
  112. Ospina-Alvarez A, Catalán IA, Bernal M, Roos D, Palomera I. 2015. From egg production to recruits: connectivity and inter-annual variability in the recruitment patterns of European anchovy in the northwestern Mediterranean. Prog. Oceanogr. 138:431–47 [Google Scholar]
  113. Parker RWR, Tyedmers PH. 2015. Fuel consumption of global fishing fleets: current understanding and knowledge gaps. Fish Fish. 16:684–96 [Google Scholar]
  114. Parrish RH, Serra R, Grant WS. 1989. The monotypic sardines, Sardina and Sardinops: their taxonomy, distribution, stock structure and zoogeography. Can. J. Fish. Aquat. Sci. 46:2019–36 [Google Scholar]
  115. Pauly D, Christensen V, Walters C. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57:697–706 [Google Scholar]
  116. Pauly D, Zeller D. 2016. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7:10244 [Google Scholar]
  117. Petitgas P, Alheit J, Peck MA, Raab K, Irigoien X. et al. 2012. Anchovy population expansion in the North Sea. Mar. Ecol. Prog. Ser. 444:1–13 [Google Scholar]
  118. Pinsky ML, Byler D. 2015. Fishing, fast growth and climate variability increase the risk of collapse. Proc. R. Soc. B 282:20151053 [Google Scholar]
  119. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341:1239–42 [Google Scholar]
  120. Piroddi C, Coll M, Steenbeek J, Moy DM, Christensen V. 2015. Modelling the Mediterranean marine ecosystem as a whole: addressing the challenge of complexity. Mar. Ecol. Prog. Ser. 533:47–65 [Google Scholar]
  121. Politikos D, Somarakis S, Tsiaras KP, Giannoulaki M, Petihakis G. et al. 2015. Simulating anchovy's full life cycle in the northern Aegean Sea (eastern Mediterranean): a coupled hydro-biogeochemical-IBM model. Prog. Oceanogr. 138:399–416 [Google Scholar]
  122. Quinn TJ, Deriso RB. 1999. Quantitative Fisheries Dynamics Oxford, UK: Oxford Univ. Press [Google Scholar]
  123. Robinson KR, Ruzicka JJ, Decker MB, Brodeur RD, Hernandez FJ. et al. 2014. Jellyfish, forage fish, and the world's major fisheries. Oceanography 27:4104–15 [Google Scholar]
  124. Rose KA, Fiechter J, Curchitser EN, Hedstrom K, Bernal M. et al. 2015. Demonstration of a fully-coupled end-to-end model for small pelagic fish using sardine and anchovy in the California Current. Prog. Oceanogr. 138:348–80 [Google Scholar]
  125. Roux J-P, van der Lingen CD, Gibbons MJ, Moroff NE, Shannon LJ. et al. 2013. Jellyfication of marine ecosystems as a likely consequence of overfishing small pelagic fishes: lessons from the Benguela. Bull. Mar. Sci. 89:249–84 [Google Scholar]
  126. Ruzicka JJ, Brodeur RD, Emmett RL, Steele JH, Zamon JE. et al. 2012. Interannual variability in the Northern California Current food web structure: changes in energy flow pathways and the role of forage fish, euphausiids, and jellyfish. Prog. Oceanogr. 102:19–41 [Google Scholar]
  127. Rykaczewski RR, Checkley DM. 2008. Influence of ocean winds on the pelagic ecosystem in upwelling regions. PNAS 105:1965–70 [Google Scholar]
  128. Rykaczewski RR, Dunne JP. 2010. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophys. Res. Lett. 37:L21606 [Google Scholar]
  129. Ryther JH. 1969. Photosynthesis and fish production in the sea. Science 166:72–76 [Google Scholar]
  130. Sanchez RP, Deciechomski JD. 1995. Spawning and nursery grounds of pelagic fish species in the sea-shelf off Argentina and adjacent areas. Sci. Mar. 59:455–78 [Google Scholar]
  131. Sea Around Us 2016. Sea Around Us: fisheries, ecosystems and biodiversity Accessed Apr. 5, 2016. Univ. B.C., Vancouver, Can. http://www.seaaroundus.org [Google Scholar]
  132. Shackleton LY. 1987. A comparative-study of fossil fish scales from three upwelling regions. S. Afr. J. Mar. Sci. 5:79–84 [Google Scholar]
  133. Shannon L, Coll M, Neira S, Cury PM, Roux J-P. 2009. Impacts of fishing and climate change explored using trophic models. See Checkley et al. 2009a 158–90
  134. Smith ADM, Brown CJ, Bulman CM, Fulton EA, Johnson P. et al. 2011. Impacts of fishing low-trophic level species on marine ecosystems. Science 333:1147–50 [Google Scholar]
  135. Smith MD, Fulton EA, Day RW. 2015. Using an Atlantis model of the southern Benguela to explore the response of ecosystem indicators for fisheries management. Environ. Model. Softw. 69:23–41 [Google Scholar]
  136. Smith PE. 2005. A history of proposals for subpopulation structure in the Pacific sardine (Sardinops sagax) population of western North America. CalCOFI Rep. 46:75–82 [Google Scholar]
  137. Soutar A, Isaacs JD. 1969. History of fish populations inferred from fish scales in anaerobic sediments off California. CalCOFI Rep. 13:63–70 [Google Scholar]
  138. Steele JH, Ruzicka JJ. 2011. Constructing end-to-end models using ECOPATH data. J. Mar. Syst. 87:227–38 [Google Scholar]
  139. Stewart IT, Cayan DR, Dettinger MD. 2005. Changes toward earlier streamflow timing across western North America. J. Clim. 18:1136–55 [Google Scholar]
  140. Stock CA, Dunne JP, John JG. 2014. Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences 11:7125–35 [Google Scholar]
  141. Swartzman G, Bertrand A, Gutierrez M, Bertrand S, Vasquez L. 2008. The relationship of anchovy and sardine to water masses in the Peruvian Humboldt Current System from 1983 to 2005. Prog. Oceanogr. 79:228–37 [Google Scholar]
  142. Takasuka A, Oozeki Y, Aoki I. 2007. Optimal growth temperature hypothesis: Why do anchovy flourish and sardine collapse or vice versa under the same ocean regime?. Can. J. Fish. Aquat. Sci. 64:768–76 [Google Scholar]
  143. Takasuka A, Oozeki Y, Kimura R, Kubota H, Aoki I. 2004. Growth-selective predation hypothesis revisited for larval anchovy in offshore waters: cannibalism by juveniles versus predation by skipjack tunas. Mar. Ecol. Prog. Ser. 278:297–302 [Google Scholar]
  144. Travers-Trolet M, Shin YJ, Field JG. 2014. An end-to-end coupled model ROMS-N2P2Z2D2-OSMOSE of the southern Benguela foodweb: parameterisation, calibration and pattern-oriented validation. Afr. J. Mar. Sci. 36:11–29 [Google Scholar]
  145. Tsai CF, Chen PY, Chen CP, Lee MA, Shiah GY, Lee KT. 1997. Fluctuation in abundance of larval anchovy and environmental conditions in coastal waters off south-western Taiwan as associated with the El Niño Southern Oscillation. Fish. Oceanogr. 6:238–49 [Google Scholar]
  146. Tu C-Y, Tseng Y-H, Chiu T-S, Shen M-L, Hsieh C-H. 2012. Using coupled fish behavior–hydrodynamic model to investigate spawning migration of Japanese anchovy, Engraulis japonicus, from the East China Sea to Taiwan. Fish. Oceanogr. 21:255–68 [Google Scholar]
  147. Valdes J, Ortlieb L, Gutierrez D, Marinovic L, Vargas G, Sifeddine A. 2008. 250 years of sardine and anchovy scale deposition record in Mejillones Bay, northern Chile. Prog. Oceanogr. 79:198–207 [Google Scholar]
  148. van der Lingen CD, Bertrand A, Bode A, Brodeur R, Cubillos LA. et al. 2009. Trophic dynamics. See Checkley et al. 2009a 112–57
  149. van der Lingen CD, Coetzee JC, Hutchings L. 2010. Overview of the KwaZulu-Natal sardine run. Afr. J. Mar. Sci. 32:271–77 [Google Scholar]
  150. van der Lingen CD, Hutchings L, Lamont T, Pitcher GC. 2016. Climate change, dinoflagellate blooms and sardine in the southern Benguela Current Large Marine Ecosystem. Environ. Dev. 17:Suppl. 1230–43 [Google Scholar]
  151. Ward TM, Hoedt F, McLeay L, Dimmlich WF, Kinloch M. et al. 2001. Effects of the 1995 and 1998 mass mortality events on the spawning biomass of sardine, Sardinops sagax, in South Australian waters. ICES J. Mar. Sci. 58:865–75 [Google Scholar]
  152. Watanabe Y. 2009. Recruitment variability of small pelagic fish populations in the Kuroshio-Oyashio transition region of the western North Pacific. J. Northwest Atl. Fish. Sci. 41:197–204 [Google Scholar]
  153. Watanabe Y, Zenitani H, Kimura R. 1995. Population decline of the Japanese sardine Sardinops melanostictus owing to recruitment failures. Can. J. Fish. Aquat. Sci. 52:1609–16 [Google Scholar]
  154. Xu Y, Rose KA, Chai F, Chavez FP, Ayon P. 2015. Does spatial variation in environmental conditions affect recruitment? A study using a 3-D model of Peruvian anchovy. Prog. Oceanogr. 138:417–30 [Google Scholar]
  155. Yasuda I. 2003. Hydrographic structure and variability in the Kuroshio-Oyashio Transition Area. J. Oceanogr. 59:389–402 [Google Scholar]
  156. Zarauz L, Irigoien X, Fernandes JA. 2009. Changes in plankton size structure and composition, during the generation of a phytoplankton bloom, in the central Cantabrian sea. J. Plankton Res. 31:193–207 [Google Scholar]
  157. Zarraonaindia I, Iriondo M, Albaina A, Pardo MA, Manzano C. et al. 2012. Multiple SNP markers reveal fine-scale population and deep phylogeographic structure in European anchovy (Engraulis encrasicolus L.). PLOS ONE 7:e42201 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error