1932

Abstract

Understanding and designing sophisticated new materials require measurements of not only their average structural properties but also their dynamic behavior. X-ray photon correlation spectroscopy (XPCS) provides this information by characterizing fluctuations in condensed matter across a broad range of length scales and timescales. Over the past two decades, XPCS has provided a wide variety of results in the study of materials properties. In this review, we provide an overview of coherence, photon correlation spectroscopy, and the dynamic structure factor as well as information on the mechanics of XPCS experiments. We highlight the impact that this infrastructure has had on materials research and the bright future that is forthcoming with the anticipated upgrade of many third-generation synchrotron sources to fourth-generation multibend achromat sources.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070317-124334
2018-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070317-124334.html?itemId=/content/journals/10.1146/annurev-matsci-070317-124334&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Livet F 2007. Diffraction with a coherent X-ray beam: dynamics and imaging. Acta Crystallogr. A 63:87–107
    [Google Scholar]
  2. 2.  Grübel G, Madsen A, Robert A 2008. X-ray photon correlation spectroscopy (XPCS). Soft-Matter Characterization R Borsali, R Pecora 953–95 New York: Springer
    [Google Scholar]
  3. 3.  Sutton M 2008. A review of X-ray intensity fluctuation spectroscopy. C. R. Phys. 9:657–67
    [Google Scholar]
  4. 4.  Livet F, Sutton M 2012. X-ray coherent scattering in metal physics. C. R. Phys. 13:23–32
    [Google Scholar]
  5. 5.  Sinha SK, Jiang Z, Lurio LB 2014. X-ray photon correlation spectroscopy studies of surfaces and thin films. Adv. Mater. 26:7764–85
    [Google Scholar]
  6. 6.  Madsen A, Fluerasu A, Ruta B 2016. Structural dynamics of materials probed by X-ray photon correlation spectroscopy. Synchrotron Light Sources and Free-Electron Lasers E Jaeschke, S Khan, JR Schneider, JB Hastings 1617–41 Cham, Switz.: Springer Int.
    [Google Scholar]
  7. 7.  Sutton M, Mochrie SGJ, Greytak T, Nagler SE, Berman LE et al. 1991. Observation of speckle by diffraction with coherent X-rays. Nature 352:608–10
    [Google Scholar]
  8. 8.  Miao J, Ishikawa T, Robinson IK, Murnane MM 2015. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science 348:6234530–35
    [Google Scholar]
  9. 9.  Born M, Wolf E 1980. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light Oxford, UK: Pergamon
  10. 10.  Goodman JW 1985. Statistical Optics New York: Wiley
  11. 11.  Vartanyants IA, Singer A 2010. Coherence properties of hard X-ray synchrotron sources and X-ray free electron lasers. New J. Phys. 12:035004
    [Google Scholar]
  12. 12.  Sandy AR, Lurio LB, Mochrie SGJ, Malik A, Stephenson GB et al. 1999. Design and characterization of an undulator beamline optimized for small-angle coherent X-ray scattering at the Advanced Photon Source. J. Synchrotron Radiat. 6:1174–84
    [Google Scholar]
  13. 13.  Pfeiffer F, Zhang W, Robinson IK 2004. Coherent grazing exit X-ray scattering geometry for probing the structure of thin films. Appl. Phys. Lett. 84:1847–49
    [Google Scholar]
  14. 14.  Markowitz D, Kadanoff LP 1963. Effect of impurities upon critical temperature of anisotropic superconductors. Phys. Rev. 131:563–75
    [Google Scholar]
  15. 15.  Dierker SB, Pindak R, Fleming RM, Robinson IK, Berman L 1995. X-ray photon-correlation spectroscopy study of Brownian motion of gold colloids in glycerol. Phys. Rev. Lett. 75:449–52
    [Google Scholar]
  16. 16.  Zhang F, Allen AJ, Levine LE, Espinal L, Antonucci JM et al. 2012. Ultra-small-angle X-ray scattering–X-ray photon correlation spectroscopy studies of incipient structural changes in amorphous calcium phosphate–based dental composites. J. Biomed. Mater. Res. A 100:1293–306
    [Google Scholar]
  17. 17.  Zhang Q, Dufresne EM, Chen P, Park J, Cosgriff MP et al. 2017. Thermal fluctuations of ferroelectric nanodomains in a ferroelectric-dielectric PbTiO3/SrTiO3 superlattice. Phys. Rev. Lett. 118:097601
    [Google Scholar]
  18. 18.  Barbour A, Alatas A, Liu Y, Zhu C, Leu BM et al. 2016. Partial glass isosymmetry transition in multiferroic hexagonal ErMnO3. Phys. Rev. B 93:054113
    [Google Scholar]
  19. 19.  Singer A, Patel SKK, Uhlíř V, Kukreja R, Ulvestad A et al. 2016. Phase coexistence and pinning of charge density waves by interfaces in chromium. Phys. Rev. B 94:174110
    [Google Scholar]
  20. 20.  Shpyrko OG, Isaacs ED, Logan JM, Feng YJ, Aeppli G et al. 2007. Direct measurement of antiferromagnetic domain fluctuations. Nature 447:68–71
    [Google Scholar]
  21. 21.  Su J, Sandy AR, Mohanty J, Shpyrko OG, Sutton M 2012. Collective pinning dynamics of charge-density waves in 1T-TaS2. Phys. Rev. B 86:205105
    [Google Scholar]
  22. 22.  Fluerasu A, Sutton M, Dufresne EM 2005. X-ray intensity fluctuation spectroscopy studies on phase-ordering systems. Phys. Rev. Lett. 94:055501
    [Google Scholar]
  23. 23.  Sanborn C, Ludwig KF, Rogers MC, Sutton M 2011. Direct measurement of microstructural avalanches during the martensitic transition of cobalt using coherent X-ray scattering. Phys. Rev. Lett. 107:015702
    [Google Scholar]
  24. 24.  Livet F, Fèvre M, Beutier G, Sutton M 2015. Ordering fluctuation dynamics in AuAgZn2. Phys. Rev. B 92:094102
    [Google Scholar]
  25. 25.  Pierce MS, Chang KC, Hennessy D, Komanicky V, Sprung M et al. 2009. Surface X-ray speckles: coherent surface diffraction from Au(001). Phys. Rev. Lett. 103:165501
    [Google Scholar]
  26. 26.  Pierce MS, Hennessy DC, Chang KC, Komanicky V, Strzalka J et al. 2011. Persistent oscillations of X-ray speckles: Pt(001) step flow. Appl. Phys. Lett. 99:121910
    [Google Scholar]
  27. 27.  Pierce MS, Komanicky V, Barbour A, Hennessy DC, Su JD et al. 2011. In-situ coherent X-ray scattering and scanning tunneling microscopy studies of hexagonally reconstructed Au(001) in electrolytes. ECS Trans 35:71–81
    [Google Scholar]
  28. 28.  Pierce MS, Komanicky V, Barbour A, Hennessy DC, Zhu CH et al. 2012. Dynamics of the Au(001) surface in electrolytes: in situ coherent X-ray scattering. Phys. Rev. B 86:085410
    [Google Scholar]
  29. 29.  Pierce MS, Barbour A, Komanicky V, Hennessy D, You H 2012. Coherent X-ray scattering experiments of Pt(001) surface dynamics near a roughening transition. Phys. Rev. B 86:184108
    [Google Scholar]
  30. 30.  Karl RM, Barbour A, Komanicky V, Zhu CH, Sandy A et al. 2015. Charge-induced equilibrium dynamics and structure at the Ag(001)-electrolyte interface. Phys. Chem. Chem. Phys. 17:16682–87
    [Google Scholar]
  31. 31.  Narayanan RA, Thiyagarajan P, Lewis S, Bansal A, Schadler LS, Lurio LB 2006. Dynamics and internal stress at the nanoscale related to unique thermomechanical behavior in polymer nanocomposites. Phys. Rev. Lett. 97:075505
    [Google Scholar]
  32. 32.  Narayanan S, Lee DR, Hagman A, Li XF, Wang J 2007. Particle dynamics in polymer-metal nanocomposite thin films on nanometer-length scales. Phys. Rev. Lett. 98:185506
    [Google Scholar]
  33. 33.  Kandar AK, Srivastava S, Basu JK, Mukhopadhyay MK, Seifert S, Narayanan S 2009. Unusual dynamical arrest in polymer grafted nanoparticles. J. Chem. Phys. 130:121102
    [Google Scholar]
  34. 34.  Srivastava S, Kandar AK, Basu JK, Mukhopadhyay MK, Lurio LB et al. 2009. Complex dynamics in polymer nanocomposites. Phys. Rev. E 79:021408
    [Google Scholar]
  35. 35.  Srivastava S, Chandran S, Kandar AK, Sarika CK, Basu JK et al. 2010. Communication: Unusual dynamics of hybrid nanoparticles and their binary mixtures. J. Chem. Phys. 133:151105
    [Google Scholar]
  36. 36.  Sikorski M, Sandy AR, Narayanan S 2011. Depletion-induced structure and dynamics in bimodal colloidal suspensions. Phys. Rev. Lett. 106:188301
    [Google Scholar]
  37. 37.  Guo H, Bourret G, Lennox RB, Sutton M, Harden JL, Leheny RL 2012. Entanglement-controlled subdiffusion of nanoparticles within concentrated polymer solutions. Phys. Rev. Lett. 109:055901
    [Google Scholar]
  38. 38.  Kim D, Srivastava S, Narayanan S, Archer LA 2012. Polymer nanocomposites: polymer and particle dynamics. Soft Matter 8:10813–18
    [Google Scholar]
  39. 39.  Srivastava S, Archer LA, Narayanan S 2013. Structure and transport anomalies in soft colloids. Phys. Rev. Lett. 110:148302
    [Google Scholar]
  40. 40.  Jang WS, Koo P, Bryson K, Narayanan S, Sandy A et al. 2014. Dynamics of cadmium sulfide nanoparticles within polystyrene melts. Macromolecules 47:6483–90
    [Google Scholar]
  41. 41.  Agrawal A, Yu H-Y, Srivastava S, Choudhury S, Narayanan S, Archer LA 2015. Dynamics and yielding of binary self-suspended nanoparticle fluids. Soft Matter 11:5224–34
    [Google Scholar]
  42. 42.  Ranka M, Varkey N, Ramakrishnan S, Zukoski CF 2015. Impact of small changes in particle surface chemistry for unentangled polymer nanocomposites. Soft Matter 11:1634–45
    [Google Scholar]
  43. 43.  Srivastava S, Agarwal P, Mangal R, Koch DL, Narayanan S, Archer LA 2015. Hyperdiffusive dynamics in Newtonian nanoparticle fluids. ACS Macro Lett 4:1149–53
    [Google Scholar]
  44. 44.  Grein-Iankovski A, Riegel-Vidotti IC, Simas-Tosin FF, Narayanan S, Leheny RL, Sandy AR 2016. Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums. Soft Matter 12:9321–29
    [Google Scholar]
  45. 45.  Jang WS, Koo P, Bryson K, Narayanan S, Sandy AR et al. 2016. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene-block-isoprene) diblock copolymer melts. Macromol. Chem. Phys. 217:591–98
    [Google Scholar]
  46. 46.  Liu SQ, Senses E, Jiao Y, Narayanan S, Akcora P 2016. Structure and entanglement factors on dynamics of polymer-grafted nanoparticles. ACS Macro Lett 5:569–73
    [Google Scholar]
  47. 47.  Mangal R, Srivastava S, Narayanan S, Archer LA 2016. Size-dependent particle dynamics in entangled polymer nanocomposites. Langmuir 32:596–603
    [Google Scholar]
  48. 48.  Poling-Skutvik R, Mongcopa KIS, Faraone A, Narayanan S, Conrad JC, Krishnamoorti R 2016. Structure and dynamics of interacting nanoparticles in semidilute polymer solutions. Macromolecules 49:6568–77
    [Google Scholar]
  49. 49.  Srivastava S, Kishore S, Narayanan S, Sandy AR, Bhatia SR 2016. Multiple dynamic regimes in colloid-polymer dispersions: new insight using X-ray photon correlation spectroscopy. J. Polym. Sci. B Polym. Phys. 54:752–60
    [Google Scholar]
  50. 50.  Lee J, Grein-Iankovski A, Narayanan S, Leheny RL 2017. Nanorod mobility within entangled wormlike micelle solutions. Macromolecules 50:406–15
    [Google Scholar]
  51. 51.  Senses E, Ansar SM, Kitchens CL, Mao Y, Narayanan S et al. 2017. Small particle driven chain disentanglements in polymer nanocomposites. Phys. Rev. Lett. 118:147801
    [Google Scholar]
  52. 52.  Broennimann C, Eikenberry EF, Henrich B, Horisberger R, Huelsen G et al. 2006. The PILATUS 1M detector. J. Synchrotron Radiat. 13:120–30
    [Google Scholar]
  53. 53.  Johnson I, Bergamaschi A, Buitenhuis J, Dinapoli R, Greiffenberg D et al. 2012. Capturing dynamics with Eiger, a fast-framing X-ray detector. J. Synchrotron Radiat. 19:1001–5
    [Google Scholar]
  54. 54.  Pennicard D, Lange S, Smoljanin S, Hirsemann H, Graafsma H 2012. LAMBDA—Large Area Medipix3-Based Detector Array. J. Instrum. 7:C11009
    [Google Scholar]
  55. 55.  Chen M 2011. A brief overview of bulk metallic glasses. NPG Asia Mater 3:82–90
    [Google Scholar]
  56. 56.  Schroers J 2013. Bulk metallic glasses. Phys. Today 66:32–37
    [Google Scholar]
  57. 57.  Byrne CJ, Eldrup M 2008. Bulk metallic glasses. Science 321:502–3
    [Google Scholar]
  58. 58.  Martinez L-M, Angell CA 2001. A thermodynamic connection to the fragility of glass-forming liquids. Nature 410:663–67
    [Google Scholar]
  59. 59.  Berthier L, Biroli G, Bouchaud J-P, Cipelletti L, Masri DE et al. 2005. Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310:1797–800
    [Google Scholar]
  60. 60.  Ruta B, Baldi G, Chushkin Y, Ruffle B, Cristofolini L et al. 2014. Revealing the fast atomic motion of network glasses. Nat. Commun. 5:3939
    [Google Scholar]
  61. 61.  Giordano VM, Ruta B 2016. Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging. Nat. Commun. 7:10344
    [Google Scholar]
  62. 62.  Ruta B, Chushkin Y, Monaco G, Cipelletti L, Pineda E et al. 2012. Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy. Phys. Rev. Lett. 109:165701
    [Google Scholar]
  63. 63.  Evenson Z, Ruta B, Hechler S, Stolpe M, Pineda E et al. 2015. X-ray photon correlation spectroscopy reveals intermittent aging dynamics in a metallic glass. Phys. Rev. Lett. 115:175701
    [Google Scholar]
  64. 64.  Thurn-Albrecht T, Steffen W, Patkowski A, Meier G, Fischer EW et al. 1996. Photon correlation spectroscopy of colloidal palladium using a coherent X-ray beam. Phys. Rev. Lett. 77:5437–40
    [Google Scholar]
  65. 65.  Lal J, Abernathy D, Auvray L, Diat O, Grübel G 2001. Dynamics and correlations in magnetic colloidal systems studied by X-ray photon correlation spectroscopy. Eur. Phys. J. E 4:263–71
    [Google Scholar]
  66. 66.  Autenrieth T, Robert A, Wagner J, Grübel G 2007. The dynamic behavior of magnetic colloids in suspension. J. Appl. Crystallogr. 40:S250–53
    [Google Scholar]
  67. 67.  Fluerasu A, Moussaïd A, Madsen A, Schofield A 2007. Slow dynamics and aging in colloidal gels studied by X-ray photon correlation spectroscopy. Phys. Rev. E 76:010401(R)
    [Google Scholar]
  68. 68.  Trappe V, Pitard E, Ramos L, Robert A, Bissig H, Cipelletti L 2007. Investigation of q-dependent dynamical heterogeneity in a colloidal gel by X-ray photon correlation spectroscopy. Phys. Rev. E 76:051404
    [Google Scholar]
  69. 69.  Robert A, Wagner J, Haertl W, Autenrieth T, Grübel G 2008. Dynamics in dense suspensions of charge-stabilized colloidal particles. Eur. Phys. J. E 25:77–81
    [Google Scholar]
  70. 70.  Guo HY, Ramakrishnan S, Harden JL, Leheny RL 2010. Connecting nanoscale motion and rheology of gel-forming colloidal suspensions. Phys. Rev. E 81:050401(R)
    [Google Scholar]
  71. 71.  Guo H, Ramakrishnan S, Harden JL, Leheny RL 2011. Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations. J. Chem. Phys. 135:154903
    [Google Scholar]
  72. 72.  Spannuth M, Mochrie SGJ, Peppin SSL, Wettlaufer JS 2011. Dynamics of colloidal particles in ice. J. Chem. Phys. 135:224706
    [Google Scholar]
  73. 73.  Orsi D, Fluerasu A, Moussaid A, Zontone F, Cristofolini L, Madsen A 2012. Dynamics in dense hard-sphere colloidal suspensions. Phys. Rev. E 85:011402
    [Google Scholar]
  74. 74.  Westermeier F, Fischer B, Roseker W, Grübel G, Naegele G, Heinen M 2012. Structure and short-time dynamics in concentrated suspensions of charged colloids. J. Chem. Phys. 137:114504
    [Google Scholar]
  75. 75.  Angelini R, Zulian L, Fluerasu A, Madsen A, Ruocco G, Ruzicka B 2013. Dichotomic aging behaviour in a colloidal glass. Soft Matter 9:10955–59
    [Google Scholar]
  76. 76.  Zhang F, Allen AJ, Levine LE, Ilavsky J, Long GG 2013. Structure and dynamics studies of concentrated micrometer-sized colloidal suspensions. Langmuir 29:1379–87
    [Google Scholar]
  77. 77.  Angelini R, Madsen A, Fluerasu A, Ruocco G, Ruzicka B 2014. Aging behavior of the localization length in a colloidal glass. Colloids Surf. A Physicochem. Eng. Asp. 460:118–22
    [Google Scholar]
  78. 78.  Angelini R, Zaccarelli E, Marques FAD, Sztucki M, Fluerasu A et al. 2014. Glass-glass transition during aging of a colloidal clay. Nat. Commun. 5:4049
    [Google Scholar]
  79. 79.  Marques FAD, Angelini R, Zaccarelli E, Farago B, Ruta B et al. 2015. Structural and microscopic relaxations in a colloidal glass. Soft Matter 11:466–71
    [Google Scholar]
  80. 80.  Pusey PN 1991. Colloidal suspensions. Liquids, Freezing and the Glass Transition JP Hansen, D Levesque, J Zinn-Justin 763–942 Amsterdam: Elsevier
    [Google Scholar]
  81. 81.  de Gennes P-G 1979. Scaling Concepts in Polymer Physics Ithaca, NY: Cornell Univ. Press
  82. 82.  Hunter GL, Weeks ER 2012. The physics of the colloidal glass transition. Rep. Prog. Phys. 75:066501
    [Google Scholar]
  83. 83.  Lumma D, Lurio LB, Borthwick MA, Falus P, Mochrie SGJ 2000. Structure and dynamics of concentrated dispersions of polystyrene latex spheres in glycerol: static and dynamic X-ray scattering. Phys. Rev. E 62:8258–69
    [Google Scholar]
  84. 84.  Beysens D, Narayanan T 1999. Wetting-induced aggregation of colloids. J. Stat. Phys. 95:997–1008
    [Google Scholar]
  85. 85.  Pontoni D, Narayanan T, Petit JM, Grübel G, Beysens D 2003. Microstructure and dynamics near an attractive colloidal glass transition. Phys. Rev. Lett. 90:188301
    [Google Scholar]
  86. 86.  Lu XH, Mochrie SGJ, Narayanan S, Sandy AR, Sprung M 2008. How a liquid becomes a glass both on cooling and on heating. Phys. Rev. Lett. 100:045701
    [Google Scholar]
  87. 87.  Lu XH, Mochrie SGJ, Narayanan S, Sandy AR, Sprung M 2010. Temperature-dependent structural arrest of silica colloids in a water-lutidine binary mixture. Soft Matter 6:6160–77
    [Google Scholar]
  88. 88.  Falus P, Borthwick MA, Mochrie SGJ 2004. Fast CCD camera for X-ray photon correlation spectroscopy and time-resolved X-ray scattering and imaging. Rev. Sci. Instrum. 75:4383–400
    [Google Scholar]
  89. 89.  Götze W, Sperl M 2002. Logarithmic relaxation in glass-forming systems. Phys. Rev. E 66:011405
    [Google Scholar]
  90. 90.  Cipelletti L, Manley S, Ball RC, Weitz DA 2000. Universal aging features in the restructuring of fractal colloidal gels. Phys. Rev. Lett. 84:102275–78
    [Google Scholar]
  91. 91.  Bouchaud JP, Pitard E 2001. Anomalous dynamical light scattering in soft glassy gels. Eur. Phys. J. E 6:231–36
    [Google Scholar]
  92. 92.  Akcora P, Kumar SK, Moll J, Lewis S, Schadler LS et al. 2010. “Gel-like” mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43:1003–10
    [Google Scholar]
  93. 93.  Chen XM, Thampy V, Mazzoli C, Barbour AM, Miao H et al. 2016. Remarkable stability of charge density wave order in La1.875Ba0.125CuO4. Phys. Rev. Lett. 117:167001
    [Google Scholar]
  94. 94.  Evans PG, Isaacs ED, Aeppli G, Cai Z, Lai B 2002. X-ray microdiffraction images of antiferromagnetic domain evolution in chromium. Science 295:55571042–45
    [Google Scholar]
  95. 95.  Tripathi A, Mohanty J, Dietze SH, Shpyrko OG, Shipton E et al. 2011. Dichroic coherent diffractive imaging. PNAS 108:13393–98
    [Google Scholar]
  96. 96.  Parkin SS, Hayashi M, Thomas L 2008. Magnetic domain-wall racetrack memory. Science 320:190–94
    [Google Scholar]
  97. 97.  Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP 2005. Magnetic domain-wall logic. Science 309:1688–92
    [Google Scholar]
  98. 98.  Malik A, Sandy AR, Lurio LB, Stephenson GB, Mochrie SGJ et al. 1998. Coherent X-ray study of fluctuations during domain coarsening. Phys. Rev. Lett. 81:5832–35
    [Google Scholar]
  99. 99.  Bikondoa O 2017. On the use of two-time correlation functions for X-ray photon correlation spectroscopy data analysis. J. Appl. Crystallogr. 50:357–68
    [Google Scholar]
  100. 100.  Bonn D, Kellay H, Tanaka H, Wegdam G, Meunier J 1999. Laponite: What is the difference between a gel and a glass?. Langmuir 15:227534–36
    [Google Scholar]
  101. 101.  Zaccarelli E 2007. Colloidal gels: equilibrium and non-equilibrium routes. J. Phys. Condens. Matter 19:323101
    [Google Scholar]
  102. 102.  Zhang Q, Dufresne EM, Grybos P, Kmon P, Maj P et al. 2016. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time. J. Synchrotron Radiat. 23:679–84
    [Google Scholar]
  103. 103.  Grybos P, Kmon P, Maj P, Szczygiel R 2016. 32k channel readout IC for single photon counting pixel detectors with 75 μm pitch, dead time of 85 ns, 9 e offset spread and 2% rms gain spread. IEEE Trans. Nucl. Sci. 63:1155–61
    [Google Scholar]
  104. 104.  Zhang Q, Bahadur D, Dufresne EM, Grybos P, Kmon P et al. 2017. Dynamic scaling of colloidal gel formation at intermediate concentrations. Phys. Rev. Lett. 119:178006
    [Google Scholar]
  105. 105.  Ramakrishnan S, Chen YL, Schweizer KS, Zukoski CF 2004. Elasticity and clustering in concentrated depletion gels. Phys. Rev. E 70:040401
    [Google Scholar]
  106. 106.  Zia RN, Landrum BJ, Russel WB 2014. A micro-mechanical study of coarsening and rheology of colloidal gels: cage building, cage hopping, and Smoluchowski's ratchet. J. Rheol. 58:51121–57
    [Google Scholar]
  107. 107.  Varga Z, Wang G, Swan J 2015. The hydrodynamics of colloidal gelation. Soft Matter 11:469009–19
    [Google Scholar]
  108. 108.  Ulvestad A, Singer A, Clark JN, Cho HM, Kim JW et al. 2015. Topological defect dynamics in operando battery nanoparticles. Science 348:1344–47
    [Google Scholar]
  109. 109.  Pierce MS, Moore RG, Sorensen LB, Kevan SD, Hellwig O et al. 2003. Quasistatic X-ray speckle metrology of microscopic magnetic return-point memory. Phys. Rev. Lett. 90:175502
    [Google Scholar]
  110. 110.  Rogers MC, Chen K, Andrzejewski L, Narayanan S, Ramakrishnan S et al. 2014. Echoes in X-ray speckles track nanometer-scale plastic events in colloidal gels under shear. Phys. Rev. E 90:062310
    [Google Scholar]
  111. 111.  Ruta B, Baldi G, Monaco G, Chushkin Y 2013. Compressed correlation functions and fast aging dynamics in metallic glasses. J. Chem. Phys. 138:054508
    [Google Scholar]
  112. 112.  Evenson Z, Payes-Playa A, Chushkin Y, di Michiel M, Pineda E, Ruta B 2017. Comparing the atomic and macroscopic aging dynamics in an amorphous and partially crystalline Zr44Ti11Ni10Cu10Be25 bulk metallic glass. J. Mater. Res. 32:2014–21
    [Google Scholar]
  113. 113.  Eriksson M, van der Veen JF, Quitmann C 2014. Diffraction-limited storage rings—a window to the science of tomorrow. J. Synchrotron Radiat. 21:837–42
    [Google Scholar]
  114. 114.  Hettel R 2014. DLSR design and plans: an international overview. J. Synchrotron Radiat. 21:843–55
    [Google Scholar]
  115. 115.  Jakeman E 1973. Photon correlation. Photon Correlation and Light Beating Spectroscopy HZ Cummins, ER Pike 75–149 New York: Plenum
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070317-124334
Loading
/content/journals/10.1146/annurev-matsci-070317-124334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error