1932

Abstract

Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics.*

Associated Article

There are media items related to this article:
Mangrove Sedimentation and Response to Relative Sea-Level Rise: Visual Abstract
Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-122414-034025
2016-01-03
2024-09-20
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-122414-034025.html?itemId=/content/journals/10.1146/annurev-marine-122414-034025&mimeType=html&fmt=ahah

Literature Cited

  1. Adame MF, Neil D, Wright SF, Lovelock CE. 2009. Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuar. Coast. Shelf Sci. 86:21–30 [Google Scholar]
  2. Alongi DM. 2012. Carbon sequestration in mangrove forests. Carbon Manag. 3:313–22 [Google Scholar]
  3. Alongi DM. 2014. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 6:195–219 [Google Scholar]
  4. Alongi DM. 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep. 1:30–39 [Google Scholar]
  5. Alongi DM, Sasekumar A, Chong VC, Pfitzner J, Trott LA. et al. 2004. Sediment accumulation and organic material flux in a managed mangrove ecosystem: estimates of land–ocean–atmosphere exchange in peninsular Malaysia. Mar. Geol. 208:383–402 [Google Scholar]
  6. Anthony EJ, Gardel A, Gratiot N, Proisy C, Allison MA. et al. 2010. The Amazon-influenced muddy coast of South America: a review of mud bank–shoreline interactions. Earth Sci. Rev. 103:99–121 [Google Scholar]
  7. Auerbach LW, Goodbred SL Jr, Mondal DR, Wilson CA, Ahmed KR. et al. 2015. Flood risk of natural and embanked landscapes on the Ganges–Brahmaputra tidal delta plain. Nat. Clim. Change 5:153–57 [Google Scholar]
  8. Balke T, Bouma TJ, Herman PMJ, Horstman EM, Sudtongkong C, Webb EL. 2013. Cross-shore gradients of physical disturbance in mangroves: implications for seedling establishment. Biogeosciences 10:5411–19 [Google Scholar]
  9. Bao TQ. 2011. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia 53:807–18 [Google Scholar]
  10. Breithaupt JL, Smoak JM, Smith TJ III, Sanders CJ, Hoare A. 2012. Organic carbon burial rates in mangrove sediments: strengthening the global budget. Glob. Biogeochem. Cycles 26:GB3011 [Google Scholar]
  11. Cahoon DR. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries Coasts 29:889–98 [Google Scholar]
  12. Cahoon DR. 2014. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries Coasts 38:1077–84 [Google Scholar]
  13. Cahoon DR, Hensel PF, Spencer T, Reed DJ, McKee KL, Saintilan N. 2006. Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. Wetlands and Natural Resource Management JTA Verhoeven, B Beltman, R Bobbink, DF Whigham 271–92 Heidelberg, Ger: Springer [Google Scholar]
  14. Cahoon DR, Lynch JC, Perez BC, Segura B, Holland RD. et al. 2002. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. Res. 72:734–39 [Google Scholar]
  15. Cahoon DR, Marin PE, Black BK, Lynch JC. 2000. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments. J. Sediment. Res. 70:1250–53 [Google Scholar]
  16. Capo S, Sottolichio A, Brenon I, Castaing P, Ferry L. 2006. Morphology, hydrography and sediment dynamics in a mangrove estuary: the Konkoure Estuary, Guinea. Mar. Geol. 230:199–215 [Google Scholar]
  17. Chappell J, Thom BG. 1986. Coastal morphodynamics in north Australia: review and prospect. Aust. Geogr. Stud. 24:110–27 [Google Scholar]
  18. Clarke PJ. 2014. Seeking global generality: a critique for mangrove modellers. Mar. Freshw. Res. 65:930–33 [Google Scholar]
  19. Cobb SM, Saynor MJ, Eliot M, Eliot I, Hall R. 2007. Saltwater intrusion and mangrove encroachment of coastal wetlands in the Alligator Rivers Region, Northern Territory, Australia Supervis. Sci. Rep. 190, Aust. Dep. Environ. Resour., Darwin, Aust. [Google Scholar]
  20. Comeaux RS, Allison MA, Bianchi TS. 2012. Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuar. Coast. Shelf Sci. 96:81–95 [Google Scholar]
  21. Cowell PJ, Thom BG. 1994. Morphodynamics of coastal evolution. Coastal Evolution: Late Quaternary Shoreline Morphodynamics RWG Carter, CD Woodroffe 33–86 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  22. Crase B, Liedloff A, Vesk PA, Burgman MA, Wintle BA. 2013. Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Glob. Ecol. Biogeogr. 22:806–17 [Google Scholar]
  23. Davies G, Woodroffe CD. 2010. Tidal estuary width convergence: theory and form in North Australian estuaries. Earth Surf. Process. Landf. 35:737–49 [Google Scholar]
  24. Davis JH Jr. 1946. The Peat Deposits of Florida: Their Occurrence, Development and Uses Fla. Geol. Surv. Bull. 30 Tallahassee: Fla. Geol. Surv. [Google Scholar]
  25. Di Nitto D, Neukermans G, Koedam N, Defever H, Pattyn F. et al. 2014. Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise. Biogeosciences 11:857–71 [Google Scholar]
  26. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4:293–97 [Google Scholar]
  27. Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3:961–68 [Google Scholar]
  28. Duke NC. 2006. Australia's Mangroves: The Authoritative Guide to Australia's Mangrove Plants Brisbane, Aust: Univ. Queensland Press [Google Scholar]
  29. Eliot M, Eliot I. 2012. Interpreting estuarine change in northern Australia: physical responses to changing conditions. Hydrobiologia 708:3–21 [Google Scholar]
  30. Ellison JC. 1999. Impact of sediment burial on mangroves. Mar. Pollut. Bull. 37:420–26 [Google Scholar]
  31. Ellison JC. 2008. Long-term retrospection on mangrove development using sediment cores and pollen analysis: a review. Aquat. Bot. 89:93–104 [Google Scholar]
  32. Ellison JC, Stoddart DR. 1991. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. J. Coast. Res. 7:151–65 [Google Scholar]
  33. Erban LE, Gorelick SM, Zebker HA. 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 9:084010 [Google Scholar]
  34. Feller IC, Lovelock CE, Berger U, McKee KL, Joye SB, Ball MC. 2010. Biocomplexity in mangrove ecosystems. Annu. Rev. Mar. Sci. 2:395–417 [Google Scholar]
  35. FitzGerald DM, Fenster MS, Argow BA, Buynevich IV. 2008. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 36:601–47 [Google Scholar]
  36. Fromard F, Vega C, Proisy C. 2004. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana: a case study based on remote sensing data analyses and field surveys. Mar. Geol. 208:265–80 [Google Scholar]
  37. Gilman E, Ellison J, Duke NC, Field C. 2008. Threats to mangroves from climate change and adaptation options: a review. Aquat. Bot. 89:237–50 [Google Scholar]
  38. Giosan L, Syvitski JPM, Constantinescu S, Day J. 2014. Protect the world's deltas. Nature 516:31–33 [Google Scholar]
  39. Giri C, Ochieng E, Tieszen LL, Zhiu Z, Singh A. et al. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20:154–59 [Google Scholar]
  40. Granek E, Ruttenberg BI. 2008. Changes in biotic and abiotic processes following mangrove clearing. Estuar. Coast. Shelf Sci. 80:555–62 [Google Scholar]
  41. Gratiot N, Anthony EJ, Gardel A, Gaucherel C, Proisy C, Wells JT. 2008. Significant contribution of the 18.6 year tidal cycle to regional coastal changes. Nat. Geosci. 1:169–72 [Google Scholar]
  42. Grindrod J. 1985. The palynology of mangroves on a prograded shore, Princess Charlotte Bay, North Queensland, Australia. J. Biogeogr. 12:323–48 [Google Scholar]
  43. Ha TTT, van Dijk H, Bush SR. 2012. Mangrove conservation or shrimp farmer's livelihood? The devolution of forest management and benefit sharing in the Mekong Delta, Vietnam. Ocean Coast. Manag. 69:185–93 [Google Scholar]
  44. Hanebuth TJJ, Kudrass HR, Linstädter J, Islam B, Zander AM. 2013. Rapid coastal subsidence in the central Ganges-Brahmaputra Delta (Bangladesh) since the 17th century deduced from submerged salt-producing kilns. Geology 41:987–90 [Google Scholar]
  45. Hanebuth TJJ, Voris HK, Yokoyama Y, Saito Y, Okuno J. 2011. Formation and fate of sedimentary depocentres on Southeast Asia's Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth Sci. Rev. 104:92–110 [Google Scholar]
  46. Hemminga MA, Slim FJ, Kazungu J, Ganssen GM, Nieuwenhuize J, Kruyt NM. 1994. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya). Mar. Ecol. Prog. Ser. 106:291–301 [Google Scholar]
  47. Ibáñez C, Day JW, Reyes E. 2013. The response of deltas to sea-level rise: natural mechanisms and management options to adapt to high-end scenarios. Ecol. Eng. 65:122–30 [Google Scholar]
  48. Janssen-Stelder BM, Augustinus PGEF, van Santen WAC. 2002. Sedimentation in a coastal mangrove system, Red River Delta, Vietnam. Proc. Mar. Sci. 5:455–67 [Google Scholar]
  49. Jervey MT. 1988. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. Sea-Level Changes: An Integrated Approach CK Wilgus, BS Hastings, H Posamentier, J Van Wagoner, CA Ross, CGSC Kendall 47–69 SEPM Spec. Publ. 42 Tulsa, OK: Soc. Econ. Paleontol. Mineral. [Google Scholar]
  50. Knight JM, Dale PER, Dunn RJK, Broadbent GJ, Lemckert CJ. 2008. Patterns of tidal flooding within a mangrove forest: Coombabah Lake, Southeast Queensland, Australia. Estuar. Coast. Shelf Sci. 76:580–93 [Google Scholar]
  51. Komiyama A, Ong JE, Poungparn S. 2008. Allometry, biomass and productivity of mangrove forests: a review. Aquat. Bot. 89:128–37 [Google Scholar]
  52. Krauss KW, Cahoon DR, Allen JA, Ewel KC, Lynch JC, Cormier N. 2010. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands of Micronesia. Ecosystems 13:129–43 [Google Scholar]
  53. Krauss KW, Doyle TW, Twilley RR, Rivera-Monroy VH, Sullivan JK. 2006. Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569:311–24 [Google Scholar]
  54. Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N. et al. 2014. How mangrove forests adjust to rising sea level. New Phytol. 202:19–34 [Google Scholar]
  55. Kristensen E, Bouillon S, Dittmar T, Marchand C. 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquat. Bot. 89:201–19 [Google Scholar]
  56. Lee SY. 1995. Mangrove outwelling: a review. Hydrobiologia 295:203–12 [Google Scholar]
  57. Li Z, Saito Y, Mao L, Tamura T, Li Z. et al. 2012. Mid-Holocene mangrove succession and its response to sea-level change in the upper Mekong River delta, Cambodia. Quat. Res. 78:386–99 [Google Scholar]
  58. López-Medellin X, Ezcurra E, González-Abraham C, Hak J, Santiago LS, Sickman JO. 2011. Oceanographic anomalies and sea-level rise drive mangroves inland in the Pacific coast of Mexico. J. Veg. Sci. 22:143–51 [Google Scholar]
  59. Lovelock CE, Adame MF, Bennion V, Hayes M, O'Mara J. et al. 2014. Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove forests and saltmarshes of South East Queensland, Australia. Estuaries Coasts 37:763–71 [Google Scholar]
  60. Lovelock CE, Adame MF, Bennion V, Hayes M, Reef R. et al. 2015. Sea level and turbidity controls on mangrove soil surface elevation change. Estuar. Coast. Shelf Sci. 153:1–9 [Google Scholar]
  61. Lovelock CE, Bennion V, Grinham A, Cahoon DR. 2011a. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems 14:745–57 [Google Scholar]
  62. Lovelock CE, Feller IC, Adame MF, Reef R, Penrose HM. et al. 2011b. Intense storms and the delivery of materials that relieve nutrient limitations in mangroves of an arid zone estuary. Funct. Plant Biol. 38:514–22 [Google Scholar]
  63. Lovelock CE, Ruess RW, Feller IC. 2011c. CO2 efflux from cleared mangrove peat. PLOS ONE 6:e21279 [Google Scholar]
  64. Lovelock CE, Sorrell B, Hancock N, Hua Q, Swales A. 2010. Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems 13:437–51 [Google Scholar]
  65. Lucas RM, Mitchell AL, Rosenqvist A, Proisy C, Melius A, Ticehurst C. 2007. The potential of L-band SAR for quantifying mangrove characteristics and change: case studies from the tropics. Aquat. Conserv. Mar. Freshw. Ecosyst. 17:245–64 [Google Scholar]
  66. Lugo AE, Snedaker SC. 1974. The ecology of mangroves. Annu. Rev. Ecol. Syst. 5:39–64 [Google Scholar]
  67. Macintyre IG, Toscano MA, Bond GB. 2004. Holocene history of the mangrove islands of Twin Cays, Belize, Central America. Atoll Res. Bull. 510:1–16 [Google Scholar]
  68. Mazda Y, Kanazawa K, Wolanski E. 1995. Tidal asymmetry in mangrove creeks. Hydrobiologia 295:51–58 [Google Scholar]
  69. McCloskey TA, Liu K-B. 2013. Sedimentary history of mangrove cays in Turneffe Islands, Belize: evidence for sudden environmental reversals. J. Coast. Res. 29:971–83 [Google Scholar]
  70. McIvor AL, Spencer T, Möller I, Spalding M. 2013. The response of mangrove soil surface elevation to sea level rise. Nat. Coast. Prot. Ser. Rep. 3, Cambridge Coast. Res. Unit Work. Pap. 3, Nat. Conserv., Arlington, VA, and Wetl. Int., Wageningen, Neth. [Google Scholar]
  71. McKee KL. 1993. Soil physicochemical patterns and mangrove species distribution: reciprocal effects?. J. Ecol. 81:477–87 [Google Scholar]
  72. McKee KL. 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar. Coast. Shelf Sci. 91:475–83 [Google Scholar]
  73. McKee KL, Cahoon DR, Feller IC. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16:545–56 [Google Scholar]
  74. McKee KL, Faulkner PL. 2000. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize. Atoll Res. Bull. 468:46–58 [Google Scholar]
  75. McKee KL, Rogers K, Saintilan N. 2012. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea level. Global Change and the Function and Distribution of Wetlands BA Middleton 63–96 New York: Springer [Google Scholar]
  76. McKee KL, Vervaeke WC. 2009. Impacts of human disturbance on soil erosion potential and habitat stability of mangrove-dominated islands in the Pelican Cays and Twin Cays Ranges, Belize. Smithson. Contrib. Mar. Sci. 38:415–27 [Google Scholar]
  77. McLeod E, Chmura GL, Bouillon S, Salm R, Björk M. et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9:552–60 [Google Scholar]
  78. Mendelssohn IA, Morris JT. 2000. Ecophysiological controls on the growth of Spartina alterniflora. Concepts and Controversies in Tidal Marsh Ecology NP Weinstein, DA Kreeger 59–80 Dordrecht, Neth: Kluwer [Google Scholar]
  79. Middleton BA, McKee KL. 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J. Ecol. 89:818–28 [Google Scholar]
  80. Mulrennan ME, Woodroffe CD. 1998. Saltwater intrusion into coastal plains of the Lower Mary River, Northern Territory, Australia. J. Environ. Manag. 54:169–88 [Google Scholar]
  81. Nascimento WR, Souza Filho PWM, Proisy C, Lucas RM, Rosenqvist A. 2013. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuar. Coast. Shelf Sci. 117:83–93 [Google Scholar]
  82. Nolte S, Koppenaal EC, Esselink P, Dijkema KS, Schuerch M. et al. 2013. Measuring sedimentation in tidal marshes: a review on methods and their applicability in biogeomorphological studies. J. Coast. Conserv. 17:301–25 [Google Scholar]
  83. Oliver TSN, Rogers K, Chafer CJ, Woodroffe CD. 2012. Measuring, mapping and modelling: an integrated approach to the management of mangrove and saltmarsh in the Minnamurra River estuary, southeast Australia. Wetl. Ecol. Manag. 20:353–71 [Google Scholar]
  84. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA. et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS ONE 7:e43542 [Google Scholar]
  85. Pethick J, Orford JD. 2013. Rapid rise in effective sea-level in southwest Bangladesh: its causes and contemporary rates. Glob. Planet. Change 111:237–45 [Google Scholar]
  86. Phan LK, van Thiel de Vries JSM, Stive MJF. 2015. Coastal mangrove squeeze in the Mekong Delta. J. Coast. Res. 31:233–43 [Google Scholar]
  87. Phan NH, Hoang TS. 1993. Mangroves of Vietnam Bangkok: IUCN [Google Scholar]
  88. Phien-wej N, Giao PH, Nutalaya P. 2006. Land subsidence in Bangkok. Eng. Geol. 82:187–201 [Google Scholar]
  89. Pomar L, Kendall CG. 2008. Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology. Controls on Carbonate Platform and Reef Development J Lukasik, JA Simo 187–216 Tulsa, OK: Soc. Sediment. Geol. [Google Scholar]
  90. Proisy C, Gratiot N, Anthony EJ, Gardel A, Fromard F, Heuret P. 2009. Mud bank colonization by opportunistic mangroves: a case study from French Guiana using lidar data. Cont. Shelf Res. 29:632–41 [Google Scholar]
  91. Proske U, Hanebuth TJJ, Behling H, Nguyen VL, Ta TKO, Diem BP. 2010. The palaeoenvironmental development of the northeastern Vietnamese Mekong River Delta since the mid Holocene. Holocene 20:1257–68 [Google Scholar]
  92. Quartel S, Kroon A, Augustinus PGEF, Van Santen P, Tri NH. 2007. Wave attenuation in coastal mangroves in the Red River Delta, Vietnam. J. Asian Earth Sci. 29:576–84 [Google Scholar]
  93. Rogers K, Saintilan N. 2008. Relationships between surface elevation and groundwater in mangrove forests of southeast Australia. J. Coast. Res. 24A:63–69 [Google Scholar]
  94. Rogers K, Saintilan N, Cahoon D. 2005. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia. Wetl. Ecol. Manag. 13:587–98 [Google Scholar]
  95. Rogers K, Saintilan N, Copeland C. 2012. Modelling wetland surface elevation dynamics and its application to forecasting the effects of sea-level rise on estuarine wetlands. Ecol. Model. 244:148–57 [Google Scholar]
  96. Rogers K, Saintilan N, Copeland C. 2013a. Managed retreat of saline coastal wetlands: challenges and opportunities identified from the Hunter River Estuary, Australia. Estuaries Coasts 37:67–78 [Google Scholar]
  97. Rogers K, Saintilan N, Howe AJ, Rodriguez JF. 2013b. Sedimentation, elevation and marsh evolution in a southeastern Australian estuary during changing climatic conditions. Estuar. Coast. Shelf Sci. 133:172–81 [Google Scholar]
  98. Rogers K, Saintilan N, Woodroffe CD. 2014. Surface elevation change and vegetation distribution dynamics in a subtropical coastal wetland: implications for coastal wetland response to climate change. Estuar. Coast. Shelf Sci. 149:46–56 [Google Scholar]
  99. Rogers K, Wilton KM, Saintilan N. 2006. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuar. Coast. Shelf Sci. 66:559–69 [Google Scholar]
  100. Saintilan N, Rogers K, Mazumder D, Woodroffe CD. 2013. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar. Coast. Shelf Sci. 128:84–92 [Google Scholar]
  101. Sanders CJ, Smoak JM, Naidu AS, Patchineelam SR. 2008. Recent sediment accumulation in a mangrove forest and its relevance to local sea-level rise (Ilha Grande, Brazil). J. Coast. Res. 24:533–36 [Google Scholar]
  102. Semeniuk V. 2013. Predicted response of coastal wetlands to climate changes: a Western Australian model. Hydrobiologia 708:23–43 [Google Scholar]
  103. Shearman PL. 2010. Recent change in the extent of mangroves in the Northern Gulf of Papua. Ambio 39:181–89 [Google Scholar]
  104. Siikamaki J, Sanchirico JN, Jardine SL. 2012. Global economic potential for reducing carbon dioxide emissions from mangrove loss. PNAS 109:14369–74 [Google Scholar]
  105. Smajgl A, Toan TQ, Nhan DK, Ward J, Trung NH. et al. 2015. Responding to rising sea levels in the Mekong Delta. Nat. Clim. Change 5:167–74 [Google Scholar]
  106. Smith TJ, Anderson GH, Balentine K, Tiling G, Ward GA, Whelan KR. 2009. Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29:24–34 [Google Scholar]
  107. Smoak JM, Breithaupt JL, Smith TJ III, Sanders CJ. 2012. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. Catena 104:58–66 [Google Scholar]
  108. Soares MLG. 2009. A conceptual model for the responses of mangrove forests to sea level rise. J. Coast. Res. Spec. Issue 56:267–71 [Google Scholar]
  109. Spalding M, Kainuma M, Collins L. 2010. World Atlas of Mangroves Washington, DC: Earthscan [Google Scholar]
  110. Swales A, Bentley SJ Sr, Lovelock CE. 2015. Mangrove-forest evolution in a sediment-rich estuarine system: opportunists or agents of geomorphic change?. Earth Surf. Process. Landf. 401672–87 [Google Scholar]
  111. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT. et al. 2009. Sinking deltas due to human activites. Nat. Geosci. 2:681–86 [Google Scholar]
  112. Ta TKO, Nguyen VL, Tateishi M, Kobayashi I, Tanabe S, Saito Y. 2002. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam. Quat. Sci. Rev. 21:1807–19 [Google Scholar]
  113. Tamura T, Saito Y, Nguyen VL, Ta KO, Bateman MD. et al. 2012. Origin and evolution of interdistributary delta plains; insights from Mekong River delta. Geology 40:303–6 [Google Scholar]
  114. Tamura T, Saito Y, Sieng S, Ben B, Kong M. et al. 2009. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland. Quat. Sci. Rev. 28:327–44 [Google Scholar]
  115. Thom BG. 1967. Mangrove ecology and deltaic geomorphology: Tabasco, Mexico. J. Ecol. 55:301–43 [Google Scholar]
  116. Thom BG. 1982. Mangrove ecology: a geomorphological perspective. Mangrove Ecosystems in Australia: Structure, Function and Management BF Clough 3–17 Canberra: Aust. Natl. Univ. Press [Google Scholar]
  117. Törnqvist TE, Wallace DJ, Storms JEA, Wallinga J, van Dam RL. et al. 2008. Mississippi delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci. 1:173–76 [Google Scholar]
  118. Toscano MA, Macintyre IG. 2003. Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated 14C dates from Acropora palmata framework and intertidal mangrove peat. Coral Reefs 22:257–70 [Google Scholar]
  119. Traill LW, Perhans K, Lovelock CE, Prohaska A, McFallan S. et al. 2011. Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Divers. Distrib. 17:1225–33 [Google Scholar]
  120. Tue NT, Dung LV, Nhuan MT, Omori K. 2014. Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. Catena 121:119–26 [Google Scholar]
  121. Twilley RR. 1985. The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary. Estuar. Coast. Shelf Sci. 20:543–57 [Google Scholar]
  122. Twilley RR, Chen RH, Hargis T. 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut. 64:265–88 [Google Scholar]
  123. Twilley RR, Rivera-Monroy VH. 2005. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J. Coast. Res. Spec. Issue 40:79–93 [Google Scholar]
  124. Twilley RR, Rivera-Monroy VH. 2009. Ecogeomorphic models of nutrient biogeochemistry for mangrove wetlands. Coastal Wetlands: An Integrated Ecosystem Approach GME Perillo, E Wolanski, DR Cahoon, MM Brinson 641–83 Amsterdam: Elsevier [Google Scholar]
  125. van Loon AF, Dijksma R, Van Menswoort MEF. 2007. Hydrological classification in mangrove areas: a case study in Can Gio, Vietnam. Aquat. Bot. 87:80–82 [Google Scholar]
  126. Van Santen P, Augustinus PGEF, Janssen-Stelder BM, Quartel S, Tri NH. 2007. Sedimentation in an estuarine mangrove system. J. Asian Earth Sci. 29:566–75 [Google Scholar]
  127. Walsh JP, Nittrouer CA. 2004. Mangrove-bank sedimentation in a mesotidal environment with large sediment supply, Gulf of Papua. Mar. Geol. 208:225–48 [Google Scholar]
  128. Walsh JP, Nittrouer CA. 2009. Understanding fine-grained river-sediment dispersal on continental margins. Mar. Geol. 263:34–45 [Google Scholar]
  129. Watson JG. 1928. Mangrove Forests of the Malay Peninsula Malay. For. Rec. 6 Singapore: Fraser & Neave [Google Scholar]
  130. Webb EL, Friess DA, Krauss KW, Cahoon DR, Guntenspergen GR, Phelps J. 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat. Clim. Change 3:458–65 [Google Scholar]
  131. Whelan KRT, Smith TJ, Cahoon DR, Lynch JC, Anderson GH. 2005. Groundwater control of mangrove surface elevation: Shrink and swell varies with soil depth. Estuaries 28:833–43 [Google Scholar]
  132. Wilson CA, Goodbred SL Jr. 2015. Construction and maintenance of the Ganges-Brahmaputra-Meghna Delta: linking process, morphology, and stratigraphy. Annu. Rev. Mar. Sci. 7:67–88 [Google Scholar]
  133. Winn KO, Saynor MJ, Eliot MJ, Eliot I. 2006. Saltwater intrusion and morphological change at the mouth of the East Alligator River, Northern Territory. J. Coast. Res. 22:137–49 [Google Scholar]
  134. Wolanski E. 2006. The sediment trapping efficiency of the macro-tidal Daly Estuary, tropical Australia. Estuar. Coast. Shelf Sci. 69:291–98 [Google Scholar]
  135. Wolanski E, Chappell J. 1996. The response of tropical Australian estuaries to a sea level rise. J. Mar. Syst. 7:267–79 [Google Scholar]
  136. Wolanski E, Mazda Y, Ridd PV. 1992. Mangrove hydrodynamics. Tropical Mangrove Ecosystems AI Robertson, DM Alongi 43–62 Washington, DC: Am. Geophys. Union [Google Scholar]
  137. Woodroffe CD. 1990. The impact of sea-level rise on mangrove shorelines. Prog. Phys. Geogr. 14:483–520 [Google Scholar]
  138. Woodroffe CD. 1992. Mangrove sediments and geomorphology. Tropical Mangrove Ecosystems AI Robertson, DM Alongi 7–41 Washington, DC: Am. Geophys. Union [Google Scholar]
  139. Woodroffe CD. 1993. Late Quaternary evolution of coastal and lowland riverine plains of Southeast Asia and northern Australia: an overview. Sediment. Geol. 83:163–73 [Google Scholar]
  140. Woodroffe CD. 1995. Response of tide-dominated mangrove shorelines in northern Australia to anticipated sea-level rise. Earth Surf. Process. Landf. 20:65–85 [Google Scholar]
  141. Woodroffe CD, Lovelock CE, Rogers K. 2014. Mangrove shorelines. Coastal Environments and Global Change G Masselink, R Gehrels 251–67 Chichester, UK: Wiley & Sons [Google Scholar]
  142. Woodroffe CD, Mulrennan ME, Chappell J. 1993. Estuarine infill and coastal progradation, southern van Diemen Gulf, northern Australia. Sediment. Geol. 83:257–75 [Google Scholar]
  143. Woodroffe CD, Saito Y. 2011. River-dominated coasts. Treatise on Estuarine and Coastal Science E Wolanski, DS McLusky 117–35 Waltham, MA: Academic [Google Scholar]
  144. Yang J, Gao J, Cheung A, Liu B, Schwendenmann L, Costello MJ. 2013. Vegetation and sediment characteristics in an expanding mangrove forest in New Zealand. Estuar. Coast. Shelf Sci. 134:11–18 [Google Scholar]
  145. Yang J, Gao J, Liu B, Zhang W. 2014. Sediment deposits and organic carbon sequestration along mangrove coasts of the Leizhou Peninsula, southern China. Estuar. Coast. Shelf Sci. 136:3–10 [Google Scholar]
/content/journals/10.1146/annurev-marine-122414-034025
Loading
/content/journals/10.1146/annurev-marine-122414-034025
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error