1932

Abstract

A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d−1, whereas most heterotrophic bacteria grow slowly, close to 0.1 d−1; only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-122414-033938
2016-01-03
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-122414-033938.html?itemId=/content/journals/10.1146/annurev-marine-122414-033938&mimeType=html&fmt=ahah

Literature Cited

  1. Alderkamp AC, Sintes E, Herndl GJ. 2006. Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer. Aquat. Microb. Ecol. 45:237–46 [Google Scholar]
  2. Alonso C, Pernthaler J. 2006. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ. Microbiol. 8:2022–30 [Google Scholar]
  3. Alonso-Sáez L, Gasol JM. 2007. Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in northwestern Mediterranean coastal waters. Appl. Environ. Microbiol. 73:3528–35 [Google Scholar]
  4. Alonso-Sáez L, Gasol JM, Lefort T, Hofer J, Sommaruga R. 2006. Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in northwestern Mediterranean coastal waters. Appl. Environ. Microbiol. 72:5806–13 [Google Scholar]
  5. Ammerman JW, Fuhrman JA, Hagström A, Azam F. 1984. Bacterioplankton growth in seawater: I. Growth kinetics and cellular characteristics in seawater cultures. Mar. Ecol. Prog. Ser. 18:31–39 [Google Scholar]
  6. Andersen KH, Berge T, Gonçalves RJ, Hartvig M, Heuschele J. et al. 2016. Characteristic sizes of life in the oceans, from bacteria to whales. Annu. Rev. Mar. Sci. 8:217–41 [Google Scholar]
  7. Anderson TR, Ducklow HW. 2001. Microbial loop carbon cycling in ocean environments studied using a simple steady-state model. Aquat. Microb. Ecol. 26:37–49 [Google Scholar]
  8. Béjà O, Suzuki MT. 2008. Photoheterotrophic marine prokaryotes. Microbial Ecology of the Oceans DL Kirchman 131–57 New York: Wiley & Sons, 2nd ed.. [Google Scholar]
  9. Billen G, Servais P, Becquevort S. 1990. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control?. Hydrobiologia 207:37–42 [Google Scholar]
  10. Biller SJ, Berube PM, Lindell D, Chisholm SW. 2015. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13:13–27 [Google Scholar]
  11. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. 2013. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 7:2061–68 [Google Scholar]
  12. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–89 [Google Scholar]
  13. Brown SL, Landry MR, Barber RT, Campbell L, Garrison DL, Gowing MM. 1999. Picophytoplankton dynamics and production in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res. II 46:1745–68 [Google Scholar]
  14. Brown SL, Landry MR, Christensen S, Garrison D, Gowing MM. et al. 2002. Microbial community dynamics and taxon-specific phytoplankton production in the Arabian Sea during the 1995 monsoon seasons. Deep-Sea Res. II 49:2345–76 [Google Scholar]
  15. Campbell BJ, Kirchman DL. 2013. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7:210–20 [Google Scholar]
  16. Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. 2011. Activity of abundant and rare bacteria in a coastal ocean. PNAS 108:12776–81 [Google Scholar]
  17. Carini P, Steindler L, Beszteri S, Giovannoni SJ. 2013. Nutrient requirements for growth of the extreme oligotroph “Candidatus Pelagibacter ubique” HTCC1062 on a defined medium. ISME J. 7:592–602 [Google Scholar]
  18. Chen BZ, Liu HB. 2010. Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55:965–72 [Google Scholar]
  19. Chen BZ, Liu HB, Landry MR, Dai MH, Huang BQ, Sun J. 2009. Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnol. Oceanogr. 54:1084–97 [Google Scholar]
  20. Cho BC, Azam F. 1990. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Mar. Ecol. Prog. Ser. 63:253–59 [Google Scholar]
  21. Ciotti BJ, Targett TE, Nash RDM, Batty RS, Burrows MT, Geffen AJ. 2010. Development, validation and field application of an RNA-based growth index in juvenile plaice Pleuronectes platessa. J. Fish Biol. 77:2181–209 [Google Scholar]
  22. Cottrell MT, Kirchman DL. 2004. Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquat. Microb. Ecol. 34:139–49 [Google Scholar]
  23. del Giorgio PA, Cole JJ. 2000. Bacterial energetics and growth efficiency. Microbial Ecology of the Oceans DL Kirchman 289–325 New York: Wiley-Liss [Google Scholar]
  24. del Giorgio PA, Gasol JM. 2008. Physiological structure and single-cell activity in marine bacterioplankton. Microbial Ecology of the Oceans DL Kirchman 243–98 New York: Wiley & Sons, 2nd ed.. [Google Scholar]
  25. DeLong JP, Okie JG, Moses ME, Sibly RM, Brown JH. 2010. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. PNAS 107:12941–45 [Google Scholar]
  26. Ducklow HW. 1999. The bacterial component of the oceanic euphotic zone. FEMS Microbiol. Ecol. 30:1–10 [Google Scholar]
  27. Ducklow HW. 2000. Bacterial production and biomass in the oceans. Microbial Ecology of the Oceans DL Kirchman 85–120 New York: Wiley-Liss [Google Scholar]
  28. Ducklow HW, Quinby HL, Carlson CA. 1995. Bacterioplankton dynamics in the equatorial Pacific during the 1992 El Niño. Deep-Sea Res. II 42:621–38 [Google Scholar]
  29. Elifantz H, Malmstrom RR, Cottrell MT, Kirchman DL. 2005. Assimilation of polysaccharides and glucose by major bacterial groups in the Delaware Estuary. Appl. Environ. Microbiol. 71:7799–805 [Google Scholar]
  30. Ferrera I, Gasol JM, Sebastian M, Hojerová E, Koblížek M. 2011. Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal Mediterranean waters. Appl. Environ. Microbiol. 77:7451–58 [Google Scholar]
  31. Fouilland E, Mostajir B. 2010. Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwaters, transitional, coastal and oceanic waters. FEMS Microbiol. Ecol. 73:419–29 [Google Scholar]
  32. Fuhrman JA, Azam F. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39:1085–95 [Google Scholar]
  33. Fuhrman JA, Cram JA, Needham DM. 2015. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13:133–46 [Google Scholar]
  34. Fukuda R, Ogawa H, Nagata T, Koike I. 1998. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64:3352–58 [Google Scholar]
  35. Gifford SM, Sharma S, Booth M, Moran MA. 2013. Expression patterns reveal niche diversification in a marine microbial assemblage. ISME J. 7:281–98 [Google Scholar]
  36. Gifford SM, Sharma S, Moran MA. 2014. Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community. Front. Microbiol. 5:185 [Google Scholar]
  37. Giovannoni SJ, Temperton B, Zhao Y. 2013. Giovannoni et al. reply. Nature 499:E4–5 [Google Scholar]
  38. Giovannoni SJ, Thrash JC, Temperton B. 2014. Implications of streamlining theory for microbial ecology. ISME J. 8:1553–65 [Google Scholar]
  39. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL. et al. 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–45 [Google Scholar]
  40. Goericke R, Welschmeyer NA. 1993. The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep-Sea Res. I 40:2283–94 [Google Scholar]
  41. Goldman JC, McCarthy JJ, Peavey DG. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–15 [Google Scholar]
  42. Guo C, Liu H, Zheng L, Song S, Chen B, Huang B. 2014. Seasonal and spatial patterns of picophytoplankton growth, grazing and distribution in the East China Sea. Biogeosciences 11:1847–62 [Google Scholar]
  43. Hagström A, Ammerman JW, Henrichs S, Azam F. 1984. Bacterioplankton growth in seawater: II. Organic matter utilization during steady-state growth in seawater cultures. Mar. Ecol. Prog. Ser. 18:41–48 [Google Scholar]
  44. Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I. et al. 2013. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. PNAS 110:6004–9 [Google Scholar]
  45. Hunt DE, Lin Y, Church MJ, Karl DM, Tringe SG. et al. 2013. Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl. Environ. Microbiol. 79:177–84 [Google Scholar]
  46. Karner MB, DeLong EF, Karl DM. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–10 [Google Scholar]
  47. Kawasaki N, Sohrin R, Ogawa H, Nagata T, Benner R. 2011. Bacterial carbon content and the living and detrital bacterial contributions to suspended particulate organic carbon in the North Pacific Ocean. Aquat. Microb. Ecol. 62:165–76 [Google Scholar]
  48. Kemp PF, Lee S, Laroche J. 1993. Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl. Environ. Microbiol. 59:2594–601 [Google Scholar]
  49. Kempes CP, Dutkiewicz S, Follows MJ. 2012. Growth, metabolic partitioning, and the size of microorganisms. PNAS 109:495–500 [Google Scholar]
  50. Kirchman DL, Ducklow HW, Mitchell R. 1982. Estimates of bacterial growth from changes in uptake rates and biomass. Appl. Environ. Microbiol. 44:1296–307 [Google Scholar]
  51. Kirchman DL, Hanson TE. 2013. Bioenergetics of photoheterotrophic bacteria in the oceans. Environ. Microbiol. Rep. 5:188–99 [Google Scholar]
  52. Kirchman DL, Morán XAG, Ducklow H. 2009. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat. Rev. Microbiol. 7:451–59 [Google Scholar]
  53. Kirchman DL, Stegman MR, Nikrad MP, Cottrell MT. 2014. Abundance, size, and activity of aerobic anoxygenic phototrophic bacteria in coastal waters of the West Antarctic Peninsula. Aquat. Microb. Ecol. 73:41–49 [Google Scholar]
  54. Kjeldgaard NO, Maaløe O, Schaechter M. 1958. The transition between different physiological states during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19:607–16 [Google Scholar]
  55. Klappenbach JA, Dunbar JM, Schmidt TM. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66:1328–33 [Google Scholar]
  56. Koblížek M, Masin M, Ras J, Poulton AJ, Prasil O. 2007. Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environ. Microbiol. 9:2401–6 [Google Scholar]
  57. Koop JE, Winkelmann C, Becker J, Hellmann C, Ortmann C. 2011. Physiological indicators of fitness in benthic invertebrates: a useful measure for ecological health assessment and experimental ecology. Aquat. Ecol. 45:547–59 [Google Scholar]
  58. Laghdass M, Catala P, Caparros J, Oriol L, Lebaron P, Obernosterer I. 2012. High contribution of SAR11 to microbial activity in the north west Mediterranean Sea. Microb. Ecol. 63:324–33 [Google Scholar]
  59. Landry MR, Hassett RP. 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67:283–88 [Google Scholar]
  60. Landry MR, Kirchman DL. 2002. Microbial community structure and variability in the tropical Pacific. Deep-Sea Res. II 49:2669–93 [Google Scholar]
  61. Lankiewicz TS, Cottrell MT, Kirchman DL. 2015. Growth rates and rRNA content of four marine bacteria in pure cultures and in the Delaware estuary. ISME J. In press. doi: 10.1038/ismej.2015.156 [Google Scholar]
  62. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S. et al. 2009. The genomic basis of trophic strategy in marine bacteria. PNAS 106:15527–33 [Google Scholar]
  63. Laws EA. 2013. Evaluation of in situ phytoplankton growth rates: a synthesis of data from varied approaches. Annu. Rev. Mar. Sci. 5:247–68 [Google Scholar]
  64. Liu HB, Campbell L, Landry MR. 1995. Growth and mortality-rates of Prochlorococcus and Synechococcus measured with a selective inhibitor technique. Mar. Ecol. Prog. Ser. 116:277–87 [Google Scholar]
  65. Longnecker K, Homen DS, Sherr EB, Sherr BF. 2006. Similar community structure of biosynthetically active prokaryotes across a range of ecosystem trophic states. Aquat. Microb. Ecol. 42:265–76 [Google Scholar]
  66. Longnecker K, Lomas MW, Van Mooy BAS. 2010. Abundance and diversity of heterotrophic bacterial cells assimilating phosphate in the subtropical North Atlantic Ocean. Environ. Microbiol. 12:2773–82 [Google Scholar]
  67. Luo H, Moran MA. 2014. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 78:573–87 [Google Scholar]
  68. Luo H, Swan BK, Stepanauskas R, Hughes AL, Moran MA. 2014. Evolutionary analysis of a streamlined lineage of surface ocean Roseobacters. ISME J. 8:1428–39 [Google Scholar]
  69. Lynch MDJ, Neufeld JD. 2015. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13:217–29 [Google Scholar]
  70. Maida I, Bosi E, Perrin E, Papaleo MC, Orlandini V. et al. 2013. Draft genome sequence of the fast-growing bacterium Vibrio natriegens strain DSMZ 759. Genome Announc. 1:e00648–13 [Google Scholar]
  71. Makarieva AM, Gorshkov VG, Li B-L. 2005. Energetics of the smallest: Do bacteria breathe at the same rate as whales?. Proc. Biol. Sci. 272:2219–24 [Google Scholar]
  72. Malmstrom RR, Cottrell MT, Elifantz H, Kirchman DL. 2005. Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the Northwest Atlantic Ocean. Appl. Environ. Microbiol. 71:2979–86 [Google Scholar]
  73. Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL. 2004. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic Ocean. Appl. Environ. Microbiol. 70:4129–35 [Google Scholar]
  74. Malmstrom RR, Straza TRA, Cottrell MT, Kirchman DL. 2007. Diversity, abundance, and biomass production of bacterial groups in the western Arctic Ocean. Aquat. Microb. Ecol. 47:45–55 [Google Scholar]
  75. Marañón E. 2015. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 7:241–64 [Google Scholar]
  76. Marañón E, Cermeño P, López-Sandoval DC, Rodríguez-Ramos T, Sobrino C. et al. 2013. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16:371–79 [Google Scholar]
  77. Marra J. 2012. Comment on “Measuring primary production rates in the ocean: enigmatic results between incubation and non-incubation methods at Station ALOHA” by P. D. Quay et al. Glob. Biogeochem. Cycles 26GB2031 [Google Scholar]
  78. Moore LR, Goericke R, Chisholm SW. 1995. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116:247–57 [Google Scholar]
  79. Morel A, Ahn YH, Partensky F, Vaulot D, Claustre H. 1993. Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation. J. Mar. Res. 51:617–49 [Google Scholar]
  80. Mosby AF, Smith WOJ. 2015. Phytoplankton growth rates in the Ross Sea, Antarctica. Aquat. Microb. Ecol. 74:157–71 [Google Scholar]
  81. Mou X, Sun S, Edwards RA, Hodson RE, Moran MA. 2008. Bacterial carbon processing by generalist species in the coastal ocean. Nature 451:708–11 [Google Scholar]
  82. Pasulka AL, Samo TJ, Landry MR. 2015. Grazer and viral impacts on microbial growth and mortality in the southern California Current Ecosystem. J. Plankton Res. 37:320–36 [Google Scholar]
  83. Pernthaler A, Pernthaler J, Amann R. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:3094–101 [Google Scholar]
  84. Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP. et al. 2010. The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 8:523–29 [Google Scholar]
  85. Poindexter JS. 1981. Oligotrophy: fast and famine existence. Adv. Microb. Ecol. 5:63–89 [Google Scholar]
  86. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. 2002. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–33 [Google Scholar]
  87. Redalje DG, Laws EA. 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Mar. Biol. 62:73–79 [Google Scholar]
  88. Roux S, Enault F, le Bronner G, Debroas D. 2011. Comparison of 16S rRNA and protein-coding genes as molecular markers for assessing microbial diversity (Bacteria and Archaea) in ecosystems. FEMS Microbiol. Ecol. 78:617–28 [Google Scholar]
  89. Ruiz-González C, Galí M, Gasol J, Simó R. 2012a. Sunlight effects on the DMSP-sulfur and leucine assimilation activities of polar heterotrophic bacterioplankton. Biogeochemistry 110:57–74 [Google Scholar]
  90. Ruiz-González C, Galí M, Lefort T, Cardelús C, Simó R, Gasol JM. 2012b. Annual variability in light modulation of bacterial heterotrophic activity in surface northwestern Mediterranean waters. Limnol. Oceanogr. 57:1376–88 [Google Scholar]
  91. Ruiz-González C, Lefort T, Galí M, Montserrat Sala M, Sommaruga R. et al. 2012c. Seasonal patterns in the sunlight sensitivity of bacterioplankton from Mediterranean surface coastal waters. FEMS Microbiol. Ecol. 79:661–74 [Google Scholar]
  92. Salter I, Galand PE, Fagervold SK, Lebaron P, Obernosterer I. et al. 2015. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic northwest Mediterranean Sea. ISME J. 9:347–60 [Google Scholar]
  93. Samo TJ, Smriga S, Malfatti F, Sherwood BP, Azam F. 2014. Broad distribution and high proportion of protein synthesis active marine bacteria revealed by click chemistry at the single cell level. Front. Mar. Sci. 1:48 [Google Scholar]
  94. Selph KE, Shacat J, Landry MR. 2005. Microbial community composition and growth rates in the NW Pacific during spring 2002. Geochem. Geophys. Geosyst. 6:Q12M05 [Google Scholar]
  95. Sieracki ME, Gilg IC, Thier EC, Poulton NJ, Goericke R. 2006. Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic. Limnol. Oceanogr. 51:38–46 [Google Scholar]
  96. Sintes E, Herndl GJ. 2006. Quantifying substrate uptake by individual cells of marine bacterioplankton by catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography. Appl. Environ. Microbiol. 72:7022–28 [Google Scholar]
  97. Smriga S, Samo TJ, Malfatti F, Villareal J, Azam F. 2014. Individual cell DNA synthesis within natural marine bacterial assemblages as detected by “click” chemistry. Aquat. Microb. Ecol. 72:269–80 [Google Scholar]
  98. Stegman MR, Cottrell MT, Kirchman DL. 2014. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary. ISME J. 8:2339–48 [Google Scholar]
  99. Straza TRA, Cottrell MT, Ducklow HW, Kirchman DL. 2009. Geographic and phylogenetic variation in bacterial biovolume as revealed by protein and nucleic acid staining. Appl. Environ. Microbiol. 75:4028–34 [Google Scholar]
  100. Straza TRA, Ducklow HW, Murray AE, Kirchman DL. 2010. Abundance and single-cell activity of bacterial groups in Antarctic coastal waters. Limnol. Oceanogr. 55:2526–36 [Google Scholar]
  101. Straza TRA, Kirchman DL. 2011. Single-cell response of bacterial groups to light and other environmental factors in the Delaware Bay, USA. Aquat. Microb. Ecol. 62:267–77 [Google Scholar]
  102. Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M. et al. 2013. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. PNAS 110:11463–68 [Google Scholar]
  103. Tada Y, Makabe R, Kasamatsu-Takazawa N, Taniguchi A, Hamasaki K. 2013. Growth and distribution patterns of Roseobacter/Rhodobacter, SAR11, and Bacteroidetes lineages in the Southern Ocean. Polar Biol. 36:691–704 [Google Scholar]
  104. Tada Y, Taniguchi A, Hamasaki K. 2010. Phylotype-specific growth rates of marine bacteria measured by bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization. Aquat. Microb. Ecol. 59:229–38 [Google Scholar]
  105. Taniguchi DAA, Landry MR, Franks PJS, Selph KE. 2014. Size-specific growth and grazing rates for picophytoplankton in coastal and oceanic regions of the eastern Pacific. Mar. Ecol. Prog. Ser. 509:87–101 [Google Scholar]
  106. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A. et al. 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–11 [Google Scholar]
  107. Teira E, Martínez-García S, Lønborg C, Álvarez-Salgado XA. 2009. Growth rates of different phylogenetic bacterioplankton groups in a coastal upwelling system. Environ. Microbiol. Rep. 1:545–54 [Google Scholar]
  108. Thingstad TF. 2000. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45:1320–28 [Google Scholar]
  109. Thingstad TF, Lignell R. 1997. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13:19–27 [Google Scholar]
  110. Thingstad TF, Våge S, Storesund JE, Sandaa R-A, Giske J. 2014. A theoretical analysis of how strain-specific viruses can control microbial species diversity. PNAS 111:7813–18 [Google Scholar]
  111. Våge S, Storesund JE, Thingstad TF. 2013a. Adding a cost of resistance description extends the ability of virus–host model to explain observed patterns in structure and function of pelagic microbial communities. Environ. Microbiol. 15:1842–52 [Google Scholar]
  112. Våge S, Storesund JE, Thingstad TF. 2013b. SAR11 viruses and defensive host strains. Nature 499:E3–4 [Google Scholar]
  113. Vieira-Silva S, Rocha EPC. 2010. The systemic imprint of growth and its uses in ecological (meta)genomics. PLOS Genet. 6:e1000808 [Google Scholar]
  114. Vieira-Silva S, Touchon M, Rocha EPC. 2010. No evidence for elemental-based streamlining of prokaryotic genomes. Trends Ecol. Evol. 25:319–20 [Google Scholar]
  115. Winter C, Bouvier T, Weinbauer MG, Thingstad TF. 2010. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “Killing the Winner” hypothesis revisited. Microbiol. Mol. Biol. Rev. 74:42–57 [Google Scholar]
  116. Yao D, Buchan A, Suzuki MT. 2011. In situ activity of NAC11-7 roseobacters in coastal waters off the Chesapeake Bay based on ftsZ expression. Environ. Microbiol. 13:1032–41 [Google Scholar]
  117. Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL. et al. 2010. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468:60–66 [Google Scholar]
  118. Zarecki R, Oberhardt MA, Reshef L, Gophna U, Ruppin E. 2014. A novel nutritional predictor links microbial fastidiousness with lowered ubiquity, growth rate, and cooperativeness. PLOS Comput. Biol. 10:e1003726 [Google Scholar]
  119. Zhang Y, Jiao NZ, Cottrell MT, Kirchman DL. 2006. Contribution of major bacterial groups to bacterial biomass production along a salinity gradient in the South China Sea. Aquat. Microb. Ecol. 43:233–41 [Google Scholar]
  120. Zhang Y, Zhao Z, Dai M, Jiao N, Herndl GJ. 2014. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol. Ecol. 23:2260–74 [Google Scholar]
  121. Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL. et al. 2013. Abundant SAR11 viruses in the ocean. Nature 494:357–60 [Google Scholar]
  122. Zubkov MV. 2014. Faster growth of the major prokaryotic versus eukaryotic CO2 fixers in the oligotrophic ocean. Nat. Commun. 5:3776 [Google Scholar]
/content/journals/10.1146/annurev-marine-122414-033938
Loading
/content/journals/10.1146/annurev-marine-122414-033938
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error