1932

Abstract

The size of an individual organism is a key trait to characterize its physiology and feeding ecology. Size-based scaling laws may have a limited size range of validity or undergo a transition from one scaling exponent to another at some characteristic size. We collate and review data on size-based scaling laws for resource acquisition, mobility, sensory range, and progeny size for all pelagic marine life, from bacteria to whales. Further, we review and develop simple theoretical arguments for observed scaling laws and the characteristic sizes of a change or breakdown of power laws. We divide life in the ocean into seven major realms based on trophic strategy, physiology, and life history strategy. Such a categorization represents a move away from a taxonomically oriented description toward a trait-based description of life in the oceans. Finally, we discuss life forms that transgress the simple size-based rules and identify unanswered questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-122414-034144
2016-01-03
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-122414-034144.html?itemId=/content/journals/10.1146/annurev-marine-122414-034144&mimeType=html&fmt=ahah

Literature Cited

  1. Acuña JL, López-Urutia Á, Colin S. 2011. Faking giants: the evolution of high prey clearance rates in jellyfishes. Science 333:1627–29 [Google Scholar]
  2. Aksnes D, Egge J. 1991. A theoretical model for nutrient uptake in phytoplankton. Mar. Ecol. Prog. Ser. 70:65–72 [Google Scholar]
  3. Aksnes D, Utne A. 1997. A revised model of visual range in fish. Sarsia 82:137–47 [Google Scholar]
  4. Andersen KH, Beyer JE. 2006. Asymptotic size determines species abundance in the marine size spectrum. Am. Nat. 168:54–61 [Google Scholar]
  5. Andersen KH, Beyer JE, Pedersen M, Andersen NG, Gislason H. 2008. Life-history constraints on the success of the many small eggs reproductive strategy. Theor. Popul. Biol. 73:490–97 [Google Scholar]
  6. Ara R, Amin SMN, Mazlan AG, Arshad A. 2013. Morphometric variation among six families of larval fishes in the Seagrass-Mangrove ecosystem of Gelang Patah, Johor, Malaysia. Asian J. Anim. Vet. Adv. 8:247–56 [Google Scholar]
  7. Bagøien E, Kiørboe T. 2005. Blind dating—mate finding in planktonic copepods. I. Tracking the pheromone trail of Centropages typicus. Mar. Ecol. Prog. Ser. 300:105–15 [Google Scholar]
  8. Barnes C, Bethea DM, Brodeur RD, Spitz J, Ridoux V. et al. 2008. Predator and prey body sizes in marine food webs. Ecology 89:881 [Google Scholar]
  9. Barton AD, Finkel ZV, Ward BA, Johns DG, Follows MJ. 2013. On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities. Limnol. Oceanogr. 58:254–66 [Google Scholar]
  10. Bejan A, Marden JH. 2006. Unifying constructal theory for scale effects in running, swimming and flying. J. Exp. Biol. 209:238–48 [Google Scholar]
  11. Berg HC, Purcell EM. 1977. Physics of chemoreception. Biophys. J. 20:193–219 [Google Scholar]
  12. Block BA. 1991. Evolutionary novelties: how fish have built a heater out of muscle. Am. Zool. 31:726–42 [Google Scholar]
  13. Boudreau PR, Dickie LM. 1992. Biomass spectra of aquatic ecosystems in relation to fisheries yield. Can. J. Fish. Aquat. Sci. 49:1528–38 [Google Scholar]
  14. Charnov EL. 1993. Life History Invariants Oxford, UK: Oxford Univ. Press [Google Scholar]
  15. China V, Holzman R. 2014. Hydrodynamic starvation in first-feeding larval fishes. PNAS 111:8083–88 [Google Scholar]
  16. Christiansen FB, Fenchel TM. 1979. Evolution of marine invertebrate reproductive patterns. Theor. Popul. Biol. 16:267–82 [Google Scholar]
  17. Cohen J, Pimm S, Yodzis P, Saldaña J. 1993. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62:67–78 [Google Scholar]
  18. Collin SP, Whitehead D. 2004. The functional roles of passive electroreception in non-electric fishes. Anim. Biol. 54:1–25 [Google Scholar]
  19. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. 1990. Human photoreceptor topography. J. Comp. Neurol. 292:497–523 [Google Scholar]
  20. Davies-Colley RJ, Smith DG. 1995. Optically pure waters in Waikoropupu (“Pupu”) Springs, Nelson, New Zealand. N.Z. J. Mar. Freshw. Res. 29:251–56 [Google Scholar]
  21. DeLong JP, Okie JG, Moses ME, Sibly RM, Brown JH. 2010. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. PNAS 107:12941–45 [Google Scholar]
  22. Dunbrack RL, Ware DM. 1987. Energy constraints and reproductive trade-offs determining body size in fishes. Evolutionary Physiological Ecology P Calow 191–218 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  23. Dusenbery DB. 2009. Living at Micro Scale: The Unexpected Physics of Being Small Cambridge, MA: Harvard Univ. Press [Google Scholar]
  24. Edwards KF, Thomas MK, Klausmeier CA, Litchman E. 2012. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol. Oceanogr. 57:554–66 [Google Scholar]
  25. Fenchel T. 1974. Intrinsic rate of natural increase: the relationship with body size. Oecologia 14:317–26 [Google Scholar]
  26. Fenchel T. 1984. Suspended marine bacteria as a food source. Flows of Energy and Materials in Marine Ecosystems: Theory and Practice MJR Fasham 301–15 NATO Conf. Ser. 11 New York: Plenum [Google Scholar]
  27. Fenchel T, Finlay BJ. 2004. The ubiquity of small species: patterns of local and global diversity. BioScience 54:777–84 [Google Scholar]
  28. Fiksen Ø, Follows M, Aksnes D. 2013. Trait-based models of nutrient uptake in microbes extend the Michaelis-Menten framework. Limnol. Oceanogr. 58:193–202 [Google Scholar]
  29. Finkel ZV. 2001. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol. Oceanogr. 46:86–94 [Google Scholar]
  30. Freedman JA, Noakes. 2002. Why are there no really big bony fish? A point-of-view on maximum body size in teleosts and elasmobranchs. Rev. Fish Biol. Fish. 12:403–16 [Google Scholar]
  31. Froese R, Pauly D. 2013. FishBase http://www.fishbase.org [Google Scholar]
  32. Gillooly J, Charnov E, West G, Savage V, Brown J. 2002. Effects of size and temperature on developmental time. Nature 417:70–73 [Google Scholar]
  33. Haldane JBS. 1928. On being the right size. A Treasury of Science H Shapely, S Raffort, H Wright 321–25 New York: Harper [Google Scholar]
  34. Hansen BW, Bjørnsen PK, Hansen PJ. 1994. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39:395–403 [Google Scholar]
  35. Hansen PJ, Bjørnsen PK, Hansen BW. 1997. Zooplankton grazing and growth: scaling within the 2–2,000-μm body size range. Limnol. Oceanogr. 42:687–704 [Google Scholar]
  36. Hemmingsen AM. 1960. Energy Metabolism as Related to Body Size and Respiratory Surfaces, and Its Evolution Rep. Steno Mem. Hosp. Nord. Insulinlab. Vol. 9, Pt. 2. Copenhagen, Den.: Niels Steensens Hosp. [Google Scholar]
  37. Hirst AG, Kiørboe T. 2002. Mortality of marine planktonic copepods: global rates and patterns. Mar. Ecol. Prog. Ser. 230:195–209 [Google Scholar]
  38. Holling CS. 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91:385–98 [Google Scholar]
  39. Hueter RE, Mann DA, Maruska KP, Sisneros JA, Demski LS. 2004. Sensory biology of elasmobranchs. Biology of Sharks and Their Relatives JC Carrier, JA Musick, MR Heithaus 325–68 Boca Raton, FL: CRC [Google Scholar]
  40. Huntley ME, Zhou M. 2004. Influence of animals on turbulence in the sea. Mar. Ecol. Prog. Ser. 273:65–79 [Google Scholar]
  41. Kempes CP, Dutkiewicz S, Follows MJ. 2012. Growth, metabolic partitioning, and the size of microorganisms. PNAS 109:495–500 [Google Scholar]
  42. Kiørboe T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29:1–72 [Google Scholar]
  43. Kiørboe T. 2001. Formation and fate of marine snow: small-scale processes with large-scale implications. Sci. Mar. 65:Suppl. 257–71 [Google Scholar]
  44. Kiørboe T. 2011. How zooplankton feed: mechanisms, traits and trade-offs. Biol. Rev. Camb. Philos. Soc. 86:311–39 [Google Scholar]
  45. Kiørboe T. 2013. Zooplankton body composition. Limnol. Oceanogr. 58:1843–50 [Google Scholar]
  46. Kiørboe T, Andersen A, Langlois VJ, Jakobsen HH. 2010. Unsteady motion: escape jumps in planktonic copepods, their kinematics and energetics. J. R. Soc. Interface 7:1591–602 [Google Scholar]
  47. Kiørboe T, Hirst AC. 2014. Shifts in mass-scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms. Am. Nat. 183:E118–30 [Google Scholar]
  48. Klausmeier C, Litchman E, Daufresne T, Levin S. 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–74 [Google Scholar]
  49. Kleiber M. 1932. Body size and metabolism. Hilgardia 6:315–53 [Google Scholar]
  50. Lima SL, Dill LM. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68:619–40 [Google Scholar]
  51. Litchman E, Klausmeier CA. 2008. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39:615–39 [Google Scholar]
  52. Litchman E, Klausmeier CA, Schofield OM, Falkowski PG. 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 10:1170–81 [Google Scholar]
  53. Makarieva AM, Gorshkov VG, Bai-Lian L. 2004. Ontogenetic growth: models and theory. Ecol. Model. 176:15–26 [Google Scholar]
  54. Marañón E, Cermeño P, López-Sandoval DC, Rodríguez-Ramos T, Sobrino C. et al. 2013. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16:371–79 [Google Scholar]
  55. Mariani P, Andersen KH, Visser AW, Barton AD, Kiørboe T. 2013. Control of plankton seasonal succession by adaptive grazing. Limnol. Oceanogr. 58:173–84 [Google Scholar]
  56. Martens EA, Wadhwa N, Jacobsen NS, Lindemann C, Andersen KH, Visser AW. 2015. Size structures sensory hierarchy in ocean life. Proc. R. Soc. B 282:20151346 [Google Scholar]
  57. May RM. 1975. Patterns of species abundance and diversity. Ecology and Evolution of Communities ML Cody, JL Diamond 81–120 Cambridge, MA: Belknap [Google Scholar]
  58. May RM, Godfrey J. 1994. Biological diversity: differences between land and sea. Proc. R. Soc. B 343:105–11 [Google Scholar]
  59. Mei Z-P, Finkel ZV, Irwin AJ. 2009. Light and nutrient availability affect the size-scaling of growth in phytoplankton. J. Theor. Biol. 259:582–88 [Google Scholar]
  60. Morel A, Bricaud A. 1981. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res. A 28:1375–93 [Google Scholar]
  61. Morioka S, Vongvichith B, Phommachan P, Chantasone P. 2013. Growth and morphological development of laboratory-reared larval and juvenile bighead catfish Clarias macrocephalus (Siluriformes: Clariidae). Ichthyol. Res. 60:16–25 [Google Scholar]
  62. Moser HG, Sumida BY, Ambrose DA, Sandknop EM, Stevens EG. 1986. Development and distribution of larvae and pelagic juveniles of ocean whitefish, Caulolatilus princeps, in the CalCOFI survey region. CalCOFI Rep. 27:162–69 [Google Scholar]
  63. Munk WH, Riley GA. 1952. Absorption of nutrients by aquatic plants. J. Mar. Res. 11:215–40 [Google Scholar]
  64. Neuheimer AB, Hartvig M, Heuschele J, Hylander S, Kiørboe T. et al. 2015. Adult and offspring size in the ocean over 17 orders of magnitude follows two life-history strategies. Ecology. In press [Google Scholar]
  65. Northmore D, Volkmann FC, Yager D. 1978. Vision in fishes: colour and pattern. The Behavior of Fish and Other Aquatic Animals DI Mostofsky 79–136 San Diego, CA: Academic [Google Scholar]
  66. Oka S, Higashiji T. 2012. Early ontogeny of the big roughy Gephyroberyx japonicus (Beryciformes: Trachichthyidae) in captivity. Ichthyol. Res. 59:282–85 [Google Scholar]
  67. Petchey OL, Beckerman AP, Riede JO, Warren PH. 2008. Size, foraging, and food web structure. PNAS 105:4191–96 [Google Scholar]
  68. Peters RH. 1983. The Ecological Implications of Body Size Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  69. Peterson I, Wroblewski J. 1984. Mortality rate of fishes in the pelagic ecosystem. Can. J. Fish. Aquat. Sci. 41:1117–20 [Google Scholar]
  70. Rall BC, Brose U, Hartvig M, Kalinkat G, Schwarzmüller F. et al. 2012. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. B 367:2923–34 [Google Scholar]
  71. Raven JA. 1994. Why are there no picoplanktonic O2 evolvers with volumes less than 10−19 m3?. J. Plankton Res. 16:565–80 [Google Scholar]
  72. Reuman DC, Gislason H, Barnes C, Mélin F, Jennings S. 2014. The marine diversity spectrum. J. Anim. Ecol. 83:963–79 [Google Scholar]
  73. Sambilay VC. 1990. Interrelationships between swimming speed, caudal fin aspect ratio and body length of fishes. Fishbyte 8:16–20 [Google Scholar]
  74. Schwaderer AS, Yoshiyama K, de Tezanos Pinto P, Swenson NG, Klausmeier CA, Litchman E. 2011. Eco-evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnol. Oceanogr. 56:589–98 [Google Scholar]
  75. Sheldon RW, Prakash A. 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17:327–40 [Google Scholar]
  76. Sheldon RW, Sutcliffe WH Jr, Paranjape MA. 1977. Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Board Can. 34:2344–53 [Google Scholar]
  77. Shine R. 1978. Propagule size and parental care: the “safe harbor” hypothesis. J. Theor. Biol. 75:417–24 [Google Scholar]
  78. Sørnes TA, Aksnes DL. 2004. Predation efficiency in visual and tactile zooplanktivores. Limnol. Oceanogr. 49:69–75 [Google Scholar]
  79. Stoecker DK. 1998. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur. J. Protistol. 34:281–90 [Google Scholar]
  80. Taguchi S. 1976. Relationship between photosynthesis and cell size of marine diatoms. J. Phycol. 12:185–89 [Google Scholar]
  81. Tambi H, Flaten G, Egge J, Bødtker G, Jacobsen A, Thingstad TF. 2009. Relationship between phosphate affinities and cell size and shape in various bacteria and phytoplankton. Aquat. Microb. Ecol. 57:311–20 [Google Scholar]
  82. Tennekes H, Lumley JL. 1972. A First Course in Turbulence Cambridge, MA: MIT Press [Google Scholar]
  83. Throndsen J, Hasle G, Tangen K. 2003. Norsk Kystplanktonflora Oslo, Nor: Almater [Google Scholar]
  84. Tomas CR. 1997. Identifying Marine Phytoplankton San Diego, CA: Academic [Google Scholar]
  85. Verberk WCEP, Atkinson D. 2013. Why polar gigantism and Palaeozoic gigantism are not equivalent: effects of oxygen and temperature on the body size of ectotherms. Funct. Ecol. 27:1275–85 [Google Scholar]
  86. Visser AW. 2001. Hydromechanical signals in the plankton. Mar. Ecol. Prog. Ser. 222:1–24 [Google Scholar]
  87. Visser AW, Jackson GA. 2004. Characteristics of the chemical plume behind a sinking particle in a turbulent water column. Mar. Ecol. Prog. Ser. 283:55–71 [Google Scholar]
  88. Ware DM. 1978. Bioenergetics of pelagic fish: theoretical change in swimming speed and ration with body size. J. Fish. Res. Board Can. 35:220–28 [Google Scholar]
  89. Watkins JL, Brierley AS. 2002. Verification of the acoustic techniques used to identify Antarctic krill. ICES J. Mar. Sci. 59:1326–36 [Google Scholar]
  90. Webb P. 1988. Simple physical principles and vertebrate aquatic locomotion. Am. Zool. 28:709–25 [Google Scholar]
  91. West GB, Brown JH, Enquist BJ. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:122–26 [Google Scholar]
  92. Winberg GG. 1960. Rate of Metabolism and Food Requirements of Fishes Fish. Res. Board Can. Transl. Ser. 194 Nanaimo, BC: Fish. Res. Board Can. Biol. Stn. [Google Scholar]
/content/journals/10.1146/annurev-marine-122414-034144
Loading
/content/journals/10.1146/annurev-marine-122414-034144
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error