1932

Abstract

During operation, nuclear fuel rods are immersed in the primary water, causing waterside corrosion and consequent hydrogen ingress. In this review, the mechanisms of corrosion and hydrogen pickup and the role of alloy selection in minimizing both phenomena are considered on the basis of two principal characteristics: the pretransition kinetics and the loss of oxide protectiveness at transition. In zirconium alloys, very small changes in composition or microstructure can cause significant corrosion differences so that corrosion performance is strongly alloy dependent. The alloys show different, but reproducible, subparabolic pretransition kinetics and transition thicknesses. A mechanism for oxide growth and breakup based on a detailed study of the oxide structure can explain these results. Through the use of the recently developed coupled current charge compensation model of corrosion kinetics and hydrogen pickup, the subparabolic kinetics and the hydrogen fraction can be rationalized: Hydrogen pickup increases when electron transport decreases, requiring hydrogen ingress to close the reaction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070214-020951
2015-07-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/matsci/45/1/annurev-matsci-070214-020951.html?itemId=/content/journals/10.1146/annurev-matsci-070214-020951&mimeType=html&fmt=ahah

Literature Cited

  1. 1. IAEA 2010. Review of fuel failures in water cooled reactors Nucl. Energy Ser. NF-T-2.1, IAEA [Google Scholar]
  2. Lustman B. 2.  1979. Zirconium technology—twenty years of evolution. 4th International Symposium on Zirconium in the Nuclear Industry ASTM STP 681 5–18 West Conshohocken, PA: ASTM Int. [Google Scholar]
  3. Rickover HG, Geiger LD, Lustman B. 3.  1975. History of the development of zirconium alloys for use in nuclear reactors Rep., Energy Res. Dev. Admin./Div. Naval React., Washington, DC [Google Scholar]
  4. Hillner E. 4.  1977. Corrosion of zirconium base alloys—an overview. 3rd International Symposium on Zirconium in the Nuclear Industry ASTM STP 633 211–35 West Conshohocken, PA: ASTM Int. [Google Scholar]
  5. Kass S. 5.  1964. The development of the zircaloys. Symposium on Corrosion of Zirconium Alloys (1963) STP 368 3–27 New York: ANS [Google Scholar]
  6. Sabol GP. 6.  2005. ZIRLO: an alloy development success. 14th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1467 3–24 West Conshohocken, PA: ASTM Int. [Google Scholar]
  7. Sabol GP, Kilp GR, Balfour MG, Roberts E. 7.  1989. Development of a cladding alloy for high burnup. 8th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1023 West Conshohocken, PA: ASTM Int. [Google Scholar]
  8. Mardon JP, Charquet D, Senevat J. 8.  2000. Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy. 12th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1354 505–24 West Conshohocken, PA: ASTM Int. [Google Scholar]
  9. Armijo JS, Coffin L, Rosenbaun H. 9.  1995. Development of zirconium–barrier fuel cladding. 11th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1245 3–18 West Conshohocken, PA: ASTM Int. [Google Scholar]
  10. Cox B. 10.  2003. Mechanisms of zirconium alloy corrosion in nuclear reactors. J. Corros. Sci. Eng. 6:14 [Google Scholar]
  11. Cox B. 11.  2005. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J. Nucl. Mater. 336:331–68 [Google Scholar]
  12. 12. IAEA 1993. Corrosion of zirconium alloys in nuclear power plants IAEA-TECDOC-684, IAEA [Google Scholar]
  13. 13. IAEA 1998. Waterside corrosion of zirconium alloys in nuclear power plants. IAEA-TECDOC-996, IAEA
  14. Allen TR, Konings RJM, Motta AT. 14.  2012. Corrosion of zirconium alloys. Comprehensive Nuclear Materials 5 RJM Konings 49–68 Oxford, UK: Elsevier [Google Scholar]
  15. Motta AT. 15.  2011. Waterside corrosion in zirconium alloys. J. Met. 63:59–63 [Google Scholar]
  16. Sabol GP, Comstock RJ, Weiner RA, Larouere P, Stanutz RN. 16.  1994. In-reactor corrosion performance of ZIRLO and Zircaloy-4. 10th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1245 724–44 West Conshohocken, PA: ASTM Int. [Google Scholar]
  17. Leech WJ, Yueh K. 17.  2001. The fuel duty index, a method to assess fuel performance. Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 2001)2–16 La Grange Park, IL: ANS [Google Scholar]
  18. Mardon JP, Charquet D, Senevat J. 18.  1994. Development of new zirconium alloys for PWR fuel rod cladding. Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 1994)643–49 La Grange Park, IL: ANS [Google Scholar]
  19. Mardon JP, Garner G, Beslu P, Charquet D, Senevat J. 19.  1997. Update on the development of advanced zirconium alloys for PWR fuel rod claddings. Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 1997)405–12 La Grange Park, IL: ANS [Google Scholar]
  20. Pan G, Garde AM, Atwood AR, Kallstrom R, Jadernas D. 20.  2013. High burnup Optimized ZIRLO cladding performance. Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 2013)1–8 La Grange Park, IL: ANS [Google Scholar]
  21. Mitchell D, Garde A, Davis D. 21.  2010. Optimized ZIRLO fuel performance in Westinghouse PWRs. Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 2010)107–14 La Grange Park, IL: ANS [Google Scholar]
  22. Romero J, Hallstadius L, Owaki M, Pan G, Kataoka K. 22.  et al. 2014. Evolution of Westinghouse fuel cladding. Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 2014) Pap. 100019 La Grange Park, IL: ANS [Google Scholar]
  23. Yoshino A, Ono S, Kido T, Onooka H. 23.  2014. Irradiation behavior of J-Alloy™ at high burnup. Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 2014) Pap. 100153 La Grange Park, IL: ANS [Google Scholar]
  24. Pan G, Long CJ, Garde AM, Atwood AR, Foster JP. 24.  et al. 2010. Advanced material for PWR application: AXIOM cladding. Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 2010) Pap. 074 La Grange Park, IL: ANS [Google Scholar]
  25. Mardon JP, Garner GL, Hoffmann PB. 25.  2010. M5® a breakthrough in Zr alloy. Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 2010) Pap. 069 La Grange Park, IL: ANS [Google Scholar]
  26. Motta AT, Yilmazbayhan A, Comstock RJ, Partezana J, Sabol GP. 26.  et al. 2005. Microstructure and growth mechanism of oxide layers formed on Zr alloys studied with micro-beam synchrotron radiation. 14th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1467 205–32 West Conshohocken, PA: ASTM Int. [Google Scholar]
  27. Arima T, Moriyama K, Gaja N, Furuya H, Idemitsu K, Inagaki Y. 27.  1998. Oxidation kinetics of Zircaloy-2 between 450°C and 600°C in oxidizing atmosphere. J. Nucl. Mater. 257:67–77 [Google Scholar]
  28. Fuketa T, Nagase F, Ishijima K, Fujishiro T. 28.  1996. NSRRRIA experiments with high burnup PWR fuels. Nucl. Saf. 37:328–42 [Google Scholar]
  29. Couet A, Motta AT, Comstock RJ. 29.  2013. Effect of alloying elements on hydrogen pick-up in zirconium alloys. 17th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1543 479–514 West Conshohocken, PA: ASTM Int. [Google Scholar]
  30. Ma X, Toffolon-Masclet C, Guilbert T, Hamon D, Brachet JC. 30.  2008. Oxidation kinetics and oxygen diffusion in low-tin Zircaloy-4 up to 1523 K. J. Nucl. Mater. 377:359–69 [Google Scholar]
  31. Fromhold AT. 31.  1972. Parabolic oxidation of metals in homogeneous electric fields. J. Phys. Chem. Solids 33:95–120 [Google Scholar]
  32. Fromhold AT. 32.  1978. Distribution of charge and potential through oxide films. J. Electrochem. Soc. 125:C118–18 [Google Scholar]
  33. Fromhold AT. 33.  1979. Easy insight into space-charge effects on steady-state transport in oxide films. Oxid. Met. 13:475–79 [Google Scholar]
  34. Cox B, Pemsler JP. 34.  1968. Diffusion of oxygen in growing zirconia films. J. Nucl. Mater. 28:73–78 [Google Scholar]
  35. Cox B. 35.  1968. Effect of irradiation on the oxidation of zirconium alloys in high temperature aqueous environments: a review. J. Nucl. Mater. 28:1–47 [Google Scholar]
  36. Ramasubramanian N. 36.  1975. Localised electron transport in corroding zirconium alloys. J. Nucl. Mater. 55:34–54 [Google Scholar]
  37. Motta AT, Chen LQ. 37.  2012. Hydride formation in zirconium alloys. J. Met. 64:1403–8 [Google Scholar]
  38. Motta AT, Gomes Da Silva MJ, Yilmazbayhan A, Comstock RJ, Cai Z, Lai B. 38.  2009. Microstructural characterization of oxides formed on model Zr alloys using synchrotron radiation. 15th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1505 486–506 West Conshohocken, PA: ASTM Int. [Google Scholar]
  39. Inagaki M, Kanno M, Maki H. 39.  1991. Effect of alloying elements in zircaloy on photoelectrochemical characteristics of zirconium-oxide films. 9th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1132 437–60 West Conshohocken, PA: ASTM Int. [Google Scholar]
  40. Kofstad P, Ruzicka DJ. 40.  1963. On the defect structure of ZrO2 and HfO2. J. Electrochem. Soc. 110:181–84 [Google Scholar]
  41. Grandjean A, Serruys Y. 41.  1999. Metal and oxygen mobilities during Zircaloy-4 oxidation at high temperature. J. Nucl. Mater 273:111–15 [Google Scholar]
  42. Cox B, Pemsler JP. 42.  1968. Diffusion of oxygen in growing zirconia films. J. Nucl. Mater. 28:73–78 [Google Scholar]
  43. Yilmazbayhan A, Motta AT, Comstock RJ, Sabol GP, Lai B, Cai Z. 43.  2004. Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: relation to corrosion rate. J. Nucl. Mater. 324:6–22 [Google Scholar]
  44. Douglass DL. 44.  1971. The Metallurgy of Zirconium Vienna: IAEA [Google Scholar]
  45. Cox B. 45.  1987. Pore structure in oxide films on irradiated and unirradiated zirconium alloys. J. Nucl. Mater. 148:332–43 [Google Scholar]
  46. Maroto AJG, Bordoni R, Villegas M, Olmedo AM, Blesa MA. 46.  et al. 1996. Growth and characterization of oxide layers on zirconium alloys. J. Nucl. Mater. 229:79–92 [Google Scholar]
  47. Cox B. 47.  1969. Processes occurring during the breakdown of oxide films on zirconium alloys. J. Nucl. Mater. 29:50–66 [Google Scholar]
  48. Lemaignan C, Motta AT. 48.  1994. Zirconium alloys in nuclear applications. In Materials Science and Technology Vol. 10 1–51 New York: Wiley [Google Scholar]
  49. Cox B. 49.  1969. Rate controlling processes during the pre-transition oxidation of zirconium alloys. J. Nucl. Mater. 31:48–66 [Google Scholar]
  50. Tupin M, Pijolat M, Valdivieso F, Soustelle M, Frichet A, Barberis P. 50.  2003. Differences in reactivity of oxide growth during the oxidation of Zircaloy-4 in water vapour before and after the kinetic transition. J. Nucl. Mater. 317:130–44 [Google Scholar]
  51. Hauffe K. 51.  1965. Oxidation of Metals Oxford, UK: Plenum [Google Scholar]
  52. Fromhold AT. 52.  1975. Theory of Metal Oxidation Amsterdam: North-Holland [Google Scholar]
  53. Sabol GP, Dalgaard SB. 53.  1975. The origin of the cubic rate law in zirconium alloy oxidation. J. Electrochem. Soc. 122:316–17 [Google Scholar]
  54. Porte HA, Schnizlein JG, Vogel RC, Fischer DF. 54.  1960. Oxidation of zirconium and zirconium alloys. J. Electrochem. Soc. 107:506–15 [Google Scholar]
  55. Yilmazbayhan A, Motta AT, Comstock RJ, Sabol GP, Lai B, Cai Z. 55.  2004. Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: relation to corrosion rate. J. Nucl. Mater. 324:6–22 [Google Scholar]
  56. Couet A, Motta AT, Comstock RJ. 56.  2014. Hydrogen pickup measurements in zirconium alloys: relation to oxidation kinetics. J. Nucl. Mater. 451:1–13 [Google Scholar]
  57. Wagner C, Schottky W. 57.  1930. Theory of controlled mixed phases. Z. Phys. Chem. 11:163–210 [Google Scholar]
  58. Couet A, Motta AT, Comstock RJ, Paul RL. 58.  2012. Cold neutron prompt gamma activation analysis, a non-destructive technique for hydrogen level assessment in zirconium alloys. J. Nucl. Mater. 425:211–17 [Google Scholar]
  59. Cox B, Roy C. 59.  1965. The use of tritium as a tracer in studies of hydrogen uptake by zirconium alloys AECL 2519, Chalk River Nucl. Lab., At. Energy Can. [Google Scholar]
  60. Kass S, Kirk WW. 60.  1962. Corrosion and hydrogen absorption properties of nickel-free Zircaloy-2 and Zircaloy-4. ASM Trans. Q. 55:77–100 [Google Scholar]
  61. Garde AM, Slagle H, Mitchell D. 61.  2009. Hydrogen pick-up fraction for ZIRLO cladding corrosion and resulting impact on the cladding integrity. Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 2009) Pap. 2136 La Grange Park, IL: ANS [Google Scholar]
  62. Wanklyn JN, Silvester DR, Dalton J, Wilkins NJM. 62.  1961. The Corrosion of Zirconium and Its Alloys in High Temperature Steam. Part II: The Uptake of Hydrogen During Corrosion. Harwell, UK: At. Energy Res. Establ. [Google Scholar]
  63. Baur K, Garzarolli F, Ruhmann H, Sell H-J. 63.  2000. Electrochemical examinations in 350°C water with respect to the mechanism of corrosion-hydrogen pickup. 12th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1354 836–52 West Conshohocken, PA: ASTM Int. [Google Scholar]
  64. Ramasubramanian N, Billot P, Yagnik S. 64.  2002. Hydrogen evolution and pickup during the corrosion of zirconium alloys: a critical evaluation of the solid state and porous oxide electrochemistry. 13th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1423 222–44 West Conshohocken, PA: ASTM Int. [Google Scholar]
  65. Gabory BD, Motta AT. 65.  2013. Structure of Zircaloy 4 oxides formed during autoclave corrosion. Light Water Reactor Fuel Performance Meeting (Top Fuel 2013) Pap. 8584 La Grange Park, IL: ANS [Google Scholar]
  66. Li H, Glavicic HM, Szpunar JA. 66.  2004. A model of texture formation in ZrO2 films. Mater. Sci. Eng. A 366:164–74 [Google Scholar]
  67. Pétigny N, Barberis P, Lemaignan C, Valot C, Lallemant M. 67.  2000. In situ XRD analysis of the oxide layers formed by oxidation at 743 K on Zircaloy-4 and Zr-1NbO. J. Nucl. Mater. 280:318–30 [Google Scholar]
  68. Polatidis E, Frankel P, Wei J, Klaus M, Comstock RJ. 68.  et al. 2013. Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction. J. Nucl. Mater. 432:102–12 [Google Scholar]
  69. Cox B. 69.  1968. A porosimeter for determining the sizes of flaws in zirconia or other insulating films “in-situ”. J. Nucl. Mater. 27:1–11 [Google Scholar]
  70. Cox B, Yamaguchi Y. 70.  1994. The development of porosity in thick zirconia films. J. Nucl. Mater. 210:303–17 [Google Scholar]
  71. Ni N, Lozano-Perez S, Jenkins ML, English C, Smith GDW. 71.  et al. 2010. Porosity in oxides on zirconium fuel cladding alloys, and its importance in controlling oxidation rates. Scr. Mater. 62:564–67 [Google Scholar]
  72. Ni N, Lozano-Perez S, Sykes J, Grovenor C. 72.  2012. Multi-scale characterisation of oxide on zirconium alloys. Mater. High Temp. 29:166–70 [Google Scholar]
  73. Ni N, Hudson D, Wei J, Wang P, Lozano-Perez S. 73.  et al. 2012. How the crystallography and nanoscale chemistry of the metal-oxide interface develops during the aqueous oxidation of zirconium cladding alloys. Acta Mater. 60:7132–49 [Google Scholar]
  74. Yardley SS, Moore KL, Na N, Wei JF, Lyon S. 74.  et al. 2013. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS. J. Nucl. Mater. 443:436–43 [Google Scholar]
  75. Bechade J-L, Brenner R, Goudeau P, Gailhanou M. 75.  2003. Determination des contraintes internes dans une couche de zircone par diffraction des rayons X et par une approche micromecanique: influence de l'anisotropie thermoelastique. Rev. Metall. 2003:1151–56 [Google Scholar]
  76. Béchade J-L, Brenner R, Goudeau P, Gailhanou M. 76.  2002. Influence of temperature on X-ray diffraction analysis of ZrO2 oxide layers formed on zirconium based alloys using a synchrotron radiation. Mater. Sci. Forum 404–407:803–8 [Google Scholar]
  77. Goudeau P, Faurie D, Girault B, Renault PO, Le Bourhis E. 77.  et al. 2006. Strains, stresses and elastic properties in polycrystalline metallic thin films: in situ deformation combined with X-ray diffraction and simulation experiments. Mater. Sci. Forum 524–525:735–40 [Google Scholar]
  78. Pecheur D, Lefebvre F, Motta AT, Lemaignan C, Charquet D. 78.  1994. Oxidation of intermetallic precipitates in Zircaloy-4: impact of irradiation. 10th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1245 687–70 West Conshohocken, PA: ASTM Int. [Google Scholar]
  79. Pecheur D, Lefebvre F, Motta AT, Lemaignan C, Wadier J-F. 79.  1992. Precipitate evolution in the Zircaloy-4 oxide layer. J. Nucl. Mater. 189:2318–32 [Google Scholar]
  80. Yilmazbayhan A, Breval E, Motta A, Comstock R. 80.  2006. Transmission electron microscopy examination of oxide layers formed in Zr alloys. J. Nucl. Mater. 349:265–81 [Google Scholar]
  81. Froideval A, Abolhassani S, Gavillet D, Grolimund D, Borca C. 81.  et al. 2009. Microprobe analysis of neutron irradiated and autoclaved zirconium niobium claddings using synchrotron-based hard X-ray imaging and spectroscopy. J. Nucl. Mater. 385:346–50 [Google Scholar]
  82. Sakamoto K, Une K, Aomi M. 82.  2010. Chemical state of alloying elements in oxide layer of Zr-based alloys. Light Water Reactor Fuel Performance Meeting (Top Fuel 2010) Pap. 13101 La Grange Park, IL: ANS [Google Scholar]
  83. Sakamoto K, Une K, Aomi M, Hashizume K. 83.  2012. Depth profile of chemical states of alloying elements in oxide layer of Zr-based alloys. Prog. Nucl. Energy 57:101–5 [Google Scholar]
  84. Couet A, Motta AT, de Gabory B, Cai Z. 84.  2014. Microbeam X-ray absorption near-edge spectroscopy study of the oxidation of Fe and Nb in zirconium alloy oxide layers. J. Nucl. Mater. 452:614–27 [Google Scholar]
  85. Garvie RC, Nicholson PS. 85.  1972. Structure and thermomechanical properties of partially stabilized zirconia in CaO-ZrO2 system. J. Am. Ceram. Soc. 55:152–57 [Google Scholar]
  86. Polatidis E, Frankel P, Wei J, Klaus M, Comstock RJ. 86.  et al. 2013. Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction. J. Nucl. Mater. 432:102–12 [Google Scholar]
  87. 87.  Deleted in proof
  88. Takeda K, Anada H. 88.  2000. Mechanism of corrosion degradation in Sn. 12th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1354 592–608 West Conshohocken, PA: ASTM Int. [Google Scholar]
  89. Abriata JP, Garces J, Versaci R. 89.  1986. The Zr-O (zirconium-oxygen) system. Bull. Alloy Phase Diagr. 7:116–24 [Google Scholar]
  90. Warr BD, Elmoselhi M, Newcomb SB, McIntyre NS, Brennenstuhl AM, Lichtenberger PC. 90.  1991. Oxide characteristics and their relationship to hydrogen uptake in zirconium alloys. 9th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1132 740–57 West Conshohocken, PA: ASTM Int. [Google Scholar]
  91. Iltis X, Lefebvre F, Lemaignan C. 91.  1995. Microstructural study of oxide layers formed on Zircaloy-4 in autoclave and in reactor. Part II. Impact of the chemical evolution of intermetallic precipitates on their zirconia environment. J. Nucl. Mater. 224:121–30 [Google Scholar]
  92. Hutchinson B, Lehtinen B, Limbach M, Dahlback M. 92.  2009. A study of the structure and chemistry in Zircaloy-2 and the resulting oxide after high temperature corrosion. 15th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1505 269–84 West Conshohocken, PA: ASTM Int. [Google Scholar]
  93. Hudson D, Ni N, Lozano-Perez S, Saxey D, English C. 93.  et al. 2009. The atomic scale structure and chemistry of the Zircaloy-4 metal-oxide interface. 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors1407–18 Warrendale, PA: TMS [Google Scholar]
  94. Ni N, Lozano-Perez S, Sykes J, Grovenor C. 94.  2011. Quantitative EELS analysis of zirconium alloy metaloxide interfaces. Ultramicroscopy 111:123–30 [Google Scholar]
  95. Dong Y, Motta AT, Marquis EA. 95.  2013. Atom probe tomography study of alloying element distributions in Zr alloys and their oxides. J. Nucl. Mater. 442:270–81 [Google Scholar]
  96. Gabory BD, Motta AT, Wang K. 96.  2015. Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO™ oxide layers. J. Nucl. Mater. 456:272–80 [Google Scholar]
  97. Peng Q, Gartner E, Busby JT, Motta AT, Was GS. 97.  2007. Corrosion behavior of model zirconium alloys in deaerated supercritical water at 500°C. Corrosion 63:577–90 [Google Scholar]
  98. Cox B, Wong YM. 98.  1999. A hydrogen uptake micro-mechanism for Zr alloys. J. Nucl. Mater. 270:134–46 [Google Scholar]
  99. Veshchunov MS, Berdyshev AV. 99.  1998. Modelling of hydrogen absorption by zirconium alloys during high temperature oxidation in steam. J. Nucl. Mater. 255:2–3250–62 [Google Scholar]
  100. Hatano Y, Sugisaki M, Kitano K, Hayashi M. 100.  2000. Role of intermetallic precipitates in hydrogen transport through oxide films on Zircaloy. 12th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1354 901–17 West Conshohocken, PA: ASTM Int. [Google Scholar]
  101. Draley JE, Ruther WE. 101.  1957. Some unusual effects of hydrogen in corrosion reactions. J. Electrochem. Soc. 104:329–33 [Google Scholar]
  102. Berry WE, Vaughan DA, White EL. 102.  1961. Hydrogen pickup during aqueous corrosion of zirconium alloys. Corrosion 17:109–17 [Google Scholar]
  103. Kass S. 103.  1960. Hydrogen pickup in various zirconium alloys during corrosion exposure in high-temperature water and steam. J. Electrochem. Soc. 107:594–97 [Google Scholar]
  104. Hillner E. 104.  1964. Hydrogen absorption in Zircaloy during aqueous corrosion: effect of environment Res. Dev. Rep. WAPD-TM-411, US At. Energy Comm. [Google Scholar]
  105. Adamson R, Garzarolli F, Cox B, Strasser A, Rudling P. 105.  2007. Corrosion mechanisms in zirconium alloys Rep., ANT Int. [Google Scholar]
  106. Harada M, Wakamatsu R. 106.  2008. The effect of hydrogen on the transition behavior of the corrosion rate of zirconium alloys. 15th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1505 384–400 West Conshohocken, PA: ASTM Int. [Google Scholar]
  107. Une K, Sakamoto K, Aomi M, Matsunaga J, Etoh Y. 107.  et al. 2011. Hydrogen absorption mechanism of zirconium alloys based on characterization of oxide layer. 16th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1529 401–32 West Conshohocken, PA: ASTM Int. [Google Scholar]
  108. Broy Y, Garzarolli F, Seibold A. Swam LF. 108. , Van 2000. Influence of transition elements Fe, Cr, and V on long-time corrosion in PWRs. 12th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1354 609–22 West Conshohocken, PA: ASTM Int. [Google Scholar]
  109. Kiselev AA. 109.  1963. Research on the corrosion of zirconium alloys in water and steam at high temperature and pressure Rep. AECL-1724, At. Energy Can. [Google Scholar]
  110. Murai T, Isobe K, Takizawa Y, Mae Y. 110.  2000. Fundamental study on the corrosion mechanism of Zr-0.2Fe, Zr-0.2Cr and Zr-0.1Fe-0.2Cr alloys. 12th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1354 623–40 West Conshohocken, PA: ASTM Int. [Google Scholar]
  111. Evans HE, Norfolk DJ, Swan T. 111.  1978. Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers. J. Electrochem. Soc. 125:1180–85 [Google Scholar]
  112. Dollins CC, Jursich M. 112.  1983. A model for the oxidation of zirconium-based alloys. J. Nucl. Mater. 113:19–24 [Google Scholar]
  113. Ai J, Chen Y, Urquidi-Macdonald M, Macdonald DD. 113.  2008. Electrochemical impedance spectroscopic study of passive zirconium. J. Nucl. Mater. 379:162–68 [Google Scholar]
  114. Kim Y-J, Rebak R, Lin Y-P, Lutz D, Crawford DC. 114.  et al. 2011. Photoelectrochemical investigation of radiation-enhanced shadow corrosion phenomenon. 16th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1529 91–116 West Conshohocken, PA: ASTM Int. [Google Scholar]
  115. Tupin M, Bataillon C, Gozlan J-P, Bossis P. 115.  2007. High temperature corrosion of Zircaloy-4. Electrochemistry in Light Water Reactors: Reference Electrodes, Measurement, Corrosion and Tribocorrosion Issues RW Bosch, D Féron, JP Celis 134–55 Cambridge, UK: Eur. Fed. Corros. [Google Scholar]
  116. Pauporte T, Finne J. 116.  2006. Impedance spectroscopy study of anodic growth of thick zirconium oxide films in H2SO4, Na2SO4 and NaOH solutions. J. Appl. Electrochem. 36:33–41 [Google Scholar]
  117. Chen Y, Urquidi-Macdonald M, Macdonald DD. 117.  2006. The electrochemistry of zirconium in aqueous solutions at elevated temperatures and pressures. J. Nucl. Mater. 348:133–47 [Google Scholar]
  118. Bojinov M, Karastoyanov V, Kinnunen P, Saario T. 118.  2010. Influence of water chemistry on the corrosion mechanism of a zirconium-niobium alloy in simulated light water reactor coolant conditions. Corros. Sci. 52:54–67 [Google Scholar]
  119. Fromhold AT. 119.  1980. Theory of Metal Oxidation: Space Charge Amsterdam: North-Holland [Google Scholar]
  120. Eloff GA, Greyling CJ, Viljoen PE. 120.  1993. The role of space charge in the oxidation of Zircaloy-4 between 350 and 450°C in air. J. Nucl. Mater. 199:285–88 [Google Scholar]
  121. Beie H-J, Mitwalsky A, Garzarolli F, Ruhmann H, Sell HJ. 121.  1994. Examinations of the corrosion mechanism of zirconium alloys. 10th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1245 615–43 West Conshohocken, PA: ASTM Int. [Google Scholar]
  122. Couet A, Motta AT, Ambard A. 122.  2014. The coupled current charge compensation model for zirconium alloy fuel cladding oxidation. I. Parabolic oxidation of zirconium alloys. Corros. Sci. Submitted [Google Scholar]
  123. Couet A, Motta AT, Ambard A. 123.  2014. Oxide electronic conductivity and hydrogen pickup fraction in Zr alloys Presented at Annual Meeting on Transactions of the American Nuclear Society and Embedded Topical Meeting: Nuclear Fuels and Structural Materials for the Next Generation Nuclear Reactors (NSFM 2014), Reno, Nev., June 15–19 [Google Scholar]
  124. Thomazet J, Dalmais A, Bossis P, Godlewski J, Blat M, Miquet A. 124.  2005. The corrosion of the alloy M5: an overview Presented at IAEA Technical Committee Meeting on Behavior of High Corrosion Zr-Based Alloys, Buenos Aires, Oct. 24–28 [Google Scholar]
  125. Schefold J, Lincot D, Ambard A, Kerrec O. 125.  2003. The cyclic nature of corrosion of Zr and Zr-Sn in high-temperature water (633 K)—a long-term in situ impedance spectroscopic study. J. Electrochem. Soc. 150:B451–61 [Google Scholar]
  126. Couet A. 126.  2014. Hydrogen pickup mechanism of zirconium alloys PhD Thesis, Dep. Mech. Nucl. Eng., Penn State Univ. [Google Scholar]
  127. Bossis P, Pêcheur D, Hanifi K, Thomazet J, Blat M. 127.  2005. Comparison of the high burn-up corrosion on M5 and low tin Zircaloy-4. 14th International Symposium on Zirconium in the Nuclear Industry ASTM STP 1467, pp. 494–525. West Conshohocken, PA: ASTM Int. [Google Scholar]
/content/journals/10.1146/annurev-matsci-070214-020951
Loading
/content/journals/10.1146/annurev-matsci-070214-020951
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error