- Home
- A-Z Publications
- Annual Review of Materials Research
- Previous Issues
- Volume 48, 2018
Annual Review of Materials Research - Volume 48, 2018
Volume 48, 2018
-
-
First-Principles Calculations of Point Defects for Quantum Technologies
Vol. 48 (2018), pp. 1–26More LessPoint defects in semiconductors and insulators form an exciting system for realizing quantum technologies, including quantum computing, communication, and metrology. Defects provide a platform that combines the environmental isolation necessary to maintain the coherence of quantum states with the ability to perform electrical and optical manipulation. First-principles calculations play a crucial role in identifying, characterizing, and developing defects for quantum applications. We review the first-principles methodologies for calculating the relevant structural, electronic, vibrational, optical, and magnetic properties of defects for quantum technologies. We illustrate the utility and accuracy of these techniques by using examples from the literature. We also point out areas in which further development of the computational techniques is desirable.
-
-
-
First-Principles Statistical Mechanics of Multicomponent Crystals
Vol. 48 (2018), pp. 27–55More LessThe importance of configurational, vibrational, and electronic excitations in crystalline solids of technological interest makes a rigorous treatment of thermal excitations an essential ingredient in first-principles models of materials behavior. This contribution reviews statistical mechanics approaches that connect a crystal's electronic structure to its thermodynamic and kinetic properties. We start with a description of a thermodynamic and kinetic framework for multicomponent crystals that integrates chemistry and mechanics, as well as nonconserved order parameters that track the degree of chemical order and group/subgroup structural distortions. The framework allows for spatial heterogeneities and naturally couples thermodynamics with kinetics. We next survey statistical mechanics approaches that rely on effective Hamiltonians to treat configurational, vibrational, and electronic degrees of freedom within multicomponent crystals. These Hamiltonians, when suitably constructed, are capable of extrapolating first-principles electronic structure calculations within (kinetic) Monte Carlo simulations, thereby enabling first-principles predictions of equilibrium and nonequilibrium materials properties at finite temperature.
-
-
-
Design Considerations for Artificial Water Channel–Based Membranes
Vol. 48 (2018), pp. 57–82More LessAquaporins (AQPs) are naturally occurring water channel proteins. They can facilitate water molecule translocation across cellular membranes with exceptional selectivity and high permeability that are unmatched in synthetic membrane systems. These unique properties of AQPs have led to their use as functional elements in membranes in recent years. However, the intricate nature of AQPs and concerns regarding their stability and processability have encouraged researchers to develop synthetic channels that mimic the structure and properties of AQPs and other biological water-conducting channels. These channels have been termed artificial water channels. This article reviews current progress and provides a historical perspective as well as an outlook toward developing scalable membranes based on artificial water channels.
-
-
-
Recent Advances in Zeolitic Membranes
Vol. 48 (2018), pp. 83–110More LessZeolitic membranes have been an active area of research for at least 25 years. Continuous and creative improvements in the materials chemistry of membrane synthesis and in the understanding and predictability of membrane diffusion and separations have been achieved. Activity continues unabated and has increased with the introduction of new compositions such as metal-organic frameworks and other materials to the field. The economics of implementing today's best zeolitic membranes and the achievable improvements in zeolitic membrane systems are approaching commercial attractiveness, but many significant challenges remain as competing membrane technologies are also advanced.
-
-
-
The Diversity of Layered Halide Perovskites
Vol. 48 (2018), pp. 111–136More LessThe two-dimensional congeners of the well-known three-dimensional perovskites display new properties enabled by their reduced dimensionality. Here, organic molecules separate inorganic sheets, affording the properties of both discrete molecules and extended solids in single, well-defined materials. The choice of organic and inorganic components engenders a large range of structural motifs, which yield diverse properties such as electroluminescence, white-light emission, photoconductivity, porosity, and reactivity. Layered halide perovskites have been known for decades. Their recent resurgence compels us to understand the fundamental studies that set the stage for their current technological relevance. We are not providing a comprehensive review of this vast and rapidly growing field. Instead, we highlight some of the discoveries that have directed current research in this field. We hope to introduce new researchers to layered halide perovskites to bring fresh perspectives to study this venerable family of materials that continue to surprise us today.
-
-
-
Electrochemical and Chemical Insertion for Energy Transformation and Switching
Vol. 48 (2018), pp. 137–165More LessInsertion is a widely utilized process for reversibly changing the stoichiometry of a solid through a chemical or electrochemical stimulus. Insertion is instrumental to many energy technologies, including batteries, fuel cells, and hydrogen storage, and has been the subject of extensive investigations. More recently, solid-state switching devices utilizing insertion have drawn significant interest; such devices dynamically switch a material's chemical stoichiometry, changing it from one state to another. This review illustrates the fundamental properties and mechanisms of insertion, including reaction, diffusion, and phase transformation, and discusses recent developments in characterization in these fields. We also review new classes of recently demonstrated insertion devices, which reversibly switch mechanical and electronic properties, and show how the fundamental mechanisms of insertion can be used to design improved switching devices.
-
-
-
Hard X-Ray Photon Correlation Spectroscopy Methods for Materials Studies
Vol. 48 (2018), pp. 167–190More LessUnderstanding and designing sophisticated new materials require measurements of not only their average structural properties but also their dynamic behavior. X-ray photon correlation spectroscopy (XPCS) provides this information by characterizing fluctuations in condensed matter across a broad range of length scales and timescales. Over the past two decades, XPCS has provided a wide variety of results in the study of materials properties. In this review, we provide an overview of coherence, photon correlation spectroscopy, and the dynamic structure factor as well as information on the mechanics of XPCS experiments. We highlight the impact that this infrastructure has had on materials research and the bright future that is forthcoming with the anticipated upgrade of many third-generation synchrotron sources to fourth-generation multibend achromat sources.
-
-
-
High-Performance Piezoelectric Crystals, Ceramics, and Films
Vol. 48 (2018), pp. 191–217More LessPiezoelectric materials convert between electrical and mechanical energies such that an applied stress induces a polarization and an applied electric field induces a strain. This review describes the fundamental mechanisms governing the piezoelectric response in high-performance piezoelectric single crystals, ceramics, and thin films. While there are a number of useful piezoelectric small molecules and polymers, the article focuses on inorganic materials displaying the piezoelectric effect. Piezoelectricity is first defined, and the mechanisms that contribute are discussed in terms of the key crystal structures for materials with large piezoelectric coefficients. Exemplar systems are then discussed and compared for the cases of single crystals, bulk ceramics, and thin films.
-
-
-
High-Temperature Dielectric Materials for Electrical Energy Storage
Vol. 48 (2018), pp. 219–243More LessThe demand for high-temperature dielectric materials arises from numerous emerging applications such as electric vehicles, wind generators, solar converters, aerospace power conditioning, and downhole oil and gas explorations, in which the power systems and electronic devices have to operate at elevated temperatures. This article presents an overview of recent progress in the field of nanostructured dielectric materials targeted for high-temperature capacitive energy storage applications. Polymers, polymer nanocomposites, and bulk ceramics and thin films are the focus of the materials reviewed. Both commercial products and the latest research results are covered. While general design considerations are briefly discussed, emphasis is placed on material specifications oriented toward the intended high-temperature applications, such as dielectric properties, temperature stability, energy density, and charge-discharge efficiency. The advantages and shortcomings of the existing dielectric materials are identified. Challenges along with future research opportunities are highlighted at the end of this review.
-
-
-
Materials for Gamma-Ray Spectrometers: Inorganic Scintillators
Vol. 48 (2018), pp. 245–277More LessScintillation detectors constitute an important branch of radiation detection instrumentation. The discovery of the inorganic scintillating compound thallium-activated sodium iodide (NaI:Tl) in 1948 was key to the production of the first practical gamma-ray spectrometer. Since that time, numerous inorganic scintillators have been discovered and studied. Many of the more successful inorganic scintillators are described, including discussion of their properties and performance, in this article.
-
-
-
Optical Metasurfaces: Progress and Applications
Vol. 48 (2018), pp. 279–302More LessA metasurface is an artificial nanostructured interface that has subwavelength thickness and that manipulates light by spatially arranged meta-atoms—fundamental building blocks of the metasurface. Those meta-atoms, usually consisting of plasmonic or dielectric nanoantennas, can directly change light properties such as phase, amplitude, and polarization. As a derivative of three-dimensional (3D) metamaterials, metasurfaces have been emerging to tackle some of the critical challenges rooted in traditional metamaterials, such as high resistive loss from resonant plasmonic components and fabrication requirements for making 3D nanostructures. In the past few years, metasurfaces have achieved groundbreaking progress, providing unparalleled control of light, including constructing arbitrary wave fronts and realizing active and nonlinear optical effects. This article provides a systematic review of the current progress in and applications of optical metasurfaces, as well as an overview of metasurface building blocks based on plasmonic resonances, Mie resonance, and the Pancharatnam-Berry phase.
-
-
-
Property Engineering in Perovskites via Modification of Anion Chemistry
Vol. 48 (2018), pp. 303–326More LessPerovskite-type oxides have proven to be a versatile class of compounds with systematic study of their structure and various properties. Further structural variations and properties can be added by adding a second anionic species other than oxide, such as hydride, fluoride, nitride, or others. The different charge, covalency, size, and new modes of local coordination offer convenient ways to further control carrier doping, magnetism, conductivity, and even chemical reactivity. In this review we examine the recent work concerning various mixed-anion perovskites and conclude with potential new directions for the further development of these materials.
-
-
-
Simulation of Crystallization of Biominerals
Vol. 48 (2018), pp. 327–352More LessBiominerals are crucial materials that play a vital role in many forms of life. Understanding the various steps through which ions in aqueous environment associate to form increasingly structured particles that eventually transform into the final crystalline or amorphous poly(a)morph in the presence of biologically active molecules is therefore of great significance. In this context, computer modeling is now able to provide an accurate atomistic picture of the dynamics and thermodynamics of possible association events in solution, as well as to make predictions as to particle stability and possible alternative nucleation pathways, as a complement to experiment. This review provides a general overview of the most significant computational methods and of their achievements in this field, with a focus on calcium carbonate as the most abundant biomineral.
-
Previous Volumes
-
Volume 54 (2024)
-
Volume 53 (2023)
-
Volume 52 (2022)
-
Volume 51 (2021)
-
Volume 50 (2020)
-
Volume 49 (2019)
-
Volume 48 (2018)
-
Volume 47 (2017)
-
Volume 46 (2016)
-
Volume 45 (2015)
-
Volume 44 (2014)
-
Volume 43 (2013)
-
Volume 42 (2012)
-
Volume 41 (2011)
-
Volume 40 (2010)
-
Volume 39 (2009)
-
Volume 38 (2008)
-
Volume 37 (2007)
-
Volume 36 (2006)
-
Volume 35 (2005)
-
Volume 34 (2004)
-
Volume 33 (2003)
-
Volume 32 (2002)
-
Volume 31 (2001)
-
Volume 30 (2000)
-
Volume 29 (1999)
-
Volume 28 (1998)
-
Volume 27 (1997)
-
Volume 26 (1996)
-
Volume 25 (1995)
-
Volume 24 (1994)
-
Volume 23 (1993)
-
Volume 22 (1992)
-
Volume 21 (1991)
-
Volume 20 (1990)
-
Volume 19 (1989)
-
Volume 18 (1988)
-
Volume 17 (1987)
-
Volume 16 (1986)
-
Volume 15 (1985)
-
Volume 14 (1984)
-
Volume 13 (1983)
-
Volume 12 (1982)
-
Volume 11 (1981)
-
Volume 10 (1980)
-
Volume 9 (1979)
-
Volume 8 (1978)
-
Volume 7 (1977)
-
Volume 6 (1976)
-
Volume 5 (1975)
-
Volume 4 (1974)
-
Volume 3 (1973)
-
Volume 2 (1972)
-
Volume 1 (1971)
-
Volume 0 (1932)