1932

Abstract

In 1842, Darwin identified three types of reefs: fringing reefs, which are directly attached to volcanic islands; barrier reefs, which are separated from volcanic islands by lagoons; and ring reefs, which enclose only a lagoon and are defined as atolls. Moreover, he linked these reef types through an evolutionary model in which an atoll is the logical end point of a subsiding volcanic edifice, as he was unaware of Quaternary glaciations. As an alternative, starting in the 1930s, several authors proposed the antecedent karst model; in this model, atolls formed as a direct interaction between subsidence and karst dissolution that occurred preferentially in the bank interiors rather than on their margins through exposure during glacial lowstands of sea level. Atolls then developed during deglacial reflooding of the glacial karstic morphologies by preferential stacked coral-reef growth along their margins. Here, a comprehensive new model is proposed, based on the antecedent karst model and well-established sea-level fluctuations during the last 5 million years, by demonstrating that most modern atolls from the Maldives Archipelago and from the tropical Pacific and southwest Indian Oceans are rooted on top of late Pliocene flat-topped banks. The volcanic basement, therefore, has had no influence on the late Quaternary development of these flat-topped banks into modern atolls. During the multiple glacial sea-level lowstands that intensified throughout the Quaternary, the tops of these banks were karstified; then, during each of the five mid-to-late Brunhes deglaciations, coral reoccupied their raised margins and grew vertically, keeping up with sea-level rise and creating the modern atolls.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-122414-034137
2021-01-03
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-122414-034137.html?itemId=/content/journals/10.1146/annurev-marine-122414-034137&mimeType=html&fmt=ahah

Literature Cited

  1. Abdul NA, Mortlock RA, Wright JD, Fairbanks RG 2016. Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reef crest coral Acropora palmata. . Paleoceanography 31:330–44
    [Google Scholar]
  2. Agassiz A. 1902. An expedition to the Maldives. Am. J. Sci. 13:297–308
    [Google Scholar]
  3. Aïssaoui DM, McNeil DF, Kirschvink JL 1990. Magnetostratigraphic dating of shallow-water carbonates from Mururoa atoll, French Polynesia: implications for global eustasy. Earth Planet. Sci. Lett. 97:102–12
    [Google Scholar]
  4. Amante C, Eakins BW. 2009. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. Tech. Memo NESDIS NGDC-24, Natl. Geophys. Data Cent., Natl. Ocean. Atmos. Adm Boulder, CO: https://doi.org/10.7289/V5C8276M
    [Crossref]
  5. Aubert O, Droxler AW. 1992. General Cenozoic evolution of the Maldives carbonate system (equatorial Indian Ocean). Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine 16:113–36
    [Google Scholar]
  6. Aubert O, Droxler AW. 1996. Seismic stratigraphy and depositional signatures of the Maldive carbonate system (Indian Ocean). Mar. Pet. Geol. 13:503–36
    [Google Scholar]
  7. Backman J, Duncan RA. 1988a. Site 714. Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 115847–915 College Station, TX: Ocean Drill. Program
    [Google Scholar]
  8. Backman J, Duncan RA. 1988b. Site 716. Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 1151005–73 College Station, TX: Ocean Drill. Program
    [Google Scholar]
  9. Barrett SJ, Webster JM. 2012. Holocene evolution of the Great Barrier Reef: insights from 3D numerical modelling. Sediment. Geol. 265–66:56–57
    [Google Scholar]
  10. Belopolsky AV, Droxler AW. 2003. Imaging Tertiary carbonate system—the Maldives, Indian Ocean: insights into carbonate sequence interpretation. Lead. Edge 22:646–52
    [Google Scholar]
  11. Belopolsky AV, Droxler AW. 2004. Seismic expressions of prograding carbonate bank margins: Middle Miocene, Maldives, Indian Ocean. AAPG Mem 81:267–90
    [Google Scholar]
  12. Betzler C, Eberli GP, Alvarez Zarikian CA, Alonso-García M, Bialik OM et al. 2017. Expedition 359 summary. Maldives Monsoon and Sea Level MS 359-101. Proc. Int. Ocean Discov. Program Vol. 359 College Station, TX: Int. Ocean Discov. Program
    [Google Scholar]
  13. Betzler C, Eberli GP, Alvarez Zarikian CAExped. 359 Sci 2016a. Expedition 359 Preliminary Report: Maldives Monsoon and Sea Level College Station, TX: Int. Ocean Discov. Program
  14. Betzler C, Eberli GP, Kroon D, Wright JD, Swart PK et al. 2016b. The abrupt onset of the modern South Asian Monsoon winds. Sci. Rep. 6:29838
    [Google Scholar]
  15. Betzler C, Hübscher C, Lindhorst S, Reijmer JJG, Römer M et al. 2009. Monsoon-induced partial carbonate platform drowning (Maldives, Indian Ocean). Geology 37:867–70
    [Google Scholar]
  16. Bonney TG. 1904. The Atoll of Funafuti: Borings into a Coral Reef and the Results, Being the Report of the Coral Reef Committee of the Royal Society London: R. Soc. Lond.
    [Google Scholar]
  17. Braithwaite CJR, Camoin GF. 2011. Diagenesis and sea-level change: lessons from Moruroa, French Polynesia. Sedimentology 58:259–84
    [Google Scholar]
  18. Buigues DC. 1998. La couverture carbonatée d'un atoll: exemple de Mururoa et Fangataufa. Géol. France 3:87–96
    [Google Scholar]
  19. Camoin GF, Ebren P, Eisenhauer A, Bard E, Faure G 2001. A 300,000-yr coral reef record of sea level changes, Mururoa atoll (Tuamotu archipelago, French Polynesia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 175:325–41
    [Google Scholar]
  20. Courgeon S, Bachèlery P, Jouet G, Jorry SJ, Bou E et al. 2018. The offshore east African rift system: new insights from the Sakalaves seamounts (Davie Ridge, SW Indian Ocean). Terra Nova 30:380–88
    [Google Scholar]
  21. Courgeon S, Jorry SJ, Camoin GF, BouDagher-Fadel MK, Jouet G et al. 2016. Growth and demise of Cenozoic isolated carbonate platforms: new insights from the Mozambique Channel seamounts (SW Indian Ocean). Mar. Geol. 380:90–105
    [Google Scholar]
  22. Courgeon S, Jorry SJ, Jouet G, Camoin G, BouDagher-Fadel MK et al. 2017. Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean). Sediment. Geol. 355:114–31
    [Google Scholar]
  23. Daly R. 1915. The glacial-control theory of coral reefs. Proc. Am. Acad. Arts Sci. 51:155–251
    [Google Scholar]
  24. Dana JD. 1872. Corals and Coral Islands London: Sampson Low, Marston, Low and Searle
  25. Darwin C. 1842. The Structure and Distribution of Coral Reefs London: Smith, Elder and Co.
  26. Davies PJ. 2011. Antecedent platforms. Encyclopedia of Modern Coral Reefs: Structure, Form and Process D Hopley 40–47 Dordrecht, Neth: Springer
    [Google Scholar]
  27. Davis WM. 1928. The Coral Reef Problem New York: Am. Geogr. Soc.
  28. Deschamps P, Durand N, Bard E, Hamelin B, Camoin G et al. 2012. Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago. Nature 483:559–64
    [Google Scholar]
  29. Deville E, Marsset T, Courgeon S, Jatiault R, Ponte J-P et al. 2018. Active fault system across the oceanic lithosphere of the Mozambique Channel: implications for the Nubia-Somalia southern plate boundary. Earth Planet. Sci. Lett. 502:210–20
    [Google Scholar]
  30. Draut AE, Raymo ME, McManus JF, Oppo DW 2003. Climate stability during the Pliocene warm period. Paleoceanography 18:1078
    [Google Scholar]
  31. Droxler AW, Jorry SJ. 2013. Deglacial origin of barrier reefs along low-latitude mixed siliciclastic and carbonate continental shelf edges. Annu. Rev. Mar. Sci. 5:165–90
    [Google Scholar]
  32. Droxler AW, Poore RZ, Burckle LH 2003. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question Washington, DC: Am. Geophys. Union
  33. Duncan RA, Hargraves RB. 1990. 40Ar/39Ar geochronology of basement rocks from the Mascarene Plateau, the Chagos Bank, and the Maldives Ridge. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 11543–51 College Station, TX: Ocean Drill. Program
    [Google Scholar]
  34. Ebren P. 1996. Impact des variations rapides du niveau marin sur le développement des atolls au quaternaire: Mururoa (Polynésie française). Dynamique récifale et diagenèse des carbonates. PhD Thesis, Aix-Marseille Univ., Aix-en-Provence and Marseille, Fr .
  35. Emiliani C. 1955. Pleistocene temperatures. J. Geol. 63:538–78
    [Google Scholar]
  36. Fürstenau J, Lindhorst S, Betzler C, Hübscher C 2010. Submerged reef terraces of the Maldives (Indian Ocean). Geo-Mar. Lett. 30:511–15
    [Google Scholar]
  37. Gillot PY, Cornette Y, Guille G 1992. Age (K-Ar) et conditions d'edification du soubassement volcanique de l'atoll de Mururoa (Pacifique Sud). C. R. Acad. Sci. 314:393–99
    [Google Scholar]
  38. Gischler E, Hudson JH, Pisera A 2008. Late Quaternary reef growth and sea level in the Maldives (Indian Ocean). Mar. Geol. 250:104–13
    [Google Scholar]
  39. Gischler E, Humblet M, Braga JC, Eisenhauer A 2018. Last interglacial reef facies and late Quaternary subsidence in the Maldives, Indian Ocean. Mar. Geol. 406:34–41
    [Google Scholar]
  40. Grant GR, Naish TR, Dunbar GB, Stocchi P, Kominz MA et al. 2019. The amplitude and origin of sea-level variability during the Pliocene epoch. Nature 574:237–41
    [Google Scholar]
  41. Grimsdale TF. 1952. Cycloclypeus (foraminifera) in the Funafuti boring, and its geological significance Occas. Pap., Chall. Soc. Mar. Soc., Southampton Oceanogr. Cent Southampton, UK:
    [Google Scholar]
  42. Guille G, Buigues DC, Gachon A, Ruzié G 1993. Structure et géologie de l'atoll de Mururoa. Atlas de la Polynésie Française J-F Dupon, J Bonvallot, E Vigneron, plate 32 Paris: ORSTOM
    [Google Scholar]
  43. Hoffmeister JE, Ladd HS. 1944. The antecedent-platform theory. J. Geol. 52:388–402
    [Google Scholar]
  44. Hoffmeister JE, Ladd HS. 1945. Solution effects on elevated limestone terraces. GSA Bull 56:809–18
    [Google Scholar]
  45. Jorry SJ. 2014. PTOLEMEE cruise, RV L'Atalante. Flotte Océanographique Française https://doi.org/10.17600/14000900
    [Crossref] [Google Scholar]
  46. Jorry SJ, Camoin GF, Jouet G, Le Roy P, Vella C et al. 2016. Modern sediments and Pleistocene reefs from isolated carbonate platforms (Iles Eparses, SW Indian Ocean): a preliminary study. Acta Oecol 72:129–43
    [Google Scholar]
  47. Jouet G, Deville E. 2015. PAMELA-MOZ4 cruise, RV Pourquoi pas. ? Flotte Océanographique Française https://doi.org/10.17600/15000700
    [Crossref] [Google Scholar]
  48. Kench PS. 1998. Physical controls on development of lagoon sand deposits and lagoon infilling in an Indian ocean atoll. J. Coast. Res. 14:1014–24
    [Google Scholar]
  49. Kench PS. 2011. Tsunami. Encyclopedia of Modern Coral Reefs D Hopley 359–63 Dordrecht, Neth: Springer
    [Google Scholar]
  50. Kench PS, Smithers SG, McLean RF, Nichol SL 2009. Holocene reef growth in the Maldives: evidence of a mid-Holocene sea-level highstand in the central Indian Ocean. Geology 37:455–58
    [Google Scholar]
  51. Kench PS, Thompson D, Ford MR, Ogawa H, McLean RF 2015. Coral islands defy sea-level rise over the past century: records from a central Pacific atoll. Geology 43:515–18
    [Google Scholar]
  52. Klostermann L, Gischler E. 2015. Holocene sedimentary evolution of a mid-ocean atoll lagoon, Maldives, Indian Ocean. Int. J. Earth Sci. 104:289–307
    [Google Scholar]
  53. Koksal T. 2014. Evolution of North Malé Atoll rim during the last full glacial cycle (Malé Island, Republic of Maldives). MS Thesis, Rice Univ Houston:
  54. Kuenen PH. 1933. The Snellius Expedition in the Eastern Part of the Netherlands East-Indies, 1929–1930 Leiden: E.J. Brill
    [Google Scholar]
  55. Kuenen PH. 1954. Eniwetok drilling results. Deep-Sea Res 1953:187–89
    [Google Scholar]
  56. Ladd HS, Ingerson E, Townsend RC, Russell M, Stephenson HK 1953. Drilling on Eniwetok Atoll, Marshall Islands. AAPG Bull 37:2257–80
    [Google Scholar]
  57. Lisiecki LE, Raymo ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA2007
    [Google Scholar]
  58. Lüdmann T, Betzler C, Eberli GP, Reolid J, Reijmer JJG et al. 2018. Carbonate delta drift: a new sediment drift type. Mar. Geol. 401:98–111
    [Google Scholar]
  59. Lüdmann T, Kalvelage C, Betzler C, Fürstenau J, Hübscher C 2013. The Maldives, a giant isolated carbonate platform dominated by bottom currents. Mar. Pet. Geol. 43:326–40
    [Google Scholar]
  60. MacNeil FS. 1954. The shape of atolls; an inheritance from subaerial erosion forms. Am. J. Sci. 252:402–27
    [Google Scholar]
  61. McManus JF, Oppo DW, Cullen JL 1999. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283:971–75
    [Google Scholar]
  62. McManus JF, Oppo DW, Cullen JL, Healey S 2003. Marine Isotope Stage 11 (MIS 11): analog for Holocene and future climate?. See Droxler et al. 2003 69–85
  63. Miller KG, Browning JV, Schmelz WJ, Kopp RE, Mountain GS et al. 2020. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6:eaaz1346
    [Google Scholar]
  64. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS et al. 2005. The Phanerozoic record of global sea-level change. Science 310:1293–98
    [Google Scholar]
  65. Miramontes E, Jorry SJ, Jouet G, Counts JW, Courgeon S et al. 2019. Deep-water dunes on drowned isolated carbonate terraces (Mozambique Channel, south-west Indian Ocean). Sedimentology 66:1222–42
    [Google Scholar]
  66. Montaggioni LF, Borgomano J, Fournier F, Granjeon D 2015. Quaternary atoll development: new insights from the two-dimensional stratigraphic forward modelling of Mururoa Island (Central Pacific Ocean). Sedimentology 62:466–500
    [Google Scholar]
  67. Naseer A. 2003. The integrated growth response of coral reefs to environmental forcing: morphometric analysis of coral reefs of the Maldives PhD Thesis, Dalhousie Univ Halifax, Can:.
  68. Nicora A, Premoli Silva I 1990. Paleogene shallow-water larger foraminifers from Holes 714A and 715A, Leg 115, Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 115381–93 College Station, TX: Ocean Drill. Program
    [Google Scholar]
  69. Ohde S, Greaves M, Masuzawa T, Buckley HA, Van Woesik R et al. 2002. The chronology of Funafuti Atoll: revisiting an old friend. Proc. R. Soc. A 458:2289–306
    [Google Scholar]
  70. Oppo DW, McManus JF, Cullen JL 1998. Abrupt climate events 500,000 to 340,000 years ago: evidence from subpolar North Atlantic sediments. Science 279:1335–38
    [Google Scholar]
  71. Owen A, Kruijsen J, Turner N, Wright K 2011. Marine energy in the Maldives: pre-feasibility report on Scottish support for Maldives marine energy implementation Rep., Cent. Underst. Sustain. Pract., Robert Gordon Univ Aberdeen, UK:
  72. Perrin C. 1989. Rôle des organismes dans l’édification et l’évolution de l'atoll de Mururoa (Polynésie française) PhD Thesis, Univ. Paris-Sud, Paris
  73. Perry CT, Kench PS, Smithers SG, Yamano H, O'Leary M, Gulliver P 2013. Time scales and modes of reef lagoon infilling in the Maldives and controls on the onset of reef island formation. Geology 41:1111–14
    [Google Scholar]
  74. Purdy EG. 1974. Reef configurations: cause and effect. Reefs in Time and Space LF Laporte 9–76 Tulsa, OK: Soc. Sediment. Geol.
    [Google Scholar]
  75. Purdy EG, Bertram GT. 1993. Carbonate Concepts from the Maldives, Indian Ocean Tulsa, OK: Am. Assoc. Pet. Geol.
    [Google Scholar]
  76. Purdy EG, Gischler E. 2005. The transient nature of the empty bucket model of reef sedimentation. Sediment. Geol. 175:35–47
    [Google Scholar]
  77. Purdy EG, Winterer EL. 2001. Origin of atoll lagoons. GSA Bull 113:837–54
    [Google Scholar]
  78. Purdy EG, Winterer EL. 2006. Contradicting barrier reef relationships for Darwin's evolution of reef types. Int. J. Earth Sci. 95:143–67
    [Google Scholar]
  79. Raymo ME, Mitrovica JX. 2012. Collapse of polar ice sheets during the stage 11 interglacial. Nature 483:453–56
    [Google Scholar]
  80. Rovere A, Khanna P, Bianchi CN, Droxler AW, Morri C, Naar DF 2018. Submerged reef terraces in the Maldivian Archipelago (Indian Ocean). Geomorphology 317:218–32
    [Google Scholar]
  81. Schlager W, Purkis SJ. 2013. Bucket structure in carbonate accumulations of the Maldive, Chagos and Laccadive archipelagos. Int. J. Earth Sci. 102:2225–38
    [Google Scholar]
  82. Shackleton NJ. 1987. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 6:183–90
    [Google Scholar]
  83. Shackleton NJ, Berger A, Peltier WR 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Earth Environ. Sci. Trans. R. Soc. Edinb. 81:251–61
    [Google Scholar]
  84. Shackleton NJ, Opdyke ND. 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat. Res. 3:39–55
    [Google Scholar]
  85. Smith WHF, Sandwell DT. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–62
    [Google Scholar]
  86. Spratt RM, Lisiecki LE. 2016. A Late Pleistocene sea level stack. Clim. Past 12:1079–92
    [Google Scholar]
  87. Swart PK, Blättler CL, Nakakuni M, Mackenzie GJ, Betzler C et al. 2019. Cyclic anoxia and organic rich carbonate sediments within a drowned carbonate platform linked to Antarctic ice volume changes: Late Oligocene-Early Miocene Maldives. Earth Planet. Sci. Lett. 521:1–13
    [Google Scholar]
  88. Trichet J, Repellin P, Oustrière P 1984. Stratigraphy and subsidence of the Mururoa atoll (French Polynesia). Mar. Geol. 56:241–57
    [Google Scholar]
  89. UNEP-WCMC (UN Environ. Programme World Conserv. Monit. Cent.), WorldFish Cent., WRI (World Resour. Inst.), TNC (The Nat. Conserv.) 2018. Global distribution of warm-water coral reefs, compiled from multiple sources including the Millennium Coral Reef Mapping Project Data Set, Version 4.0, UNEP-WCMC Cambridge, UK: http://data.unep-wcmc.org/datasets/1
    [Google Scholar]
  90. Wikipedia 2020. Atoll. Wikipedia https://en.wikipedia.org/wiki/Atoll
    [Google Scholar]
  91. Yokoyama Y, Esat TM, Thompson WG, Thomas AL, Webster JM et al. 2018. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature 559:603–7
    [Google Scholar]
/content/journals/10.1146/annurev-marine-122414-034137
Loading
/content/journals/10.1146/annurev-marine-122414-034137
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error