1932

Abstract

Ocean data assimilation brings together observations with known dynamics encapsulated in a circulation model to describe the time-varying ocean circulation. Its applications are manifold, ranging from marine and ecosystem forecasting to climate prediction and studies of the carbon cycle. Here, we address only climate applications, which range from improving our understanding of ocean circulation to estimating initial or boundary conditions and model parameters for ocean and climate forecasts. Because of differences in underlying methodologies, data assimilation products must be used judiciously and selected according to the specific purpose, as not all related inferences would be equally reliable. Further advances are expected from improved models and methods for estimating and representing error information in data assimilation systems. Ultimately, data assimilation into coupled climate system components is needed to support ocean and climate services. However, maintaining the infrastructure and expertise for sustained data assimilation remains challenging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-122414-034113
2016-01-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-122414-034113.html?itemId=/content/journals/10.1146/annurev-marine-122414-034113&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham JP, Baringer M, Bindoff NL, Boyer T, Cheng LJ. et al. 2013. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 52:450–83 [Google Scholar]
  2. Alves O, Balmaseda M, Anderson DLT, Stockdale T. 2004. Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Q. J. R. Meteorol. Soc. 130:647–68 [Google Scholar]
  3. Anderson DLT, Sheinbaum J, Haines K. 1996. Data assimilation in ocean models. Rep. Prog. Phys. 59:1209 [Google Scholar]
  4. Anderson JL. 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Weath. Rev. 129:2884–903 [Google Scholar]
  5. Annan JD, Hargreaves JC, Edwards NR, Marsh R. 2005. Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Model. 8:135–54 [Google Scholar]
  6. Balmaseda M, Dee D, Vidard A, Anderson DLT. 2007. A multivariate treatment of bias for sequential data assimilation: application to the tropical oceans. Q. J. R. Meteorol. Soc. 133:167–79 [Google Scholar]
  7. Balmaseda M, Fujii Y, Aves O, Awaji T, Behringer DW. et al. 2010. Initialization for seasonal and decadal forecasts. See Hall et al. 2010, Vol. 2, chap 2
  8. Balmaseda M, Hernandez F, Storto A, Palmer MD, Alves O. et al. 2015. The Ocean Reanalyses Intercomparison Project (ORA-IP). J. Oper. Oceanogr. 8:Suppl. 1s80–97 [Google Scholar]
  9. Balmaseda M, Mogensen K, Weaver AT. 2013a. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139:1132–61 [Google Scholar]
  10. Balmaseda M, Trenberth KE, Källén E. 2013b. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40:1754–59 [Google Scholar]
  11. Bennett AF. 1985. Array design by inverse methods. Prog. Oceanogr. 15:129–56 [Google Scholar]
  12. Bennett AF. 1992. Inverse Methods in Physical Oceanography Cambridge, UK: Cambridge Univ. Press
  13. Bennett AF. 2002. Inverse Modeling of the Ocean and Atmosphere Cambridge, UK: Cambridge Univ. Press
  14. Bertino L, Lisaeter K. 2008. The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans. J. Oper. Oceanogr. 1:15–19 [Google Scholar]
  15. Bishop CH, Toth Z. 1999. Ensemble transformation and adaptive observations. J. Atmos. Sci. 56:1748–65 [Google Scholar]
  16. Blessing S, Kaminski T, Lunkeit F, Matei I, Giering R. et al. 2014. Testing variational estimation of process parameters and initial conditions of an Earth system model. Tellus A 66:22606 [Google Scholar]
  17. Bloom SC, Takacs LL, Da Silva AM, Ledvina D. 1996. Data assimilation using incremental analysis updates. Mon. Weath. Rev. 124:1256–71 [Google Scholar]
  18. Bouttier F, Courtier P. 1999. Data assimilation concepts and methods Numer. Weath. Predict. Course Notes, Eur. Cent. Medium-Range Weath. Forecasts (ECMWF), Reading, UK. http://www.ecmwf.int/sites/default/files/Data%20assimilation%20concepts%20and%20methods.pdf
  19. Buckley M, Ponte RM, Forget G, Heimbach P. 2015. Determining the origins of advective heat transport variability in the North Atlantic. J. Clim. 28:3943–56 [Google Scholar]
  20. Buizza R, Palmer TN. 1995. The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci. 52:1434–56 [Google Scholar]
  21. Carton JA, Giese BS. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weath. Rev. 136:2999–3017 [Google Scholar]
  22. Carton JA, Santorelli A. 2008. Global decadal upper-ocean heat content as viewed in nine analyses. J. Clim. 21:6015–35 [Google Scholar]
  23. Caya A, Buehner M, Carrieres T. 2010. Analysis and forecasting of sea ice conditions with three-dimensional variational data assimilation and a coupled ice-ocean model. J. Atmos. Ocean. Technol. 27:353–69 [Google Scholar]
  24. Corre L, Terray L, Balmaseda M, Ribes A, Weaver A. 2012. Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature?. Clim. Dyn. 38:877–96 [Google Scholar]
  25. Courtier P, Andersson E, Heckley W, Vasiljevic D, Hamrud M. et al. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: formulation. Q. J. R. Meteorol. Soc. 124:1783–807 [Google Scholar]
  26. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE. et al. 2007. Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–38 [Google Scholar]
  27. Czeschel L, Marshall DP, Johnson HL. 2010. Oscillatory sensitivity of Atlantic overturning to high-latitude forcing. Geophys. Res. Lett. 37:L10601 [Google Scholar]
  28. Derber J, Rosati A. 1989. A global oceanic data assimilation system. J. Phys. Oceanogr. 19:1333–47 [Google Scholar]
  29. Divakaran P, Brassington G, Feng M. 2010. Mesoscale zonal features in the southeast Indian Ocean as seen in the Bluelink reanalysis 2.1 Tech. Rep. 033, Centre for Australian Weather and Climate Research, Melbourne, Aust.
  30. Driscoll S, Bozzo A, Gray LJ, Robock A, Stenchikov G. 2012. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. Atmos. 117:D17105 [Google Scholar]
  31. Dutkiewicz S, Follows MJ, Heimbach P, Marshall J. 2006. Controls on ocean productivity and air-sea carbon flux: an adjoint model sensitivity study. Geophys. Res. Lett. 33:L02603 [Google Scholar]
  32. Edwards CA, Moore AM, Hoteit I, Cornuelle BD. 2014. Regional ocean data assimilation. Annu. Rev. Mar. Sci. 7:21–42 [Google Scholar]
  33. Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Oceans 99:10143–62 [Google Scholar]
  34. Feltham DL. 2008. Sea ice rheology. Annu. Rev. Fluid Mech. 40:91–112 [Google Scholar]
  35. Fenty I, Heimbach P. 2013a. Coupled sea ice-ocean-state estimation in the Labrador Sea and Baffin Bay. J. Phys. Oceanogr. 43:884–904 [Google Scholar]
  36. Fenty I, Heimbach P. 2013b. Hydrographic preconditioning for seasonal sea ice anomalies in the Labrador Sea. J. Phys. Oceanogr. 43:863–83 [Google Scholar]
  37. Ferreira D, Marshall J, Heimbach P. 2005. Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr. 35:1891–910 [Google Scholar]
  38. Forget G, Campin JM, Heimbach P, Hill CN, Ponte RM, Wunsch C. 2015. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. Discuss. 8:3653–743 [Google Scholar]
  39. Forget G, Wunsch C. 2007. Estimated global hydrographic variability. J. Phys. Oceanogr. 37:1997–2008 [Google Scholar]
  40. Fu L-L, Cazenave A. 2001. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications San Diego, CA: Academic
  41. Fujii Y, Nakaegawa T, Matsumoto S, Yasuda T, Yamanaka G. et al. 2009. Coupled climate simulation by constraining ocean fields in a coupled model with ocean data. J. Clim. 22:5541–57 [Google Scholar]
  42. Fukumori I. 2002. A partitioned Kalman filter and smoother. Mon. Weath. Rev. 130:1370–83 [Google Scholar]
  43. Fukumori I, Benveniste J, Wunsch C, Haidvogel DB. 1993. Assimilation of sea surface topography into an ocean circulation model using a steady state smoother. J. Phys. Oceanogr. 23:1831–55 [Google Scholar]
  44. Fukumori I, Lee T, Cheng B, Menemenlis D. 2004. The origin, pathway and destination of Niño-3 water estimated by a simulated passive tracer and its adjoint. J. Phys. Oceanogr. 34:582–604 [Google Scholar]
  45. Fukumori I, Menemenlis D, Lee T. 2007. A near-uniform basin-wide sea level fluctuation of the Mediterranean Sea. J. Phys. Oceanogr. 37:338–58 [Google Scholar]
  46. Galanti E, Tziperman E. 2003. A midlatitude-ENSO teleconnection mechanism via baroclinically unstable long Rossby waves. J. Phys. Oceanogr. 33:1877–88 [Google Scholar]
  47. Ganachaud A, Wunsch C. 2003. Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Clim. 16:696–705 [Google Scholar]
  48. Gandin LS. 1963. Objektivnyi Analyz Meteorologicheskikh Polei Leningrad: Gidrometeoizdat
  49. Gelb A. 1974. Applied Optimal Estimation Cambridge, MA: MIT Press
  50. Giering R, Kaminski T. 1998. Recipes for adjoint code construction. ACM Trans. Math. Softw. 24:437–74 [Google Scholar]
  51. Griffies SM, Adcroft AJ. 2008. Formulating the equations for ocean models. Ocean Modeling in an Eddying Regime M Hecht, H Hasumi 281–317 Geophys. Monogr. Ser. 177 Washington, DC: Am. Geophys. Union [Google Scholar]
  52. Griffies SM, Böning C, Bryan FO, Chassignet EP, Gerdes R. et al. 2001. Developments in ocean climate modelling. Ocean Model. 2:123–92 [Google Scholar]
  53. Halkides DJ, Lee T. 2009. Mechanisms controlling seasonal-to-interannual mixed-layer temperature variability in the southeastern tropical Indian Ocean. J. Geophys. Res. 114:C02012 [Google Scholar]
  54. Hall J, Harrison DE, Stammer D. 2010. Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009 ESA Publ. WPP-306 Paris: Eur. Space Agency http://www.oceanobs09.net/proceedings
  55. Hall MC. 1986. Application of adjoint sensitivity theory to an atmospheric general circulation model. J. Atmos. Sci. 43:2644–52 [Google Scholar]
  56. Hamill TM, Snyder C. 2000. A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Weath. Rev. 128:2905–19 [Google Scholar]
  57. Heimbach P, Losch M. 2012. Adjoint sensitivities of sub-ice shelf melt rates to ocean circulation under Pine Island Ice Shelf, West Antarctica. Ann. Glaciol. 53:59–69 [Google Scholar]
  58. Heimbach P, Wunsch C, Ponte RM, Forget G, Hill C, Utke J. 2011. Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport magnitudes: toward observing system design. Deep-Sea Res. II 58:1858–79 [Google Scholar]
  59. Hoteit I, Cornuelle B, Köhl A, Stammer D. 2005. Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation. Q. J. R. Meteorol. Soc. 131:3659–82 [Google Scholar]
  60. Hunke EC, Lipscomb WH, Turner AK. 2010. Sea-ice models for climate study: retrospective and new directions. J. Glaciol. 56:1162 [Google Scholar]
  61. Ji M, Leetmaa A, Derber J. 1995. An ocean analysis for seasonal to interannual climate studies. Mon. Weath. Rev. 123:460–81 [Google Scholar]
  62. Kalman RE. 1960. A new approach to linear filtering and prediction problems. J. Fluids Eng. 82:35–45 [Google Scholar]
  63. Kalmikov AG, Heimbach P. 2014. A Hessian-based method for uncertainty quantification in global ocean state estimation. SIAM J. Sci. Comput. 36:S267–95 [Google Scholar]
  64. Karspeck A, Stammer D, Köhl A, Danabasoglu G, Balmaseda M. et al. 2015. Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim. Dyn. In press. doi: 10.1007/s00382-015-2787-7
  65. Karspeck A, Yeager S, Danabasoglu G, Teng H. 2014. An evaluation of experimental decadal predictions using CCSM4. Clim. Dyn. 44:907–23 [Google Scholar]
  66. Kauker F, Kaminski T, Karcher M, Giering R, Gerdes R, Voßbeck M. 2009. Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophys. Res. Lett. 36:L03707 [Google Scholar]
  67. Keenlyside N, Latif M, Junclaus J, Kornblueh L, Roeckner E. 2008. Advancing decadal climate scale prediction in the North Atlantic. Nature 453:84–88 [Google Scholar]
  68. Kim S-B, Lee T, Fukumori I. 2007. Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Niño-3 region. J. Clim. 20:3822–43 [Google Scholar]
  69. Köhl A. 2005. Anomalies of meridional overturning: mechanisms in the North Atlantic. J. Phys. Oceanogr. 35:1455–72 [Google Scholar]
  70. Köhl A, Stammer D. 2004. Optimal observations for variational data assimilation. J. Phys. Oceanogr. 34:529–42 [Google Scholar]
  71. Köhl A, Stammer D. 2008. Variability of the meridional overturning in the North Atlantic from 50-year GECCO state estimation. J. Phys. Oceanogr. 38:1913–30 [Google Scholar]
  72. Köhl A, Willebrand J. 2002. An adjoint method for the assimilation of statistical characteristics into eddy-resolving ocean models. Tellus A 54:406–25 [Google Scholar]
  73. Laloyaux P, Balmaseda M, Dee D, Mogensen K, Janssen P. 2015. The ECMWF prototype for a coupled assimilation system. Q. J. R. Meteorol. Soc. In press
  74. Lee T, Awaji T, Balmaseda M, Greiner E, Stammer D. 2009. Ocean state estimation for climate research. Oceanography 22:3160–67 [Google Scholar]
  75. Liang X, Wunsch C, Heimbach P, Forget G. 2015. Vertical redistribution of oceanic heat. J. Clim. 28:3821–33 [Google Scholar]
  76. Liu C, Köhl A, Stammer D. 2012. Adjoint-based estimation of eddy-induced tracer mixing parameters in the global ocean. J. Phys. Oceanogr. 42:1186–206 [Google Scholar]
  77. Liu Y, Liu Z, Zhang S, Jacob R, Lu F. et al. 2014. Ensemble-based parameter estimation in a coupled general circulation model. J. Clim. 27:7151–62 [Google Scholar]
  78. Macdonald AM. 1998. The global ocean circulation: a hydrographic estimate and regional analysis. Prog. Oceanogr. 41:281–382 [Google Scholar]
  79. Magnusson L, Alonso-Balmaseda M, Corti S, Molteni F, Stockdale T. 2013. Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Clim. Dyn. 41:2393–409 [Google Scholar]
  80. Malanotte-Rizzoli P. 1996. Modern Approaches to Data Assimilation in Ocean Modeling Amsterdam: Elsevier
  81. Marotzke J, Giering R, Zhang QK, Stammer D, Hill CN, Lee T. 1999. Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res. 104:29529–48 [Google Scholar]
  82. Martin M, Balmaseda M, Bertino L, Brasseur P, Brassington G. et al. 2015. Status and future of data assimilation in operational oceanography. J. Oper. Oceanogr. 7:29–46 [Google Scholar]
  83. Masuda S, Awaji T, Sugiura N, Matthews JP, Toyoda T. et al. 2010. Simulated rapid warming of abyssal North Pacific waters. Science 329:319–22 [Google Scholar]
  84. Masuda S, Awaji T, Sugiura N, Toyoda T, Ishikawa Y, Horiuchi K. 2006. Interannual variability of temperature inversions in the subarctic North Pacific. Geophys. Res. Lett. 33:L24610 [Google Scholar]
  85. Maximenko NA, Melnichenko OV, Niiler PP, Sasaki H. 2008. Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett. 35:L08603 [Google Scholar]
  86. Mazloff MR, Heimbach P, Wunsch C. 2010. An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr. 40:880–99 [Google Scholar]
  87. Meehl GA, Goddard L, Boer G, Burgman R, Branstator G. et al. 2014. Decadal climate prediction: an update from the trenches. Bull. Am. Meteorol. Soc. 95:243–67 [Google Scholar]
  88. Meier WN, Hovelsrud GK, van Oort BEH, Key JR, Kovacs KM. et al. 2014. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52:185–217 [Google Scholar]
  89. Menemenlis D, Fukumori I, Lee T. 2005. Using Green's functions to calibrate an ocean general circulation model. Mon. Weath. Rev. 133:1224–40 [Google Scholar]
  90. Moore AM, Arango HG, Broquet G, Powell BS, Weaver AT, Zavala-Garay J. 2011. The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems. Part I: system overview and formulation. Prog. Oceanogr. 91:34–49 [Google Scholar]
  91. Munk W, Wunsch C. 1982. Observing the ocean in the 1990s. Philos. Trans. R. Soc. Lond. A 307:439–64 [Google Scholar]
  92. Palmer MD, Roberts CD, Balmaseda M, Boyer T, Chang Y-S. et al. 2015. Ocean heat content variability and change in an ensemble of ocean reanalyses. Clim. Dyn. In press
  93. Palmer TN, Anderson DLT. 1994. The prospects for seasonal forecasting—a review paper. Q. J. R. Meteorol. Soc. 120:755–93 [Google Scholar]
  94. Palmer TN, Doblas-Reyes FJ, Hagedorn R, Weisheimer A. 2005. Probabilistic prediction of climate using multi-model ensembles: from basics to applications. Philos. Trans. R. Soc. B 360:1991–98 [Google Scholar]
  95. Panteleev G, Nechaev DA, Proshutinsky A, Woodgate R, Zhang J. 2010. Reconstruction and analysis of the Chukchi Sea circulation in 1990–1991. J. Geophys. Res. 115:C08023 [Google Scholar]
  96. Penland C, Sardeshmukh PD. 1995. The optimal growth of tropical sea surface temperature anomalies. J. Clim. 8:1999–2024 [Google Scholar]
  97. Pham DT, Verron J, Roubaud MC. 1998. A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst. 16:323–40 [Google Scholar]
  98. Piecuch C, Ponte R. 2014. Mechanisms of global mean steric sea level change. J. Clim. 27:824–34 [Google Scholar]
  99. Pierce DW, Barnett TP, Tokmakian R, Semtner A, Maltrud M. et al. 2004. The ACPI project, element 1: initializing a coupled climate model from observed initial conditions. Clim. Change 62:13–28 [Google Scholar]
  100. Pohlmann H, Jungclaus J, Marotzke J, Köhl A, Stammer D. 2009. Improving predictability through the initialization of a coupled climate model with global oceanic reanalysis. J. Clim. 22:3926–38 [Google Scholar]
  101. Polkova I, Köhl A, Stammer D. 2014. Impact of initialization procedures on the predictive skill of a coupled ocean-atmosphere model. Clim. Dyn. 42:3151–69 [Google Scholar]
  102. Ponte R, Wunsch C, Stammer D. 2007. Spatial mapping of time-variable errors in Jason-1 and TOPEX/POSEIDON sea surface height measurements. J. Atmos. Ocean. Technol. 24:1078–85 [Google Scholar]
  103. Rauch HE, Striebel CT, Tung F. 1965. Maximum likelihood estimates of linear dynamic systems. AIAA J. 3:1445–50 [Google Scholar]
  104. Ricci S, Weaver AT, Vialard J, Rogel P. 2005. Incorporating temperature-salinity constraints in the background-error covariance of variational ocean data assimilation. Mon. Weath. Rev. 133:317–38 [Google Scholar]
  105. Roemmich D, Boebel O, Desaubies Y, Freeland H, Kim K. et al. 2001. Argo: the global array of profiling floats. Observing the Oceans in the 21st Century CJ Koblinsky, NR Smith 248–58 Melbourne, Aust: Bur. Meteorol. [Google Scholar]
  106. Saha S, Moorthi S, Pan HL, Wu X, Wang J. et al. 2010. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91:1015–57 [Google Scholar]
  107. Sapsis TP, Lermusiaux PF. 2009. Dynamically orthogonal field equations for continuous stochastic dynamical systems. Phys. D 238:2347–60 [Google Scholar]
  108. Sasaki Y. 1970. Some basic formalisms in numerical variational analysis. Mon. Weath. Rev. 98:875–83 [Google Scholar]
  109. Schiller A, Lee T, Masuda S. 2013. Methods and applications of ocean synthesis in climate research. See Siedler et al. 2013 581–608
  110. Segschneider J, Anderson DLT, Stockdale TN. 2000. Towards the use of altimetry for operational seasonal forecasting. J. Clim. 13:3116–38 [Google Scholar]
  111. Siedler G, Griffies SM, Gould J, Church JA. 2013. Ocean Circulation and Climate: A 21st Century Perspective San Diego, CA: Academic, 2nd ed..
  112. Smith DM, Cusack S, Colman A, Folland CK, Harris GR, Murphy JM. 2007. Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–99 [Google Scholar]
  113. Smith NR, Koblinsky C. 2001. The ocean observing system for the 21st century: a consensus statement. Observing the Oceans in the 21st Century CJ Koblinsky, NR Smith 1–25 Melbourne, Aust: Bur. Meteorol. [Google Scholar]
  114. Sorensen HW. 1970. Least-squares estimation: from Gauss to Kalman. IEEE Spectrum 7:63–68 [Google Scholar]
  115. Speer K, Forget G. 2013. Global distribution and formation of mode waters. See Siedler et al. 2013 211–26
  116. Stammer D. 2005. Adjusting internal model errors through ocean state estimation. J. Phys. Oceanogr. 35:1143–53 [Google Scholar]
  117. Stammer D, Köhl A, Awaji T, Balmaseda M, Behringer D. et al. 2010. Ocean information provided through ensemble ocean syntheses. See Hall et al. 2010 2, chap. 85
  118. Stammer D, Park S, Köhl A, Lukas R, Santiago-Mandujano F. 2008. Large-scale hydrographic changes at the Hawaii Ocean Time-series Station. J. Phys. Oceanogr. 38:1931–48 [Google Scholar]
  119. Stammer D, Ueyoshi K, Köhl A, Large WB, Josey S, Wunsch C. 2004. Estimating air-sea fluxes of heat, freshwater and momentum through global ocean data assimilation. J. Geophys. Res. 109:C05023 [Google Scholar]
  120. Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P. et al. 2002. The global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res. 107:3118 [Google Scholar]
  121. Stammer D, Wunsch C, Giering R, Zhang QK, Marotzke J. et al. 1997. The global ocean circulation estimated from TOPEX/POSEIDON altimetry and the MIT general circulation model Rep. 49, MIT Cent. Glob. Change Sci., Cambridge, MA
  122. Storto A, Masina S, Balmaseda M, Guinehut S, Xue Y. et al. 2015. Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses. Clim. Dyn. In press. doi: 10.1007/s00382-015-2554-9
  123. Sugiura N, Awaji T, Masuda S, Mochizuki T, Toyoda T. et al. 2008. Development of a 4-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J. Geophys. Res. 113:C10017 [Google Scholar]
  124. Talagrand O. 1997. Assimilation of observations, an introduction. J. Meteorol. Soc. Jpn. Ser. 2 75:81–99 [Google Scholar]
  125. Talagrand O, Courtier P. 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory. Q. J. R. Meteorol. Soc. 113:1311–28 [Google Scholar]
  126. Tanguay M, Bartello P, Gauthier P. 1995. Four-dimensional data assimilation with a wide range of scales. Tellus A 47:974–97 [Google Scholar]
  127. Thacker WC, Long RB. 1988. Fitting dynamics to data. J. Geophys. Res. Oceans 93:1227–40 [Google Scholar]
  128. Toyoda T, Awaji T, Masuda S, Sugiura N, Igarashi H. et al. 2011. Interannual variability of North Pacific eastern subtropical mode water formation in the 1990s derived from a 4-dimensional variational ocean data assimilation experiment. Dyn. Atmos. Oceans 51:1–25 [Google Scholar]
  129. Toyoda T, Fujii Y, Kuragano T, Kamachi M, Ishikawa Y. et al. 2015. Intercomparison and validation of the mixed layer depth fields of global ocean syntheses. Clim. Dyn. In press. doi: 10.1007/s00382-015-2637-7
  130. Wang O, Fukumori I, Lee T, Cheng B. 2004. On the cause of eastern equatorial Pacific Ocean T-S variations associated with El Niño. Geophys. Res. Lett. 31:L15310 [Google Scholar]
  131. Weaver AT, Courtier P. 2001. Correlation modelling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc. 127:1815–46 [Google Scholar]
  132. Weaver AT, Deltel C, Machu É, Ricci S, Daget N. 2005. A multivariate balance operator for variational ocean data assimilation. Q. J. R. Meteorol. Soc. 131:3605–25 [Google Scholar]
  133. Weaver AT, Vialard J, Anderson DLT. 2003. Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part 1: formulation, internal diagnostics, and consistency checks. Mon. Weath. Rev. 131:1360–78 [Google Scholar]
  134. WMO (World Meteorol. Organ.) 2009. 14th WMO/IAEA meeting of experts on carbon dioxide, other greenhouse gases and related tracers measurement techniques (Helsinki, Finland, 10–13 September 2007). GAW Rep. No. 186, WMO/TD No. 1487, WMO, Geneva, Switz. [Google Scholar]
  135. Wunsch C. 1978. The North Atlantic general circulation west of 50°W determined by inverse methods. Rev. Geophys. 16:583–620 [Google Scholar]
  136. Wunsch C. 1996. The Ocean Circulation Inverse Problem Cambridge, UK: Cambridge Univ. Press
  137. Wunsch C, Heimbach P. 2006. Estimated decadal changes in the North Atlantic meridional overturning and heat flux 1993–2004. J. Phys. Oceanogr. 36:2012–24 [Google Scholar]
  138. Wunsch C, Heimbach P. 2013. Dynamically and kinematically consistent global ocean circulation and ice state estimates. See Siedler et al. 2013 553–79
  139. Wunsch C, Heimbach P. 2014. Bidecadal thermal changes in the abyssal ocean. J. Phys. Oceanogr. 44:2013–30 [Google Scholar]
  140. Wunsch C, Ponte RM, Heimbach P. 2007. Decadal trends in sea level patterns: 1993–2004. J. Clim. 20:5889–911 [Google Scholar]
  141. Zanchettin D, Bothe O, Graf HF, Lorenz SJ, Luterbacher J. et al. 2013. Background conditions influence the decadal climate response to strong volcanic eruptions. J. Geophys. Res. Atmos. 118:4090–106 [Google Scholar]
  142. Zanna L, Heimbach P, Moore AM, Tziperman E. 2011. Optimal excitation of interannual Atlantic meridional overturning circulation variability. J. Clim. 24:413–27 [Google Scholar]
  143. Zanna L, Heimbach P, Moore AM, Tziperman E. 2012. Upper-ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability. Q. J. R. Meteorol. Soc. 138:500–13 [Google Scholar]
  144. Zhang S, Harrison MJ, Rosati A, Wittenberg A. 2007. System design and evaluation of coupled ensemble data assimilation for global oceanic studies. Mon. Weath. Rev. 135:3541–64 [Google Scholar]
/content/journals/10.1146/annurev-marine-122414-034113
Loading
/content/journals/10.1146/annurev-marine-122414-034113
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error