1932

Abstract

A metasurface is an artificial nanostructured interface that has subwavelength thickness and that manipulates light by spatially arranged meta-atoms—fundamental building blocks of the metasurface. Those meta-atoms, usually consisting of plasmonic or dielectric nanoantennas, can directly change light properties such as phase, amplitude, and polarization. As a derivative of three-dimensional (3D) metamaterials, metasurfaces have been emerging to tackle some of the critical challenges rooted in traditional metamaterials, such as high resistive loss from resonant plasmonic components and fabrication requirements for making 3D nanostructures. In the past few years, metasurfaces have achieved groundbreaking progress, providing unparalleled control of light, including constructing arbitrary wave fronts and realizing active and nonlinear optical effects. This article provides a systematic review of the current progress in and applications of optical metasurfaces, as well as an overview of metasurface building blocks based on plasmonic resonances, Mie resonance, and the Pancharatnam-Berry phase.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-124220
2018-07-01
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070616-124220.html?itemId=/content/journals/10.1146/annurev-matsci-070616-124220&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Cai W, Shalaev V 2010. Optical Metamaterials New York, NY: Springer
    [Google Scholar]
  2. 2.  Kildishev AV, Boltasseva A, Shalaev VM 2013. Planar photonics with metasurfaces. Science 339:61251232009
    [Google Scholar]
  3. 3.  Yu N, Capasso F 2014. Flat optics with designer metasurfaces. Nat. Mater. 13:2139–50
    [Google Scholar]
  4. 4.  Mittra R, Chan CH, Cwik T 1988. Techniques for analyzing frequency selective surfaces—a review. Proc. IEEE 76:121593–615
    [Google Scholar]
  5. 5.  Meinzer N, Barnes WL, Hooper IR 2014. Plasmonic meta-atoms and metasurfaces. Nat. Photon. 8:12889–98
    [Google Scholar]
  6. 6.  Mühlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW 2005. Resonant optical antennas. Science 308:57281607–9
    [Google Scholar]
  7. 7.  Maier SA, Atwater HA 2005. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98:1011101
    [Google Scholar]
  8. 8.  Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P et al. 2010. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9:9707–15
    [Google Scholar]
  9. 9.  Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P et al. 2011. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:6054333–37
    [Google Scholar]
  10. 10.  Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM 2011. Broadband light bending with plasmonic nanoantennas. Science 335:427
    [Google Scholar]
  11. 11.  Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11:5426–31
    [Google Scholar]
  12. 12.  Sun S, Yang K-Y, Wang C-M, Juan T-K, Chen WT et al. 2012. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 12:126223–29
    [Google Scholar]
  13. 13.  Berry MV 1987. The adiabatic phase and Pancharatnam's phase for polarized light. J. Mod. Opt. 34:111401–7
    [Google Scholar]
  14. 14.  Pancharatnam S 1956. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. A 44:5247–62
    [Google Scholar]
  15. 15.  Boltasseva A, Atwater HA 2011. Low-loss plasmonic metamaterials. Science 331:6015290–91
    [Google Scholar]
  16. 16.  Jahani S, Jacob Z 2016. All-dielectric metamaterials. Nat. Nanotechnol. 11:123–36
    [Google Scholar]
  17. 17.  Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk'yanchuk B 2016. Optically resonant dielectric nanostructures. Science 354:6314aag2472
    [Google Scholar]
  18. 18.  Mie G 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330:3377–445
    [Google Scholar]
  19. 19.  Ginn JC, Brener I, Peters DW, Wendt JR, Stevens JO et al. 2012. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108:9097402
    [Google Scholar]
  20. 20.  Fu YH, Kuznetsov AI, Miroshnichenko AE, Yu YF, Luk'yanchuk B 2013. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4:1527
    [Google Scholar]
  21. 21.  Decker M, Staude I, Falkner M, Dominguez J, Neshev DN et al. 2015. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3:6813–20
    [Google Scholar]
  22. 22.  Kerker M, Wang D-S, Giles CL 1983. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73:6765–67
    [Google Scholar]
  23. 23.  Limonov MF, Rybin MV, Poddubny AN, Kivshar YS 2017. Fano resonances in photonics. Nat. Photon. 11:9543–54
    [Google Scholar]
  24. 24.  Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI 2007. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99:14147401
    [Google Scholar]
  25. 25.  Miroshnichenko AE, Kivshar YS 2012. Fano resonances in all-dielectric oligomers. Nano Lett 12:126459–63
    [Google Scholar]
  26. 26.  Fan P, Yu Z, Fan S, Brongersma ML 2014. Optical Fano resonance of an individual semiconductor nanostructure. Nat. Mater. 13:5471–75
    [Google Scholar]
  27. 27.  Yan J, Liu P, Lin Z, Wang H, Chen H et al. 2015. Directional Fano resonance in a silicon nanosphere dimer. ACS Nano 9:32968–80
    [Google Scholar]
  28. 28.  King NS, Liu L, Yang X, Cerjan B, Everitt HO et al. 2015. Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9:1110628–36
    [Google Scholar]
  29. 29.  Stern L, Grajower M, Levy U 2014. Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system. Nat. Commun. 5:4865
    [Google Scholar]
  30. 30.  Yang Y, Wang W, Boulesbaa A, Kravchenko II, Briggs DP et al. 2015. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett 15:117388–93
    [Google Scholar]
  31. 31.  Bomzon Z, Kleiner V, Hasman E 2001. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26:181424–26
    [Google Scholar]
  32. 32.  Biener G, Niv A, Kleiner V, Hasman E 2002. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt. Lett. 27:211875–77
    [Google Scholar]
  33. 33.  Bomzon Z, Biener G, Kleiner V, Hasman E 2002. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27:131141–43
    [Google Scholar]
  34. 34.  Feynman RP, Leighton RB, Sands M 2011. The Feynman Lectures on Physics, Vol. II: The New Millennium Edition: Mainly Electromagnetism and Matter. New York: Basic Books594
  35. 35.  Hirsch JE 1999. Spin hall effect. Phys. Rev. Lett. 83:91834–37
    [Google Scholar]
  36. 36.  Onoda M, Murakami S, Nagaosa N 2004. Hall effect of light. Phys. Rev. Lett. 93:8083901
    [Google Scholar]
  37. 37.  Leyder C, Romanelli M, Karr JP, Giacobino E, Liew TCH et al. 2007. Observation of the optical spin Hall effect. Nat. Phys. 3:9628–31
    [Google Scholar]
  38. 38.  Hosten O, Kwiat P 2008. Observation of the spin Hall effect of light via weak measurements. Science 319:5864787–90
    [Google Scholar]
  39. 39.  Bliokh KY, Bliokh YP 2006. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett. 96:7073903
    [Google Scholar]
  40. 40.  Liu Y, Ling X, Yi X, Zhou X, Chen S et al. 2015. Photonic spin Hall effect in dielectric metasurfaces with rotational symmetry breaking. Opt. Lett. 40:5756–59
    [Google Scholar]
  41. 41.  Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013. Photonic spin Hall effect at metasurfaces. Science 339:61261405–7
    [Google Scholar]
  42. 42.  Ni X, Ishii S, Kildishev AV, Shalaev VM 2013. Ultra-thin, planar, Babinet-inverted plasmonic meta-lenses. Light Sci. Appl. 2:4e72
    [Google Scholar]
  43. 43.  Aieta F, Genevet P, Kats M, Capasso F 2013. Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21:2531530–39
    [Google Scholar]
  44. 44.  Aieta F, Kats MA, Genevet P, Capasso F 2015. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347:62281342–45
    [Google Scholar]
  45. 45.  Khorasaninejad M, Shi Z, Zhu AY, Chen WT, Sanjeev V et al. 2017. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 17:31819–24
    [Google Scholar]
  46. 46.  Khorasaninejad M, Zhu AY, Roques-Carmes C, Chen WT, Oh J et al. 2016. Polarization-insensitive metalenses at visible wavelengths. Nano Lett 16:117229–34
    [Google Scholar]
  47. 47.  Zhang S, Kim M-H, Aieta F, She A, Mansuripur T et al. 2016. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Opt. Express 24:1618024
    [Google Scholar]
  48. 48.  Byrnes SJ, Lenef A, Aieta F, Capasso F 2016. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Express 24:55110
    [Google Scholar]
  49. 49.  Khorasaninejad M, Chen WT, Oh J, Capasso F 2016. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett 16:63732–37
    [Google Scholar]
  50. 50.  Shaltout A, Liu J, Kildishev A, Shalaev V 2015. Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2:10860–63
    [Google Scholar]
  51. 51.  Chen WT, Zhu AY, Khorasaninejad M, Shi Z, Sanjeev V, Capasso F 2017. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett 17:53188–94
    [Google Scholar]
  52. 52.  Groever B, Chen WT, Capasso F 2017. Meta-lens doublet in the visible region. Nano Lett 17:84902–7
    [Google Scholar]
  53. 53.  Hecht E 2013. Optics Boston: Pearson680
    [Google Scholar]
  54. 54.  Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F 2017. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118:11113901
    [Google Scholar]
  55. 55.  Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F 2012. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12:126328–33
    [Google Scholar]
  56. 56.  Arbabi A, Horie Y, Bagheri M, Faraon A 2015. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10:11937
    [Google Scholar]
  57. 57.  Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J 2014. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14:31394–99
    [Google Scholar]
  58. 58.  Lin D, Fan P, Hasman E, Brongersma ML 2014. Dielectric gradient metasurface optical elements. Science 345:6194298–302
    [Google Scholar]
  59. 59.  Willner AE, Wang J, Huang H 2012. A different angle on light communications. Science 337:6095655–56
    [Google Scholar]
  60. 60.  Beijersbergen MW, Allen L, van der Veen HELO, Woerdman JP 1993. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96:1123–32
    [Google Scholar]
  61. 61.  Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y et al. 2012. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6:7488–96
    [Google Scholar]
  62. 62.  Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas'ko V et al. 2004. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12:225448–56
    [Google Scholar]
  63. 63.  Beijersbergen MW, Coerwinkel RPC, Kristensen M, Woerdman JP 1994. Helical-wave front laser beams produced with a spiral phaseplate. Opt. Commun. 112:5321–27
    [Google Scholar]
  64. 64.  Devlin RC, Ambrosio A, Rubin NA, Mueller JPB, Capasso F 2017. Arbitrary spin-to-orbital angular momentum conversion of light. Science https://doi.org/10.1126/science.aao5392
    [Crossref] [Google Scholar]
  65. 65.  Karimi E, Schulz SA, De Leon I, Qassim H, Upham J, Boyd RW 2014. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3:5e167
    [Google Scholar]
  66. 66.  Li J, Pendry JB 2008. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101:20203901
    [Google Scholar]
  67. 67.  Ni X, Wong ZJ, Mrejen M, Wang Y, Zhang X 2015. An ultrathin invisibility skin cloak for visible light. Science 349:62541310–14
    [Google Scholar]
  68. 68.  Estakhri NM, Alù A 2014. Ultra-thin unidirectional carpet cloak and wave front reconstruction with graded metasurfaces. IEEE Antennas Wirel. Propag. Lett. 13:1775–78
    [Google Scholar]
  69. 69.  Hsu LY, Lepetit T, Kante B 2015. Extremely thin dielectric metasurface for carpet cloaking. Prog. Electromagn. Res. 152:33–40
    [Google Scholar]
  70. 70.  Dammann H, Görtler K 1971. High-efficiency in-line multiple imaging by means of multiple phase holograms. Opt. Commun. 3:5312–15
    [Google Scholar]
  71. 71.  Genevet P, Capasso F 2015. Holographic optical metasurfaces: a review of current progress. Rep. Prog. Phys. 78:2024401
    [Google Scholar]
  72. 72.  Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10:4308–12
    [Google Scholar]
  73. 73.  Ni X, Kildishev AV, Shalaev VM 2013. Metasurface holograms for visible light. Nat. Commun. 4:2807
    [Google Scholar]
  74. 74.  Li Z, Kim M-H, Wang C, Han Z, Shrestha S et al. 2017. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol. 12:7675–83
    [Google Scholar]
  75. 75.  Lin J, Mueller JPB, Wang Q, Yuan G, Antoniou N et al. 2013. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340:6130331–34
    [Google Scholar]
  76. 76.  Pors A, Nielsen MG, Bernardin T, Weeber J-C, Bozhevolnyi SI 2014. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci. Appl. 3:8e197
    [Google Scholar]
  77. 77.  Sun W, He Q, Sun S, Zhou L 2016. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci. Appl. 5:1e16003
    [Google Scholar]
  78. 78.  Wintz D, Ambrosio A, Zhu AY, Genevet P, Capasso F 2017. Anisotropic surface plasmon polariton generation using bimodal V-antenna based metastructures. ACS Photon 4:122–27
    [Google Scholar]
  79. 79.  Chang DE, Sørensen AS, Hemmer PR, Lukin MD 2006. Quantum optics with surface plasmons. Phys. Rev. Lett. 97:5053002
    [Google Scholar]
  80. 80.  Chang DE, Thompson JD, Park H, Vuletić V, Zibrov AS et al. 2009. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 103:12123004
    [Google Scholar]
  81. 81.  Jha PK, Ni X, Wu C, Wang Y, Zhang X 2015. Metasurface-enabled remote quantum interference. Phys. Rev. Lett. 115:2025501
    [Google Scholar]
  82. 82.  Li G, Zhang S, Zentgraf T 2017. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2:517010
    [Google Scholar]
  83. 83.  Lee J, Tymchenko M, Argyropoulos C, Chen P-Y, Lu F et al. 2014. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511:750765–69
    [Google Scholar]
  84. 84.  Almeida E, Shalem G, Prior Y 2016. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat. Commun. 7:10367
    [Google Scholar]
  85. 85.  Wang Q, Rogers ETF, Gholipour B, Wang C-M, Yuan G et al. 2015. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10:160–65
    [Google Scholar]
  86. 86.  Ee H-S, Agarwal R 2016. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett 16:42818–23
    [Google Scholar]
  87. 87.  Kim SJ, Brongersma ML 2017. Active flat optics using a guided mode resonance. Opt. Lett. 42:15–8
    [Google Scholar]
  88. 88.  Rensberg J, Zhang S, Zhou Y, McLeod AS, Schwarz C et al. 2016. Active optical metasurfaces based on defect-engineered phase-transition materials. Nano Lett 16:21050–55
    [Google Scholar]
  89. 89.  Di Falco A, Zhao Y, Alú A 2011. Optical metasurfaces with robust angular response on flexible substrates. Appl. Phys. Lett. 99:16163110
    [Google Scholar]
  90. 90.  Aetukuri NB, Gray AX, Drouard M, Cossale M, Gao L et al. 2013. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nat. Phys. 9:10661–66
    [Google Scholar]
  91. 91.  Kats MA, Blanchard R, Zhang S, Genevet P, Ko C et al. 2013. Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance. Phys. Rev. X 3:4041004
    [Google Scholar]
  92. 92.  Kaplan G, Aydin K, Scheuer J 2015. Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide. Opt. Mater. Express 5:112513–24
    [Google Scholar]
  93. 93.  Lei DY, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund RF, Maier SA 2015. Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure. ACS Photon 2:91306–13
    [Google Scholar]
  94. 94.  Shcherbakov MR, Liu S, Zubyuk VV, Vaskin A, Vabishchevich PP et al. 2017. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun. 8:17
    [Google Scholar]
  95. 95.  Yao Y, Shankar R, Kats MA, Song Y, Kong J et al. 2014. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 14:116526–32
    [Google Scholar]
  96. 96.  Yao Y, Kats MA, Genevet P, Yu N, Song Y et al. 2013. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13:31257–64
    [Google Scholar]
  97. 97.  Kosterlitz JM, Thouless DJ 1972. Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory). J. Phys. C Solid State Phys. 5:11L124
    [Google Scholar]
  98. 98.  Kosterlitz JM, Thouless DJ 1973. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6:71181
    [Google Scholar]
  99. 99.  Hasan MZ, Kane CL 2010. Topological insulators. Rev. Mod. Phys. 82:43045–67
    [Google Scholar]
  100. 100.  Khanikaev AB, Shvets G 2017. Two-dimensional topological photonics. Nat. Photon. 11:12763–73
    [Google Scholar]
  101. 101.  Gorlach MA, Ni X, Smirnova DA, Korobkin D, Slobozhanyuk AP et al. 2017. Controlling scattering of light through topological transitions in all-dielectric metasurfaces. arXiv:1705.04236 [cond-mat.mtrl-sci]
  102. 102.  Bahari B, Ndao A, Vallini F, Amili AE, Fainman Y, Kanté B 2017. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358:6363636–40
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-124220
Loading
/content/journals/10.1146/annurev-matsci-070616-124220
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error