1932

Abstract

Perovskite-type oxides have proven to be a versatile class of compounds with systematic study of their structure and various properties. Further structural variations and properties can be added by adding a second anionic species other than oxide, such as hydride, fluoride, nitride, or others. The different charge, covalency, size, and new modes of local coordination offer convenient ways to further control carrier doping, magnetism, conductivity, and even chemical reactivity. In this review we examine the recent work concerning various mixed-anion perovskites and conclude with potential new directions for the further development of these materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070317-124415
2018-07-01
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070317-124415.html?itemId=/content/journals/10.1146/annurev-matsci-070317-124415&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Mitchell RH 2002. Perovskites: Modern and Ancient Thunder Bay, Can.: Almaz Press
    [Google Scholar]
  2. 2.  Ebbinghaus SG, Abicht H-P, Dronskowski R, Müller T, Reller A, Weidenkaff A 2009. Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties. Prog. Solid State Chem. 37:2173–205
    [Google Scholar]
  3. 3.  Fuertes A 2012. Chemistry and applications of oxynitride perovskites. J. Mater. Chem. 22:83293–99
    [Google Scholar]
  4. 4.  Tsujimoto Y, Yamaura K, Takayama-Muromachi E 2012. Oxyfluoride chemistry of layered perovskite compounds. Appl. Sci. 2:1206–19
    [Google Scholar]
  5. 5.  Pauling L 1929. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51:41010–26
    [Google Scholar]
  6. 6.  Shannon RD, Prewitt CT 1969. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25:5925–46
    [Google Scholar]
  7. 7.  Messer CE 1970. Hydrides versus fluorides: structural comparisons. J. Solid State Chem. 2:2144–55
    [Google Scholar]
  8. 8.  Bang J, Matsuishi S, Hiraka H, Fujisaki F, Otomo T et al. 2014. Hydrogen ordering and new polymorph of layered perovskite oxyhydrides: Sr2VO4−xHx. J. Am. Chem. . Soc 136:207221–24
    [Google Scholar]
  9. 9.  Yang M, Oró-Solé J, Rodgers JA, Jorge AB, Fuertes A, Attfield JP 2011. Anion order in perovskite oxynitrides. Nat. Chem. 3:147–52
    [Google Scholar]
  10. 10.  Attfield JP 2013. Principles and applications of anion order in solid oxynitrides. Cryst. Growth Des. 13:104623–29
    [Google Scholar]
  11. 11.  Fuertes A 2006. Prediction of anion distributions using Pauling's second rule. Inorg. Chem. 45:249640–42
    [Google Scholar]
  12. 12.  Kobayashi G, Hinuma Y, Matsuoka S, Watanabe A, Iqbal M et al. 2016. Pure H conduction in oxyhydrides. Science 351:62791314–17
    [Google Scholar]
  13. 13.  Chamberlain JM, Albrecht TA, Lesage J, Sauvage F, Stern CL, Poeppelmeier KR 2010. Crystal growth of Ag3MOxF6−x (M=V, x=2; M=Mo, x=3). Cryst. Growth Des. 10:114868–73
    [Google Scholar]
  14. 14.  Pinlac RAF, Stern CL, Poeppelmeier KR 2011. New layered oxide-fluoride perovskites: KNaNbOF5 and KNaMO2F4 (M=Mo6+, W6+). Crystals 1:13–14
    [Google Scholar]
  15. 15.  Molokeev MS, Misyul’ SV, Fokina VD, Kocharova AG, Aleksandrov KS 2011. Structure transformations during phase transitions in the K3WO3F3 oxyfluoride. Phys. Solid State 53:4834–39
    [Google Scholar]
  16. 16.  Fry AM, Woodward PM 2013. Structures of α-K3MoO3F3 and α-Rb3MoO3F3: ferroelectricity from anion ordering and noncooperative octahedral tilting. Cryst. Growth Des. 13:125404–10
    [Google Scholar]
  17. 17.  Ishikawa H, Munao I, Bode BE, Hiroi Z, Lightfoot P 2015. Na2MoO2−δF4+δ—a perovskite with a unique combination of atomic orderings and octahedral tilts. Chem. Commun. 51:8415469–71
    [Google Scholar]
  18. 18.  Günther E, Hagenmayer R, Jansen M 2000. Strukturuntersuchungen an den Oxidnitriden SrTaO2N, CaTaO2N und LaTaON2 mittels Neutronen- und Röntgenbeugung. Z. Anorg. Allg. Chem. 626:71519–25
    [Google Scholar]
  19. 19.  Logvinovich D, Ebbinghaus SG, Reller A 2010. Synthesis, crystal structure and optical properties of LaNbON2. Z. Anorg. Allg. Chem. 636:6905–12
    [Google Scholar]
  20. 20.  Oró-Solé J, Clark L, Bonin W, Attfield JP, Fuertes A 2013. Anion-ordered chains in a d1 perovskite oxynitride: NdVO2N. Chem. Commun. 49:242430–32
    [Google Scholar]
  21. 21.  Goto Y, Tassel C, Noda Y, Hernandez O, Pickard CJ et al. 2017. Pressure-stabilized cubic perovskite oxyhydride BaScO2H. Inorg. Chem. 56:94840–4845
    [Google Scholar]
  22. 22.  Denis Romero F, Leach A, Möller JS, Foronda F, Blundell SJ, Hayward MA 2014. Strontium vanadium oxide-hydrides: “square-planar” two-electron phases. Angew. Chem. Int. Ed. Engl. 53:297556–59
    [Google Scholar]
  23. 23.  Diot N, Marchand R, Haines J, Léger JM, Macaudiere P, Hull S 1999. Crystal structure determination of the oxynitride Sr2TaO3N. J. Solid State Chem. 146:2390–93
    [Google Scholar]
  24. 24.  Lee E, Kim S-J, Paik Y, Kim Y-I 2013. Preparation and neutron diffraction study of Dion-Jacobson type oxynitrides LiLaTa2O7−3xN2x (x=0.09, 0.29). Mater. Res. Bull. 48:2813–18
    [Google Scholar]
  25. 25.  Kissick JL, Greaves C, Edwards PP, Cherkashenko VM, Kurmaev EZ et al. 1997. Synthesis, structure, and XPS characterization of the stoichiometric phase Sr2CuO2F2. Phys. Rev. B Condens. Matter Mater. Phys. 56:52831–35
    [Google Scholar]
  26. 26.  Hiroi Z, Kobayashi N, Takano M 1994. Probable hole-doped superconductivity without apical oxygens in (Ca, Na)2CuO2CI2. Nature 371:6493139–41
    [Google Scholar]
  27. 27.  Knee CS, Weller MT 2003. Synthesis and structure of new layered copper oxide iodides, Sr2CuO2I2 and Sr2Cu3O4I2. J. Mater. Chem. 13:71507–9
    [Google Scholar]
  28. 28.  Al-Mamouri M, Edwards PP, Greaves C, Slaski M 1994. Synthesis and superconducting properties of the strontium copper oxy-fluoride Sr2CuO2F2+δ. Nature 369:6479382–84
    [Google Scholar]
  29. 29.  Knee CS, Weller MT 2004. Neutron diffraction study of crystal structure and antiferromagnetic order in Sr2CoO2X2 (X=Cl, Br). Phys. Rev. B Condens. Matter Mater. Phys. 70:14144406
    [Google Scholar]
  30. 30.  Umezawa N, Janotti A 2016. Controlling the electronic structures of perovskite oxynitrides and their solid solutions for photocatalysis. ChemSusChem 9:91027–31
    [Google Scholar]
  31. 31.  Hector AL, Hutchings JA, Needs RL, Thomas MF, Weller MT 2001. Structural and Mössbauer study of Sr2FeO3X (X=F, Cl, Br) and the magnetic structure of Sr2FeO3F. J. Mater. Chem. 11:2527–32
    [Google Scholar]
  32. 32.  Knee CS, Zhukov AA, Weller MT 2002. Crystal structures and magnetic properties of the manganese oxide chlorides Sr2MnO3Cl and Sr4Mn3O8−yCl2. Chem. Mater. 14:104249–55
    [Google Scholar]
  33. 33.  Loureiro SM, Felser C, Huang Q, Cava RJ 2000. Refinement of the crystal structures of strontium cobalt oxychlorides by neutron powder diffraction. Chem. Mater. 12:103181–85
    [Google Scholar]
  34. 34.  Ackerman JF 1991. The preparation and structures of the alkaline earth iron oxyhalides. J. Solid State Chem. 92:2496–513
    [Google Scholar]
  35. 35.  Yang T, Sun J, Croft M, Nowik I, Ignatov A et al. 2010. Ca4Fe3−xMnxO8−δCl2: a new n=3 Ruddlesden–Popper oxychloride. J. Solid State Chem. 183:61215–20
    [Google Scholar]
  36. 36.  Dixon E, Hayward MA 2010. The topotactic reduction of Sr3Fe2O5Cl2—square planar Fe(II) in an extended oxyhalide. Inorg. Chem. 49:209649–54
    [Google Scholar]
  37. 37.  Denis Romero F, Coyle L, Hayward MA 2012. Structure and magnetism of Sr3Co2O4Cl2—an electronically driven lattice distortion in an oxychloride containing square planar CoII centers. J. Am. Chem. Soc. 134:3815946–52
    [Google Scholar]
  38. 38.  Denis Romero F, Hayward MA 2012. Structure and magnetism of the topotactically reduced oxychloride Sr2Mn2O6.5Cl2. Inorg. Chem. 51:95325–31
    [Google Scholar]
  39. 39.  Ranmohotti KGS, Josepha E, Choi J, Zhang J, Wiley JB 2011. Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties. Adv. Mater. 23:4442–60
    [Google Scholar]
  40. 40.  Castelli IE, Thygesen KS, Jacobsen KW 2015. Calculated optical absorption of different perovskite phases. J. Mater. Chem. A Mater. Energy Sustain. 3:2312343–49
    [Google Scholar]
  41. 41.  Balaz S, Porter SH, Woodward PM, Brillson LJ 2013. Electronic structure of tantalum oxynitride perovskite photocatalysts. Chem. Mater. 25:163337–43
    [Google Scholar]
  42. 42.  Jansen M, Letschert HP 2000. Inorganic yellow-red pigments without toxic metals. Nature 404:6781980–82
    [Google Scholar]
  43. 43.  Cheviré F, Tessier F, Marchand R 2006. Optical properties of the perovskite solid solution LaTiO2N–ATiO3 (A=Sr, Ba). Eur. J. Inorg. Chem. 2006:61223–30
    [Google Scholar]
  44. 44.  Takata T, Domen K 2017. Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting. Dalton Trans 46:3210529–44
    [Google Scholar]
  45. 45.  Pokrant S, Maegli AE, Chiarello GL, Weidenkaff A 2013. Perovskite-related oxynitrides in photocatalysis. Chimia 67:3162–67
    [Google Scholar]
  46. 46.  Siritanaratkul B, Maeda K, Hisatomi T, Domen K 2011. Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands. ChemSusChem 4:174–78
    [Google Scholar]
  47. 47.  Higashi M, Abe R, Takata T, Domen K 2009. Photocatalytic overall water splitting under visible light using ATaO2N (A=Ca, Sr, Ba) and WO3 in a IO3/I shuttle redox mediated system. Chem. Mater. 21:81543–49
    [Google Scholar]
  48. 48.  Pan C, Takata T, Nakabayashi M, Matsumoto T, Shibata N et al. 2015. A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem. Int. Ed. Engl. 127:102995–59
    [Google Scholar]
  49. 49.  Aguiar R, Kalytta A, Reller A, Weidenkaff A, Ebbinghaus SG 2008. Photocatalytic decomposition of acetone using LaTi(O,N)3 nanoparticles under visible light irradiation. J. Mater. Chem. 18:364260–65
    [Google Scholar]
  50. 50.  Kawashima K, Hojamberdiev M, Wagata H, Zahedi E, Yubuta K et al. 2016. Two-step synthesis and visible-light-driven photocatalytic water oxidation activity of AW(O,N)3 (A=Sr, La, Pr, Nd and Eu) perovskites. J. Catal. 344:29–37
    [Google Scholar]
  51. 51.  Ishikawa A, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K 2002. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 124:4513547–53
    [Google Scholar]
  52. 52.  Hirai D, Climent-Pascual E, Cava RJ 2011. Superconductivity in WO2.6F0.4 synthesized by reaction of WO3 with Teflon. Phys. Rev. B Condens. Matter Mater. Phys. 84:17174519
    [Google Scholar]
  53. 53.  Kobayashi Y, Tian M, Eguchi M, Mallouk TE 2009. Ion-exchangeable, electronically conducting layered perovskite oxyfluorides. J. Am. Chem. Soc. 131:289849–55
    [Google Scholar]
  54. 54.  Kobayashi Y, Hernandez OJ, Sakaguchi T, Yajima T, Roisnel T et al. 2012. An oxyhydride of BaTiO3 exhibiting hydride exchange and electronic conductivity. Nat. Mater. 11:6507–11
    [Google Scholar]
  55. 55.  Bouilly G, Yajima T, Terashima T, Yoshimune W, Nakano K et al. 2015. Electrical properties of epitaxial thin films of oxyhydrides ATiO3−xHx (A=Ba and Sr). Chem. Mater. 27:186354–59
    [Google Scholar]
  56. 56.  Sakaguchi T, Kobayashi Y, Yajima T, Ohkura M, Tassel C et al. 2012. Oxyhydrides of (Ca,Sr,Ba)TiO3 perovskite solid solutions. Inorg. Chem. 51:2111371–76
    [Google Scholar]
  57. 57.  Yajima T, Kitada A, Kobayashi Y, Sakaguchi T, Bouilly G et al. 2012. Epitaxial thin films of ATiO3−xHx (A=Ba, Sr, Ca) with metallic conductivity. J. Am. Chem. Soc. 134:218782–85
    [Google Scholar]
  58. 58.  Yamamoto T, Yoshii R, Bouilly G, Kobayashi Y, Fujita K et al. 2015. An antiferro-to-ferromagnetic transition in EuTiO3−xHx induced by hydride substitution. Inorg. Chem. 54:41501–7
    [Google Scholar]
  59. 59.  Kolodiazhnyi T 2008. Insulator-metal transition and anomalous sign reversal of the dominant charge carriers in perovskite BaTiO3−δ. Phys. Rev. B Condens. Matter Mater. Phys. 78:4045107
    [Google Scholar]
  60. 60.  Page K, Kolodiazhnyi T, Proffen T, Cheetham AK, Seshadri R 2008. Local structural origins of the distinct electronic properties of Nb-substituted SrTiO3 and BaTiO3. Phys. Rev. Lett. 101:20205502
    [Google Scholar]
  61. 61.  Antoine P, Marchand R, Laurent Y, Michel C, Raveau B 1988. On the electrical properties of the perovskites LnWOxN3−x. Mater. Res. Bull. 23:7953–57
    [Google Scholar]
  62. 62.  Antoine P, Assabaa R, L'haridon P, Marchand R, Laurent Y et al. 1989. Transport properties of the new perovskite-type LaVO3−xNx oxynitrides. Mater. Sci. Eng. B 5:143–46
    [Google Scholar]
  63. 63.  Le Paven-Thivet C, Le Gendre L, Le Castrec J, Cheviré F, Tessier F, Pinel J 2007. Oxynitride perovskite LaTiOxNy thin films deposited by reactive sputtering. Prog. Solid State Chem. 35:2299–308
    [Google Scholar]
  64. 64.  Aguiar R, Logvinovich D, Weidenkaff A, Karl H, Schneider CW et al. 2008. Physical properties of (La,Sr)Ti(O,N)3 thin films grown by pulsed laser deposition. Mater. Res. Bull. 43:61376–83
    [Google Scholar]
  65. 65.  Aguiar R, Weidenkaff A, Schneider CW, Reller A, Ebbinghaus SG 2007. Synthesis and properties of oxynitrides (La,Sr)Ti(O,N)3 thin films. Prog. Solid State Chem. 35:2291–98
    [Google Scholar]
  66. 66.  Logvinovich D, Aguiar R, Robert R, Trottmann M, Ebbinghaus SG et al. 2007. Synthesis, Mo-valence state, thermal stability and thermoelectric properties of SrMoO3−xNx (x>1) oxynitride perovskites. J. Solid State Chem. 180:102649–54
    [Google Scholar]
  67. 67.  Lekshmi IC, Gayen A, Hegde MS 2005. The effect of strain on nonlinear temperature dependence of resistivity in SrMoO3 and SrMoO3−xNx films. Mater. Res. Bull. 40:193–104
    [Google Scholar]
  68. 68.  Logvinovich D, Hejtmánek J, Knižek K, Maryško M, Homazava N et al. 2009. On the magnetism, thermal- and electrical transport of SrMoO2N. J. Appl. Phys. 105:2023522
    [Google Scholar]
  69. 69.  Jorge AB, Oró-Solé J, Bea AM, Mufti N, Palstra TTM et al. 2008. Large coupled magnetoresponses in EuNbO2N. J. Am. Chem. Soc. 130:3812572–73
    [Google Scholar]
  70. 70.  Kusmartseva A, Yang M, Oró-Solé J, Bea AM, Fuertes A, Attfield JP 2009. Large magnetoresistances and non-Ohmic conductivity in EuWO1+xN2−x. Appl. Phys. Lett. 95:2022110
    [Google Scholar]
  71. 71.  Yang M, Oró-Solé J, Kusmartseva A, Fuertes A, Attfield JP 2010. Electronic tuning of two metals and colossal magnetoresistances in EuWO1+xN2−x perovskites. J. Am. Chem. Soc. 132:134822–29
    [Google Scholar]
  72. 72.  Slater PR 2002. Poly(vinylidene fluoride) as a reagent for the synthesis of K2NiF4-related inorganic oxide fluorides. J. Fluor. Chem. 117:143–45
    [Google Scholar]
  73. 73.  Rüdorff W, Krug D 1964. Alkaliniob(IV)-dioxidfluoride. Z. Anorg. Allg. Chem. 329:1211–17
    [Google Scholar]
  74. 74.  Chamberland BL 1971. A new oxyfluoride perovskite, KTiO2F. Mater. Res. Bull. 6:5311–15
    [Google Scholar]
  75. 75.  Katsumata T, Nakashima M, Umemoto H, Inaguma Y 2008. Synthesis of the novel perovskite-type oxyfluoride PbScO2F under high pressure and high temperature. J. Solid State Chem. 181:102737–40
    [Google Scholar]
  76. 76.  Inaguma Y, Greneche J-M, Crosnier-Lopez M-P, Katsumata T, Calage Y, Fourquet J-L 2005. Structure and Mössbauer studies of F−O ordering in antiferromagnetic perovskite PbFeO2F. Chem. Mater. 17:61386–90
    [Google Scholar]
  77. 77.  Lobanov MV, Abakumov AM, Sidorova AV, Rozova MG, D'yachenko OG et al. 2002. Synthesis and investigation of novel Mn-based oxyfluoride Sr2Mn2O5−xF1+x. Solid State Sci 4:119–22
    [Google Scholar]
  78. 78.  Alekseeva AM, Abakumov AM, Rozova MG, Antipov EV, Hadermann J 2004. Synthesis and crystal structure of the Sr2MnGa(O,F)6 oxyfluorides. J. Solid State Chem. 177:3731–38
    [Google Scholar]
  79. 79.  Sullivan E, Greaves C 2012. Fluorine insertion reactions of the brownmillerite materials Sr2Fe2O5, Sr2CoFeO5, and Sr2Co2O5. Mater. Res. Bull. 47:92541–46
    [Google Scholar]
  80. 80.  El Shinawi H, Marco JF, Berry FJ, Greaves C 2010. LaSrCoFeO5, LaSrCoFeO5F and LaSrCoFeO5.5: new La-Sr-Co-Fe perovskites. J. Mater. Chem. 20:163253–59
    [Google Scholar]
  81. 81.  Berry FJ, Heap R, Helgason Ö, Moore EA, Shim S et al. 2008. Magnetic order in perovskite-related SrFeO2F. J. Phys. Condens. Matter 20:21215207
    [Google Scholar]
  82. 82.  Berry FJ, Coomer FC, Hancock C, Helgason Ö, Moore EA et al. 2011. Structure and magnetic properties of the cubic oxide fluoride BaFeO2F. J. Solid State Chem. 184:61361–66
    [Google Scholar]
  83. 83.  Clemens O, Wright AJ, Berry FJ, Smith RI, Slater PR 2013. Synthesis, structural and magnetic characterisation of the fully fluorinated compound 6H-BaFeO2F. J. Solid State Chem. 198:262–69
    [Google Scholar]
  84. 84.  Clemens O, Berry FJ, Bauer J, Wright AJ, Knight KS, Slater PR 2013. Synthesis, structural and magnetic characterisation of the fluorinated compound 15R-BaFeO2F. J. Solid State Chem. 203:218–26
    [Google Scholar]
  85. 85.  Clemens O, Haberkorn R, Slater PR, Beck HP 2010. Synthesis and characterisation of the SrxBa1−xFeO3−y-system and the fluorinated phases SrxBa1−xFeO2F. Solid State Sci 12:81455–63
    [Google Scholar]
  86. 86.  Berry FJ, Bowfield AF, Coomer FC, Jackson SD, Moore EA et al. 2009. Fluorination of perovskite-related phases of composition SrFe1−xSnxO3−δ. J. Phys. Condens. Matter 21:25256001
    [Google Scholar]
  87. 87.  Clemens O, Kuhn M, Haberkorn R 2011. Synthesis and characterization of the La1−xSrxFeO3−δ system and the fluorinated phases La1−xSrxFeO3−xFx. J. . Solid State Chem 184:112870–76
    [Google Scholar]
  88. 88.  Clemens O, Kruk R, Patterson EA, Loho C, Reitz C et al. 2014. Introducing a large polar tetragonal distortion into Ba-doped BiFeO3 by low-temperature fluorination. Inorg. Chem. 53:2312572–83
    [Google Scholar]
  89. 89.  Tsujimoto Y, Nakano S, Ishimatsu N, Mizumaki M, Kawamura N et al. 2016. Pressure-driven spin crossover involving polyhedral transformation in layered perovskite cobalt oxyfluoride. Sci. Rep. 6:36253
    [Google Scholar]
  90. 90.  Tsujimoto Y, Li JJ, Yamaura K, Matsushita Y, Katsuya Y et al. 2011. New layered cobalt oxyfluoride, Sr2CoO3F. Chem. Commun. 47:113263–65
    [Google Scholar]
  91. 91.  Tsujimoto Y, Sathish CI, Hong K-P, Oka K, Azuma M et al. 2012. Crystal structural, magnetic, and transport properties of layered cobalt oxyfluorides, Sr2CoO3+xF1−x (0 ≤ x ≤ 0.15). Inorg. Chem. 51:84802–9
    [Google Scholar]
  92. 92.  Ou X, Fan F, Li Z, Wang H, Wu H 2016. Spin-state transition induced half metallicity in a cobaltate from first principles. Appl. Phys. Lett. 108:9092402
    [Google Scholar]
  93. 93.  Tsujimoto Y, Sathish CI, Matsushita Y, Yamaura K, Uchikoshi T 2014. New members of layered oxychloride perovskites with square planar coordination: Sr2MO2Cl2 (M=Mn, Ni) and Ba2PdO2Cl2. Chem. Commun. 50:445915–18
    [Google Scholar]
  94. 94.  Su Y, Tsujimoto Y, Miura A, Asai S, Avdeev M et al. 2017. A layered wide-gap oxyhalide semiconductor with an infinite ZnO2 square planar sheet: Sr2ZnO2Cl2. Chem. Commun. 53:273826–29
    [Google Scholar]
  95. 95.  Tsujimoto Y, Yamaura K, Uchikoshi T 2013. Extended Ni(III) oxyhalide perovskite derivatives: Sr2NiO3X (X=F, Cl). Inorg. Chem. 52:1710211–16
    [Google Scholar]
  96. 96.  Tsujimoto Y, Matsushita Y, Hayashi N, Yamaura K, Uchikoshi T 2014. Anion order-to-disorder transition in layered iron oxyfluoride Sr2FeO3F single crystals. Cryst. Growth Des. 14:94278–84
    [Google Scholar]
  97. 97.  Hayward MA, Cussen EJ, Claridge JB, Bieringer M, Rosseinsky MJ et al. 2002. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7. Science 295:55611882–84
    [Google Scholar]
  98. 98.  Bridges CA, Darling GR, Hayward MA, Rosseinsky MJ 2005. Electronic structure, magnetic ordering, and formation pathway of the transition metal oxide hydride LaSrCoO3H0.7. J. Am. Chem. Soc. 127:165996–6011
    [Google Scholar]
  99. 99.  Helps RM, Rees NH, Hayward MA 2010. Sr3Co2O4.33H0.84: an extended transition metal oxide-hydride. Inorg. Chem. 49:2311062–68
    [Google Scholar]
  100. 100.  Tassel C, Goto Y, Watabe D, Tang Y, Lu H et al. 2016. High-pressure synthesis of manganese oxyhydride with partial anion order. Angew. Chem. Int. Ed. Engl. 128:339819–22
    [Google Scholar]
  101. 101.  Katayama T, Chikamatsu A, Yamada K, Shigematsu K, Onozuka T et al. 2016. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films. J. Appl. Phys. 120:8085305
    [Google Scholar]
  102. 102.  Wei Y, Gui H, Li X, Zhao Z, Zhao Y-H, Xie W 2015. The effect of hydrogen ordering on the electronic and magnetic properties of the strontium vanadium oxyhydride. J. Phys. Condens. Matter 27:20206001
    [Google Scholar]
  103. 103.  Tassel C, Goto Y, Kuno Y, Hester J, Green M et al. 2014. Direct synthesis of chromium perovskite oxyhydride with a high magnetic-transition temperature. Angew. Chem. Int. Ed. 53:3910377–80
    [Google Scholar]
  104. 104.  Watanabe A, Kobayashi G, Matsui N, Yonemura M, Kubota A et al. 2017. Ambient pressure synthesis and H conductivity of LaSrLiH2O2. Electrochemistry 85:288–92
    [Google Scholar]
  105. 105.  Fjellvåg ØS, Armstrong J, Sławiński WA, Sjåstad AO 2017. Thermal and structural aspects of the hydride-conducting oxyhydride La2LiHO3 obtained via a halide flux method. Inorg. Chem. 56:1811123–28
    [Google Scholar]
  106. 106.  Nowroozi MA, Wissel K, Rohrer J, Munnangi AR, Clemens O 2017. LaSrMnO4: reversible electrochemical intercalation of fluoride ions in the context of fluoride ion batteries. Chem. Mater. 29:83441–53
    [Google Scholar]
  107. 107.  Gschwind F, Rodriguez-Garcia G, Sandbeck DJS, Gross A, Weil M et al. 2016. Fluoride ion batteries: theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes. J. Fluor. Chem. 182:Suppl. C76–90
    [Google Scholar]
  108. 108.  Berendts S, Eufinger J-P, Valov I, Janek J, Lerch M 2016. Ionic conductivity of low yttria-doped cubic zirconium oxide nitride single crystals. Solid State Ionics 296:Suppl. C42–46
    [Google Scholar]
  109. 109.  Kim Y-I, Woodward PM, Baba-Kishi KZ, Tai CW 2004. Characterization of the structural, optical, and dielectric properties of oxynitride perovskites AMO2N (A=Ba, Sr, Ca; M=Ta, Nb). Chem. Mater. 16:71267–76
    [Google Scholar]
  110. 110.  Kikkawa S, Sun S, Masubuchi Y, Nagamine Y, Shibahara T 2016. Ferroelectric response induced in cis-type anion ordered SrTaO2N oxynitride perovskite. Chem. Mater. 28:51312–17
    [Google Scholar]
  111. 111.  Oka D, Hirose Y, Kamisaka H, Fukumura T, Sasa K et al. 2015. Possible ferroelectricity in perovskite oxynitride SrTaO2N epitaxial thin films. Sci. Rep. 4:1980
    [Google Scholar]
  112. 112.  Yajima T, Takeiri F, Aidzu K, Akamatsu H, Fujita K et al. 2015. A labile hydride strategy for the synthesis of heavily nitridized BaTiO3. Nat. Chem. 7:121017–23
    [Google Scholar]
  113. 113.  Peraudeau G, Ravez J, Hagenmuller P, Arend H 1978. Study of phase transitions in A3MO3F3 compounds (A=K, Rb, Cs; M=Mo, W). Solid State Commun 27:5591–93
    [Google Scholar]
  114. 114.  Péraudeau G, Ravez J, Arend H 1978. Etude des transitions de phases des composes Rb2KMO3F3, Cs2KMO3F3 et Cs2RbMO3F3 (M=Mo, W). Solid State Commun 27:5515–18
    [Google Scholar]
  115. 115.  Fry AM, Woodward PM 2013. Structures of α-K3MoO3F3 and α-Rb3MoO3F3: ferroelectricity from anion ordering and noncooperative octahedral tilting. Cryst. Growth Des. 13:125404–10
    [Google Scholar]
  116. 116.  Tassel C, Kuno Y, Goto Y, Yamamoto T, Brown CM et al. 2015. MnTaO2N: polar LiNbO3-type oxynitride with a helical spin order. Angew. Chem. Int. Ed. 54:2516–21
    [Google Scholar]
  117. 117.  Kuno Y, Tassel C, Fujita K, Batuk D, Abakumov AM et al. 2016. ZnTaO2N: stabilized high-temperature LiNbO3-type structure. J. Am. Chem. Soc. 138:4915950–55
    [Google Scholar]
  118. 118.  Masuda N, Kobayashi Y, Hernandez O 2015. Hydride in BaTiO2.5H0.5: a labile ligand in solid state chemistry. J. Am. Chem. Soc. 137:4815315–21
    [Google Scholar]
  119. 119.  Tang Y, Kobayashi Y, Shitara K, Konishi A, Kuwabara A et al. 2017. On hydride diffusion in transition metal perovskite oxyhydrides investigated via deuterium exchange. Chem. Mater. 29:198187–94
    [Google Scholar]
  120. 120.  Bräuniger T, Müller T, Pampel A, Abicht H-P 2005. Study of oxygen-nitrogen replacement in BaTiO3 by 14N solid-state nuclear magnetic resonance. Chem. Mater. 17:164114–17
    [Google Scholar]
  121. 121.  Endo T, Kobayashi T, Sato T, Shimada M 1990. High pressure synthesis and electrical properties of BaTiO3−xFx. J. Mater. . Sci 25:1619–23
    [Google Scholar]
  122. 122.  Mikita R, Aharen T, Yamamoto T, Takeiri F, Ya T et al. 2016. Topochemical nitridation with anion vacancy–assisted N3−/O2− exchange. J. Am. Chem. Soc. 138:93211–17
    [Google Scholar]
  123. 123.  Benítez JJ, Odriozola JA, Marchand R, Laurent Y, Grange P 1995. Surface basicity of a new family of catalysts: aluminophosphate oxynitride (ALPON). J. Chem. Soc. Faraday Trans. 91:244477–79
    [Google Scholar]
  124. 124.  Xia Y, Mokaya R 2008. Mesoporous MCM-48 aluminosilica oxynitrides: synthesis and characterization of bifunctional solid acid–base materials. J. Phys. Chem. C 112:51455–62
    [Google Scholar]
  125. 125.  Tanaka H, Misono M 2001. Advances in designing perovskite catalysts. Curr. Opin. Solid State Mater. Sci. 5:5381–87
    [Google Scholar]
  126. 126.  Prasad R, Kennedy LA, Ruckenstein E 1984. Catalytic combustion. Catal. Rev. 26:11–58
    [Google Scholar]
  127. 127.  Pecoraro TA, Chianelli RR 1981. Hydrodesulfurization catalysis by transition metal sulfides. J. Catal. 67:2430–45
    [Google Scholar]
  128. 128.  McKay D, Gregory DH, Hargreaves JSJ, Hunter SM, Sun X 2007. Towards nitrogen transfer catalysis: reactive lattice nitrogen in cobalt molybdenum nitride. Chem. Commun. 2017:3051–53
    [Google Scholar]
  129. 129.  Verbraeken MC, Cheung C, Suard E, Irvine TS 2015. High H ionic conductivity in barium hydride. Nat. Mater. 14:95–100
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070317-124415
Loading
/content/journals/10.1146/annurev-matsci-070317-124415
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error