1932

Abstract

The importance of configurational, vibrational, and electronic excitations in crystalline solids of technological interest makes a rigorous treatment of thermal excitations an essential ingredient in first-principles models of materials behavior. This contribution reviews statistical mechanics approaches that connect a crystal's electronic structure to its thermodynamic and kinetic properties. We start with a description of a thermodynamic and kinetic framework for multicomponent crystals that integrates chemistry and mechanics, as well as nonconserved order parameters that track the degree of chemical order and group/subgroup structural distortions. The framework allows for spatial heterogeneities and naturally couples thermodynamics with kinetics. We next survey statistical mechanics approaches that rely on effective Hamiltonians to treat configurational, vibrational, and electronic degrees of freedom within multicomponent crystals. These Hamiltonians, when suitably constructed, are capable of extrapolating first-principles electronic structure calculations within (kinetic) Monte Carlo simulations, thereby enabling first-principles predictions of equilibrium and nonequilibrium materials properties at finite temperature.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070317-124443
2018-07-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070317-124443.html?itemId=/content/journals/10.1146/annurev-matsci-070317-124443&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Lejaeghere K, Bihlmayer G, Bjorkman T, Blaha P, Blugel S et al. 2016. Reproducibility in density functional theory calculations of solids. Science 351:aad3000
    [Google Scholar]
  2. 2.  De Fontaine D 1994. Cluster approach to order-disorder transformations in alloys. Solid State Phys. Adv. Res. Appl. 47:33–176
    [Google Scholar]
  3. 3.  Fultz B 2010. Vibrational thermodynamics of materials. Prog. Mater. Sci. 55:247–352
    [Google Scholar]
  4. 4.  Craievich PJ, Weinert M, Sanchez JM, Watson RE 1994. Local stability of nonequilibrium phases. Phys. Rev. Lett. 72:3076
    [Google Scholar]
  5. 5.  Grimvall G, Magyari-Kope B, Ozolins V 2012. Lattice instabilities in metallic elements. Rev. Mod. Phys. 84:945–86
    [Google Scholar]
  6. 6.  Zhong W, Vanderbilt D, Rabe KM 1994. Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett. 73:1861–64
    [Google Scholar]
  7. 7.  Thomas JC, Van der Ven A 2013. Finite-temperature properties of strongly anharmonic and mechanically unstable crystal phases from first principles. Phys. Rev. B 88:214111
    [Google Scholar]
  8. 8.  Wojdel JC, Hermet P, Ljungberg MP, Ghosez P, Iniguez J 2013. First-principles model potential for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25:305401
    [Google Scholar]
  9. 9.  van de Walle A, Hong Q, Kadkhodaei S, Sun R 2015. The free energy of mechanically unstable phases. Nat. Commun. 6:7559
    [Google Scholar]
  10. 10.  Thomas JC, Van der Ven A 2014. Elastic properties and stress-temperature phase diagrams of high-temperature phases with low-temperature lattice instabilities. Phys. Rev. B 90:224105
    [Google Scholar]
  11. 11.  Zhou F, Maxisch T, Ceder G 2006. Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LixFePO4. Phys. Rev. Lett. 97:155704
    [Google Scholar]
  12. 12.  Jaynes ET 1957. Information theory and statistical mechanics. Phys. Rev. 106:620–30
    [Google Scholar]
  13. 13.  Cahn JW 1961. On spinodal decomposition. Acta Metall 9:795–801
    [Google Scholar]
  14. 14.  Allen SM, Cahn JW 1979. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085–95
    [Google Scholar]
  15. 15.  Voorhees PW 1992. Ostwald ripening of two-phase mixtures. Annu. Rev. Mater. Sci. 22:197–215
    [Google Scholar]
  16. 16.  Chen LQ 2002. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32:113–40
    [Google Scholar]
  17. 17.  Balluffi RW, Allen SM, Carter CW 2005. Kinetics of Materials Hoboken, NJ: Wiley Intersci
    [Google Scholar]
  18. 18.  Khachaturyan AG 2008. Theory of Structural Transformations in Solids Newburyport, MA: Dover
    [Google Scholar]
  19. 19.  Larche FC, Cahn JW 1985. The interactions of composition and stress in crystalline solids. Acta Metall 33:331–37
    [Google Scholar]
  20. 20.  Larche FC, Cahn JW 1978. A nonlinear theory of thermochemical equilibrium of solids under stress. Acta Metall 26:53–60
    [Google Scholar]
  21. 21.  Voorhees PW, Johnson WC 2004. The thermodynamics of elastically stressed crystals. Solid State Phys. Adv. Res. Appl. 59:1–201
    [Google Scholar]
  22. 22.  Natarajan AR, Solomon EL, Puchala B, Marquis EA, Van der Ven A 2016. On the early stages of precipitation in dilute MgNd alloys. Acta Mater 108:367–79
    [Google Scholar]
  23. 23.  Barsch GR, Krumhansl JA 1984. Twin boundaries in ferroelastic media without interface dislocations. Phys. Rev. Lett. 53:1069
    [Google Scholar]
  24. 24.  Barsch GR, Krumhansl JA 1988. Nonlinear and nonlocal continuum model of transformation precursors in martensites. Metall. Trans. A 19:761–75
    [Google Scholar]
  25. 25.  Rudraraju S, Van der Ven A, Garikipati K 2016. Mechanochemical spinodal decomposition: a phenomenological theory of phase transformations in multi-component, crystalline solids. NPJ Comput. Mater. 2:16012
    [Google Scholar]
  26. 26.  Goiri JG, Van der Ven A 2016. Phase and structural stability in Ni-Al systems from first principles. Phys. Rev. B 94:094111
    [Google Scholar]
  27. 27.  Chen MH, Thomas JC, Natarajan AR, Van der Ven A 2016. Effects of strain on the stability of tetragonal ZrO2. Phys. Rev. B 94:054108
    [Google Scholar]
  28. 28.  Thomas JC, Van der Ven A 2017. The exploration of nonlinear elasticity and its efficient parameterization for crystalline materials. J. Mech. Phys. Solids 107:76–95
    [Google Scholar]
  29. 29.  De Fontaine D 1979. Configurational thermodynamics of solid solutions. Solid State Phys 34:73–274
    [Google Scholar]
  30. 30.  Natarajan AR, Thomas JC, Puchala B, Van der Ven A 2017. Symmetry-adapted order parameters and free energies for solids undergoing order-disorder phase transitions. Phys. Rev. B 96:134204
    [Google Scholar]
  31. 31.  Landau LD, Lifshitz EM 1980. Statistical Physics, Part 1 (Course of Theoretical Physics, Vol. 5) Oxford, UK: Pergamon Press, 3rd ed..
    [Google Scholar]
  32. 32.  Thomas JC, Van der Ven A 2017. Order parameters for symmetry-breaking structural transitions: the tetragonal-monoclinic transition in ZrO2. Phys. Rev. B 96:134121
    [Google Scholar]
  33. 33.  Fabris S, Paxton AT, Finnis MW 2001. Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition in zirconia. Phys. Rev. B 63:094101
    [Google Scholar]
  34. 34.  Bhattacharya K, Conti S, Giovanni Z, Zimmer J 2004. Crystal symmetry and the reversibility of martensitic transformations. Nature 428:55–59
    [Google Scholar]
  35. 35.  de Groot SR, Mazur P 1984. Non-Equilibrium Thermodynamics Newburyport, MA: Dover
    [Google Scholar]
  36. 36.  van der Waals JD 1893. Thermodynamische Theorie der Capillariteit in Onderstelling van continue Dichtheidsverandering. Verh. K. Ned. Akad. 1:3–56
    [Google Scholar]
  37. 37.  Cahn JW, Hilliard JE 1958. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28:258–67
    [Google Scholar]
  38. 38.  Van der Ven A, Yu HC, Ceder G, Thornton K 2010. Vacancy mediated substitutional diffusion in binary crystalline solids. Prog. Mater. Sci. 55:61–105
    [Google Scholar]
  39. 39.  Van der Ven A, Bhattacharya J, Belak AA 2013. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46:1216–25
    [Google Scholar]
  40. 40.  Aziz MJ 1982. Model for solute redistribution during rapid solidification. J. Appl. Phys. 53:1158–68
    [Google Scholar]
  41. 41.  Hillert M 1999. Solute drag, solute trapping and diffusional dissipation of Gibbs energy. Acta Mater 47:4481–505
    [Google Scholar]
  42. 42.  Hillert M 2004. Solute drag in grain boundary migration and phase transformations. Acta Mater 52:5289–93
    [Google Scholar]
  43. 43.  Ceder G 1993. A derivation of the Ising model for the computation of phase diagrams. Comput. Mater. Sci. 1:144–50
    [Google Scholar]
  44. 44.  Zunger A 1994. First-principles statistical mechanics of semiconductor alloys and intermetallic compounds. Statics and Dynamics of Alloy Phase Transformations (NATO ASI Series B Physics, Vol. 319) PEA Turchi, A Gonis 361–419 Oxford, UK: Plenum Press
    [Google Scholar]
  45. 45.  Sanchez JM, Ducastelle F, Gratias D 1984. Generalized cluster description of multicomponent systems. Phys. A Stat. Mech. Appl. 128:334–50
    [Google Scholar]
  46. 46.  Sanchez JM, De Fontaine D 1978. The fcc Ising model in the cluster variation approximation. Phys. Rev. B 17:2926–36
    [Google Scholar]
  47. 47.  Landau DP, Binder K 2009. A Guide to Monte Carlo Simulations in Statistical Physics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  48. 48.  van de Walle A, Asta M 2002. Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams. Model. Simul. Mater. Sci. Eng. 10:521–38
    [Google Scholar]
  49. 49.  Sadigh B, Erhart P 2012. Calculation of excess free energies of precipitates via direct thermodynamic integration across phase boundaries. Phys. Rev. B 86:134204
    [Google Scholar]
  50. 50.  Vinckeviciute J, Radin MD, Van der Ven A 2016. Stacking-sequence changes and Na ordering in layered intercalation materials. Chem. Mater. 28:8640–50
    [Google Scholar]
  51. 51.  Chang D, Chen MH, Van der Ven A 2015. Factors contributing to path hysteresis of displacement and conversion reactions in Li ion batteries. Chem. Mater. 27:7593–600
    [Google Scholar]
  52. 52.  Burton BP, van de Walle A 2012. First principles phase diagram calculations for the octahedral-interstitial system TiOX, 0 ≤ X ≤ 1/2. CALPHAD 39:97–103
    [Google Scholar]
  53. 53.  van de Walle A 2013. Methods for first-principles alloy thermodynamics. JOM 65:1523–32
    [Google Scholar]
  54. 54.  Chinnappan R, Panigrahi B, van de Walle A 2016. First-principles study of phase equilibrium in TiV, TiNb, and TiTa alloys. CALPHAD 54:125–33
    [Google Scholar]
  55. 55.  Sai Gautam G, Canepa P, Abdellahi A, Urban A, Malik R, Ceder G 2015. The intercalation phase diagram of Mg in V2O5 from first-principles. Chem. Mater. 27:3733–42
    [Google Scholar]
  56. 56.  Das H, Urban A, Huang W, Ceder G 2017. First-principles simulation of the (Li–Ni–vacancy)O phase diagram and its relevance for the surface phases in Ni-rich Li-ion cathode materials. Chem. Mater. 29:7840–51
    [Google Scholar]
  57. 57.  Barabash SV, Ozolins V, Wolverton C 2008. First-principles theory of competing order types, phase separation, and phonon spectra in thermoelectric AgPbmSbTem+2 alloys. Phys. Rev. Lett. 101:155704
    [Google Scholar]
  58. 58.  Kumagai Y, Soda Y, Oba F, Seko A, Tanaka I 2012. First-principles calculations of the phase diagrams and band gaps in CuInSe2-CuGaSe2 and CuInSe2-CuAlSe2 pseudobinary systems. Phys. Rev. B 85:033203
    [Google Scholar]
  59. 59.  Puchala B, Van der Ven A 2013. Thermodynamics of the Zr-O system from first-principles calculations. Phys. Rev. B 88:094108
    [Google Scholar]
  60. 60.  Chen MH, Puchala B, Van der Ven A 2015. High-temperature stability of δ-ZrO. CALPHAD 51:292–98
    [Google Scholar]
  61. 61.  Natarajan AR, Van der Ven A 2017. First-principles investigation of phase stability in the Mg-Sc binary alloy. Phys. Rev. B 95:214107
    [Google Scholar]
  62. 62.  Tepesch PD, Garbulsky GD, Ceder G 1995. Model for configurational thermodynamics in ionic systems. Phys. Rev. Lett. 74:2272
    [Google Scholar]
  63. 63.  Asta M, Wolverton C, De Fontaine D, Dreyss H 1991. Effective cluster interactions from cluster-variation formalism. I. Phys. Rev. B 44:4907–13
    [Google Scholar]
  64. 64.  Sanchez JM 1993. Cluster expansions and the configurational energy of alloys. Phys. Rev. B 48:14013
    [Google Scholar]
  65. 65.  Sanchez JM 2010. Cluster expansion and the configurational theory of alloys. Phys. Rev. B 81:224202
    [Google Scholar]
  66. 66.  Sanchez JM 2017. Foundations and practical implementations of the cluster expansion. J. Phase Equilib. Diffus. 38:238–51
    [Google Scholar]
  67. 67.  Laks DB, Ferreira LG, Froyen S, Zunger A 1992. Efficient cluster expansion for substitutional systems. Phys. Rev. B 46:12587
    [Google Scholar]
  68. 68.  Zunger A, Wang LG, Hart GLW, Sanati M 2002. Obtaining Ising-like expansions for binary alloys from first principles. Model. Simul. Mater. Sci. Eng. 10:685–706
    [Google Scholar]
  69. 69.  Blum V, Zunger A 2004. Mixed-basis cluster expansion for thermodynamics of bcc alloys. Phys. Rev. B 70:155108
    [Google Scholar]
  70. 70.  van de Walle A, Ellis DE 2007. First-principles thermodynamics of coherent interfaces in samarium-doped ceria nanoscale superlattices. Phys. Rev. Lett. 98:266101
    [Google Scholar]
  71. 71.  van de Walle A 2008. A complete representation of structure property relationships in crystals. Nat. Mater. 7:455–58
    [Google Scholar]
  72. 72.  Van der Ven A, Ceder G, Asta M, Tepesch PD 2001. First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64:184307
    [Google Scholar]
  73. 73.  Van der Ven A, Ceder G 2005. Vacancies in ordered and disordered binary alloys treated with the cluster expansion. Phys. Rev. B 71:054102
    [Google Scholar]
  74. 74.  Belak AA, Van der Ven A 2015. Effect of disorder on the dilute equilibrium vacancy concentrations of multicomponent crystalline solids. Phys. Rev. B 91:224109
    [Google Scholar]
  75. 75.  Connolly JWD, Williams AR 1983. Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B 27:5169
    [Google Scholar]
  76. 76.  van de Walle A, Ceder G 2002. Automating first-principles phase diagram calculations. J. Phase Equilib. 23:348
    [Google Scholar]
  77. 77.  Hart GLW, Blum V, Walorski MJ, Zunger A 2005. Evolutionary approach for determining first-principles Hamiltonians. Nat. Mater. 4:391–94
    [Google Scholar]
  78. 78.  Zarkevich NA, Johnson DD 2004. Reliable first-principles alloy thermodynamics via truncated cluster expansions. Phys. Rev. Lett. 92:255702
    [Google Scholar]
  79. 79.  Nelson LJ, Hart GLW, Zhou F, Ozolins V 2013. Compressive sensing as a paradigm for building physics models. Phys. Rev. B 87:035125
    [Google Scholar]
  80. 80.  Nelson LJ, Ozolins V, Reese CS, Zhou F, Hart GLW 2013. Cluster expansion made easy with Bayesian compressive sensing. Phys. Rev. B 88:155105
    [Google Scholar]
  81. 81.  Mueller T, Ceder G 2009. Bayesian approach to cluster expansions. Phys. Rev. B 80:024103
    [Google Scholar]
  82. 82.  Garbulsky GD, Ceder G 1995. Linear-programming method for obtaining effective cluster interactions in alloys from total-energy calculations: application to the fcc Pd-V system. Phys. Rev. B 51:67–72
    [Google Scholar]
  83. 83.  Huang W, Urban A, Rong Z, Ding Z, Luo C, Ceder G 2017. Construction of ground-state preserving sparse lattice models for predictive materials simulations. NPJ Comput. Mater. 3:30
    [Google Scholar]
  84. 84.  Kristensen J, Zabaras NJ 2014. Bayesian uncertainty quantification in the evaluation of alloy properties with the cluster expansion method. Comput. Phys. Commun. 185:2885–92
    [Google Scholar]
  85. 85.  Aldegunde M, Zabaras N, Kristensen J 2016. Quantifying uncertainties in first-principles alloy thermodynamics using cluster expansions. J. Comput. Phys. 323:17–44
    [Google Scholar]
  86. 86.  Drautz R, Fähnle M 2004. Spin-cluster expansion: parametrization of the general adiabatic magnetic energy surface with ab initio accuracy. Phys. Rev. B 69:104404
    [Google Scholar]
  87. 87.  Drautz R, Fähnle M 2005. Parametrization of the magnetic energy at the atomic level. Phys. Rev. B 72:212405
    [Google Scholar]
  88. 88.  Mueller T, Ceder G 2006. Effective interactions between the N–H bond orientations in lithium imide and a proposed ground-state structure. Phys. Rev. B 74:134104
    [Google Scholar]
  89. 89.  Van De Walle A, Ceder G 2002. The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. 74:11–45
    [Google Scholar]
  90. 90.  Alf D 2009. PHON: a program to calculate phonons using the small displacement method. Comput. Phys. Commun. 180:2622–33
    [Google Scholar]
  91. 91.  Togo A, Tanaka I 2015. First principles phonon calculations in materials science. Scr. Mater. 108:1–5
    [Google Scholar]
  92. 92.  Zhong W, Vanderbilt D, Rabe KM 1995. First-principles theory of ferroelectric phase transitions for perovskites: the case of BaTiO3. Phys. Rev. B 52:6301
    [Google Scholar]
  93. 93.  Rabe KM, Waghmare UV 1995. Localized basis for effective lattice Hamiltonians: lattice Wannier functions. Phys. Rev. B 52:13236
    [Google Scholar]
  94. 94.  Waghmare UV, Rabe KM 1997. Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO3. Phys. Rev. B 55:6161
    [Google Scholar]
  95. 95.  Escorihuela-Sayalero C, Wojdel JC, Iniguez J 2017. Efficient systematic scheme to construct second-principles lattice dynamical models. Phys. Rev. B 95:094115
    [Google Scholar]
  96. 96.  Zhou F, Nielson W, Xia Y, Ozolins V 2014. Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations. Phys. Rev. Lett. 113:185501
    [Google Scholar]
  97. 97.  Persson K, Ekman M, Ozolins V 2000. Phonon instabilities in bcc Sc, Ti, La, and Hf. Phys. Rev. B 61:11221
    [Google Scholar]
  98. 98.  Bhattacharya J, Van der Ven A 2008. Mechanical instabilities and structural phase transitions: the cubic to tetragonal transformation. Acta Mater 56:4226–32
    [Google Scholar]
  99. 99.  Ozolins V 2009. First-principles calculations of free energies of unstable phases: the case of fcc W. Phys. Rev. Lett. 102:065702
    [Google Scholar]
  100. 100.  Souvatzis P, Eriksson O, Katsnelson MI, Rudin SP 2008. Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100:095901
    [Google Scholar]
  101. 101.  Bellaiche L, García A, Vanderbilt D 2000. Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles. Phys. Rev. Lett. 84:5427–30
    [Google Scholar]
  102. 102.  Vineyard GH 1957. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3:121–27
    [Google Scholar]
  103. 103.  Allnatt AR, Lidiard AB 1993. Atomic Transport in Solids Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  104. 104.  Mills G, Jonsson H, Schenter GK 1995. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324:305–37
    [Google Scholar]
  105. 105.  Toyoura K, Koyama Y, Kuwabara A, Oba F, Tanaka I 2008. First-principles approach to chemical diffusion of lithium atoms in a graphite intercalation compound. Phys. Rev. B 78:214303
    [Google Scholar]
  106. 106.  Bortz AB, Kalos MH, Lebowitz JL 1975. A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17:10–18
    [Google Scholar]
  107. 107.  Van der Ven A, Thomas JC, Xu Q, Swoboda B, Morgan D 2008. Nondilute diffusion from first principles: Li diffusion in LixTiS2. Phys. Rev. B 78:104306
    [Google Scholar]
  108. 108.  Bhattacharya J, Van der Ven A 2011. First-principles study of competing mechanisms of nondilute Li diffusion in spinel LixTiS2. Phys. Rev. B 83:144302
    [Google Scholar]
  109. 109.  Allnatt AR 1982. Einstein and linear response formulae for the phenomenological coefficients for isothermal matter transport in solids. J. Phys. C Solid State Phys. 15:5605
    [Google Scholar]
  110. 110.  Van der Ven A, Ceder G 2005. First principles calculation of the interdiffusion coefficient in binary alloys. Phys. Rev. Lett. 94:045901
    [Google Scholar]
  111. 111.  Xu Q, Van der Ven A 2010. Atomic transport in ordered compounds mediated by local disorder: diffusion in B2-NixAl1-x. Phys. Rev. B 81:064303
    [Google Scholar]
  112. 112.  Puchala B, Falk ML, Garikipati K 2010. An energy basin finding algorithm for kinetic Monte Carlo acceleration. J. Chem. Phys. 132:134104
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070317-124443
Loading
/content/journals/10.1146/annurev-matsci-070317-124443
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error