1932

Abstract

Scintillation detectors constitute an important branch of radiation detection instrumentation. The discovery of the inorganic scintillating compound thallium-activated sodium iodide (NaI:Tl) in 1948 was key to the production of the first practical gamma-ray spectrometer. Since that time, numerous inorganic scintillators have been discovered and studied. Many of the more successful inorganic scintillators are described, including discussion of their properties and performance, in this article.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-124247
2018-07-01
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070616-124247.html?itemId=/content/journals/10.1146/annurev-matsci-070616-124247&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Curran SC, Baker WR 1944. A photoelectric alpha particle detector Rep. MDDC 1296, US At. Energy Comm.
    [Google Scholar]
  2. 2.  Rodnyi PA 1997. Physical Processes in Inorganic Scintillators Boca Raton, FL: CRC Press
    [Google Scholar]
  3. 3.  Ridley BK 1982. Quantum Processes in Semiconductors Oxford, UK: Clarendon Press
    [Google Scholar]
  4. 4.  Lindow JT, Srader E, Farukhi MR 1978. Harshaw Scintillation Phosphors Solon, OH: Harshaw Chem. Co, 3rd ed..
    [Google Scholar]
  5. 5.  Valais I, Sratos D, Michail C, Konstantinidis A, Kandarakis I, Panayiotakis GS 2007. Investigation of luminescent properties of LSO:Ce, LYSO:Ce and GSO:Ce crystal scintillators under low-energy gamma-ray excitation used in nuclear imaging. Nucl. Instrum. Meth. A 581:99–102
    [Google Scholar]
  6. 7.  Engstrom RW 1980. Photomultiplier Handbook Lancaster, PA: Burle Technol.
    [Google Scholar]
  7. 8.  Renker D 2006. Geiger-mode avalanche photodiodes, history, properties and problems. Nucl. Instrum. Meth. A 567:48–56
    [Google Scholar]
  8. 9.  Birks JB 1964. The Theory and Practice of Scintillation Counting New York: MacMillan
    [Google Scholar]
  9. 10.  Dorenbos P, De Haas JTM, Van Eijk CWE 1995. Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Trans. Nucl. Sci. 42:2190–202
    [Google Scholar]
  10. 11.  Dorenbos P 2002. Light output and energy resolution of Ce3+-doped scintillators. Nucl. Instrum. Meth. A 486:208–13
    [Google Scholar]
  11. 12.  Kapusta M, Balcerzik M, Moszynski M, Pawelke J 1999. A high-energy resolution observed from a YAP:Ce scintillator. Nucl. Instrum. Meth. A 421:610–13
    [Google Scholar]
  12. 13.  Moszyński M, Kapusta M, Mayhugh M, Wolski D, Flyckt SO 1997. Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44:1052–61
    [Google Scholar]
  13. 14.  Holl I, Lorenz E, Mageras G 1988. A measurement of the light yield of common inorganic scintillators. IEEE Trans. Nucl. Sci. 35:105–9
    [Google Scholar]
  14. 15.  Mengesha W, Taulbee TD, Rooney BD, Valentine JD 1998. Light yield nonproportionality of CsI:Tl, CsI(Na) and YAP. IEEE Trans. Nucl. Sci. 45:456–61
    [Google Scholar]
  15. 16.  Świderski Ł, Moszyński M, Nassalski A, Syntfeld-Każuch A, Szczesniak T et al. 2009. Light yield non-proportionality and energy resolution of praseodymium doped LuAG scintillator. IEEE Trans. Nucl. Sci. 56:934–38
    [Google Scholar]
  16. 17.  Payne SA, Moses WW, Sheets S, Ahle L, Cherepy NJ et al. 2011. Nonproportionality of scintillator detectors: theory and experiment. II. IEEE Trans. Nucl. Sci. 58:3392–402
    [Google Scholar]
  17. 18.  Jaffe JE, Jordan DV, Peurrung AJ 2007. Energy nonlinearity in radiation detection materials: causes and consequences. Nucl. Instrum. Meth. A 570:72–83
    [Google Scholar]
  18. 19.  Payne SA, Cherepy NJ, Hull G, Valentine JD, Moses WW et al. 2009. Nonproportionality of scintillator detectors: theory and experiment. IEEE Trans. Nucl. Sci. 56:2506–12
    [Google Scholar]
  19. 20.  Moses WW, Bizarri GA, Williams RT, Payne SA, Vasil'ev AN et al. 2012. The origins of scintillator non-proportionality. IEEE Trans. Nucl. Sci. 59:2038–44
    [Google Scholar]
  20. 21.  De Haas JTM, Dorenbos P, Van Eijk CWE 2005. Measuring the absolute light yield of scintillators. Nucl. Instrum. Meth. A 537:97–100
    [Google Scholar]
  21. 22.  Syntfeld A, Moszynski M, Arlt R, Balcerzyk M, Kupusta M et al. 2005. 6Lil(Eu) in neutron and gamma-ray spectrometry—a highly sensitive thermal neutron detector. IEEE Trans. Nucl. Sci. 52:3151–56
    [Google Scholar]
  22. 23.  Hofstadter R, Odell EW, Schmidt CT 1964. CaI2 and CaI2(Eu) scintillation crystals. Rev. Sci. Instrum. 35:246–47
    [Google Scholar]
  23. 24.  Hofstadter R, Odell EW, Schmidt CT 1964. CaI2 and CaI2(Eu) scintillation crystals. IEEE Trans. Nucl. Sci. 11:12–14
    [Google Scholar]
  24. 25.  Zdesenko YG, Avignone FT, Brudanin VB, Danevich FA, Nagorny SS et al. 2005. Scintillation properties and radioactive contamination of CaWO4 crystal scintillators. Nucl. Instrum. Meth. A 538:657–67
    [Google Scholar]
  25. 26.  Cherepy NJ, Payne SA, Asztalos SJ, Hull G, Kuntz JD et al. 2009. Scintillators with potential to supersede lanthanum bromide. IEEE Trans. Nucl. Sci. 56:873–80
    [Google Scholar]
  26. 27.  Baryshevsky VG, Korzhik MV, Moroz VI, Pavlenko VB, Fyodorov AA et al. 1991. YAlO3:Ce-fast-acting scintillators for detection of ionizing radiation. Nucl. Instrum. Meth. B 58:291–93
    [Google Scholar]
  27. 28.  Leroq P, Annenkov A, Gektin A, Korzhik M, Pedrini C 2006. Inorganic Scintillators for Detector Systems Berlin: Springer
    [Google Scholar]
  28. 29.  Shah KS, Glodo J, Higgins W, Van Loef EVD, Moses W et al. 2005. CeBr3 scintillators for gamma-ray spectroscopy. IEEE Trans. Nucl. Sci. 52:3157–59
    [Google Scholar]
  29. 30.  Moszyński M, Wolski D, Ludziejewski T, Kapusta M, Lempicki A et al. 1997. Properties of the new LuAP:Ce scintillator. Nucl. Instrum. Meth. A 385:123–31
    [Google Scholar]
  30. 31.  Drozdowski W, Dorenbos P, De Haas JTM 2008. Scintillation properties of praseodymium activated Lu3Al5O12 single crystals. IEEE Trans. Nucl. Sci. 55:2420–24
    [Google Scholar]
  31. 32.  Nikl M, Yoshokawa A, Kamada K, Nejezchleb K, Stanek CR et al. 2013. Development of LuAG-based scintillator crystals—a review. Prog. Cryst. Growth Charact. Mater. 59:47–72
    [Google Scholar]
  32. 33.  Combes CM, Dorenbos P, Van Eijk CWE, Krämer KW, Güdel HU 1999. Optical and scintillation properties of pure and of Ce3+-doped Cs2LiYCl6 and Li3YCl6:Ce3+ crystals. J. Lumin. 82:299–305
    [Google Scholar]
  33. 34. Scintacor. 2016. 6-lithium glass https://scintacor.com/products/6-lithium-glass/
    [Google Scholar]
  34. 35.  Pavan P, Zanella G, Zannoni R, Polato P 1991. Radiation damage and annealing of scintillating glasses. Nucl. Instrum. Meth. B 61:487–90
    [Google Scholar]
  35. 36.  Li Q, Grim JQ, Williams RT, Bizarri GA, Moses WW 2011. A transport-based model of material trends in nonproportionality of scintillators. J. Appl. Phys. 109:123716
    [Google Scholar]
  36. 37.  Valentine JD, Rooney BD, Li J 1998. The light yield nonproportionality component of scintillator energy resolution. IEEE Trans. Nucl. Sci. 45:512–17
    [Google Scholar]
  37. 38.  Melcher CL 1989. Scintillators for well logging applications. Nucl. Instrum. Meth. B 40–41:1214–18
    [Google Scholar]
  38. 39.  NIST XCOM 2016. Element/compound/mixture selection https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html. Accessed June 1
    [Google Scholar]
  39. 40.  Derenzo S, Moses WW, Cahoon JL, DeVol TA, Boatner L 1991. X-ray fluorescence measurements of 412 inorganic compounds. IEEE Nucl. Sci. Symp. Conf. Rec. 1:143–47
    [Google Scholar]
  40. 41.  Derenzo S, Boswell M, Weber M, Brennan K 2016. Scintillation properties http://scintillator.lbl.gov. Accessed Feb. 25
    [Google Scholar]
  41. 42.  Hofstadter R 1948. Alkali halide scintillation counters. Phys. Rev. 74:100–1
    [Google Scholar]
  42. 43.  Koički S, Koički A, Ajdačić A 1973. The investigation of the 0.15s phosphorescence component of NaI:Tl and its application in scintillation counting. Nucl. Instrum. Meth. 108:297–99
    [Google Scholar]
  43. 44.  Van Sciver WJ 1956. Alkali halide scintillators. IRE Trans. Nucl. Sci. 3:39–50
    [Google Scholar]
  44. 45.  Van Sciver WJ, Bogart L 1958. Fundamental studies of scintillation phenomenon in NaI. IRE Trans. Nucl. Sci. 5:90–92
    [Google Scholar]
  45. 46.  Moszyński M, Balcerzyk M, Czarnacki W, Kapusta M, Klamra W et al. 2003. Study of pure NaI at room and liquid nitrogen temperatures. IEEE Trans. Nucl. Sci. 50:767–73
    [Google Scholar]
  46. 47.  Moszyński M, Czarnacki W, Klamra W, Szawlowski M, Schotanus P, Kapusta M 2003. Intrinsic energy resolution of pure NaI studied with large area avalanche photodiodes at liquid nitrogen temperatures. Nucl. Instrum. Meth. A 505:63–67
    [Google Scholar]
  47. 48.  Moszyński M, Czarnacki M, Kapusta M, Szawlowski M, Klamra W, Schotanus P 2002. Energy resolution and light yield non-proportionality of pure NaI scintillator studied with large area avalanche photodiodes at liquid nitrogen temperatures. Nucl. Instrum. Meth. A 486:13–17
    [Google Scholar]
  48. 49.  Bonanomi J, Rossel J 1952. Scintillations de luminescence dans les iodures d'alcalins. Helv. Phys. Acta 25:725–52
    [Google Scholar]
  49. 50.  Jing T, Cho G, Drewery J, Fujieda I, Kaplan SN et al. 1992. Enhanced columnar structure in CsI layer by substrate patterning. IEEE Trans. Nucl. Sci. 39:1195–98
    [Google Scholar]
  50. 51.  Nagarkar VV, Gupta TK, Miller SR, Klugerman Y, Squillante MR, Entine G 1998. Structured CsI:Tl scintillators for X-ray imaging applications. IEEE Trans. Nucl. Sci. 45:492–96
    [Google Scholar]
  51. 52.  Amsler C, Grögler D, Joffrain W, Lindelöf D, Marchesotti M et al. 2002. Temperature dependence of pure Cs:I scintillation light yield and decay time. Nucl. Instrum. Meth. A 480:494–500
    [Google Scholar]
  52. 53.  Khan S, Kim HJ, Kim YD 2015. Scintillation characterization of thallium-doped lithium iodide crystals. Nucl. Instrum. Meth. A 793:31–34
    [Google Scholar]
  53. 54.  Robertson JC, Lynch JG, Jack W 1961. The luminescence of CsBr(Tl) and CsI:Tl as a function of temperature. Proc. Phys. Soc. 78:1188–94
    [Google Scholar]
  54. 55.  Cook JR, Mahmoud KA 1954. Luminescence characteristics of some scintillating crystals. Proc. Phys. Soc. 67:817–24
    [Google Scholar]
  55. 56.  Van Sciver WJ, Hofstadter R 1952. Gamma- and alpha-produced scintillations in cesium fluoride. Phys. Rev. 87:522
    [Google Scholar]
  56. 57.  Moszyński M, Allemand R, Odru MLR, Vacher J 1983. Recent progress in fast timing with CsF scintillators in application to time-of-flight positron tomography in medicine. Nucl. Instrum. Meth. 205:239–49
    [Google Scholar]
  57. 58.  Van Eijk CWE, Andriessen J, Dorenbos P, Jansons J, Khaidukov NM et al. 1993. Experimental and theoretical studies of cross luminescence. Heavy Scintillators for Scientific and Industrial Applications: Proceedings of the “Cristal 2000” International Workshop F De Notaristefani, P Lecoq, M Schneegans 161–66 Gif-sur-Yvette, Fr.: Ed. Front.
    [Google Scholar]
  58. 59.  Milton JCD, Hofstadter R 1949. Luminescent spectra of phosphors useful in scintillation counters. Phys. Rev. 75:1289–90
    [Google Scholar]
  59. 60.  Smolśkaya LP, Shuraleva EI, Parfianovich IA 1969. Radiation of paired centers in the phosphor KI(Tl). Sov. Phys. J. 12:1063–65
    [Google Scholar]
  60. 61.  Robertson JC, Lynch JG 1961. The luminescent decay of various crystals for particles of different ionization density. Proc. Phys. Soc. 77:751–56
    [Google Scholar]
  61. 62.  Ishii M, Kobayashi M 1991. Single crystals for radiation detectors. Prog. Cryst. Growth Charact. Mater. 23:245–311
    [Google Scholar]
  62. 63.  Messner D, Smakula A 1960. Color center in alkaline earth fluorides. Phys. Rev. 120:1162–66
    [Google Scholar]
  63. 64.  Heath DF, Sacher PA 1966. Effects of a simulated high-energy space environment on the ultraviolet transmittance of optical materials between 1050 Å and 3000 Å. Appl. Opt. 5:937–43
    [Google Scholar]
  64. 65.  Majewski S, Anderson D 1985. Radiation damage test of barium fluoride scintillator. Nucl. Instrum. Meth. A 241:76–79
    [Google Scholar]
  65. 66.  Woody CL, Levy PW, Klerstead JA 1989. Slow component suppression and radiation damage in doped BaF2 crystals. IEEE Trans. Nucl. Sci. 36:536–42
    [Google Scholar]
  66. 67.  Murashita M, Saitoh H, Tobimatsu K, Chiba M, Hirose T et al. 1986. Performance and radiation damage of a BaF2 calorimeter. Nucl. Instrum. Meth. A 243:67–76
    [Google Scholar]
  67. 68.  Schotanus P, Van Eijk CWE, Hollander RW, Pijpelink J 1985. Temperature dependence of BaF2 scintillation light yield. Nucl. Instrum. Meth. A 238:564–65
    [Google Scholar]
  68. 69.  Colmenares C, Shapiro EG, Barry PE, Prevo CT 1974. A europium-doped, calcium-fluoride scintillator system for low-level tritium detection. Nucl. Instrum. Meth. 114:277–89
    [Google Scholar]
  69. 70.  Van Sciver WJ, Hofstadter R 1951. Scintillations in thallium-activated CaI2 and CsI*. Phys. Rev. 84:1062–63
    [Google Scholar]
  70. 71.  Hofstadter R 1967. Europium activated calcium iodide scintillators US Patent 3,342,745
    [Google Scholar]
  71. 72.  Boatner LA, Ramey JO, Kolopus JA, Neal JS 2015. Divalent europium doped and un-doped calcium iodide scintillators: scintillator characterization and single crystal growth. Nucl. Instrum. Meth. A 786:23–31
    [Google Scholar]
  72. 73.  Hofstadter R 1968. Europium activated strontium iodide scintillators US Patent 3,373,270
    [Google Scholar]
  73. 74.  Alekhin MS, De Haas JTM, Krämer KW, Dorenbos P 2011. Scintillation properties of and self absorption in SrI2:Eu2+. IEEE Trans. Nucl. Sci. 58:2519–27
    [Google Scholar]
  74. 75.  Kawai T, Sakuragi S, Hashimoto S 2016. Luminescence properties of pure and Eu-doped SrI2 crystals purified by a “liquinert” process and grown by vertical Bridgman method. J. Lumin. 176:58–64
    [Google Scholar]
  75. 76.  Muthman W, Stützel L 1899. Eine Enfache Methode zer Darstellung der Schwefel-, Chlor- und Brom-Verbindungen der Ceritmetalle. Ber. Dtsch. Chem. Ges. 32:3413–19
    [Google Scholar]
  76. 77.  Doty FP, McGregor DS, Harrison M, Findley K, Polichar R 2007. Structure and properties of lanthanide halides. Proc. SPIE 6707:670–705
    [Google Scholar]
  77. 78.  Harrison MJ, Linnick C, Montag B, Brinton S, McCreary M et al. 2009. Scintillation performance of aliovalently doped CeBr3. IEEE Trans. Nucl. Sci. 56:1661–65
    [Google Scholar]
  78. 79.  Guss P, Foster ME, Wong BM, Doty FP, Shah K et al. 2014. Results for aliovalent doping of CeBr3 with Ca2+. J. Appl. Phys. 115:034908
    [Google Scholar]
  79. 80.  Van Loef EVD, Dorenbos P, Van Eijk CWE, Krämer K, Gübel HU 2001. Scintillation properties of LaCl3:Ce3+ crystals: fast, efficient, and high-resolution scintillators. IEEE Trans. Nucl. Sci. 48:342–45
    [Google Scholar]
  80. 81.  Van Loef EVD, Dorenbos P, Van Eijk CWE, Krämer K, Gübel HU 2002. Scintillation properties of LaBr3:Ce3+ crystals: fast, efficient, and high-energy-resolution scintillators. Nucl. Instrum. Meth. A 486:254–58
    [Google Scholar]
  81. 82.  Balcerzyk M, Moszyński M, Galazka Z, Kapusta M, Syntfeld A, Lefaucheur J-L 2005. Perspectives for high resolution and high light output LuAP:Ce crystals. IEEE Trans. Nucl. Sci. 52:1823–29
    [Google Scholar]
  82. 83.  Autrata R, Schauer P, Kvapil J, Kvapil J 1978. A single crystal of YAG—new fast scintillator in SEM. J. Phys. E Sci. Instrum. 11:707–8
    [Google Scholar]
  83. 84.  Bok J, Schauer P 2014. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function. Scanning 36:384–93
    [Google Scholar]
  84. 85.  Ludziejewski T, Moszyński M, Wolski D, Klamra W, Moszyńska K 1997. Investigation of some scintillation properties of YAP:Ce crystals. Nucl. Instrum. Meth. A 345:287–94
    [Google Scholar]
  85. 86.  Moszyński M, Ludziejewski T, Wolski D, Klamra W, Norlin LO 1994. Properties of the YAP:Ce scintillator. Nucl. Instrum. Meth. A 345:461–67
    [Google Scholar]
  86. 87.  Chewpraditkul W, Swiderski L, Moszyński M, Szczesniak T, Syntfeld-Kazuch A et al. 2009. Scintillation properties of LuAG:Ce, YAG:Ce and LYSO:Ce crystals for gamma-ray detection. IEEE Trans. Nucl. Sci. 56:3800–5
    [Google Scholar]
  87. 88.  Yanagida T, Fukabori A, Fujimoto Y, Ikesue A, Kamada K et al. 2011. Scintillation properties of transparent Lu3Al5O12 ceramics doped with different concentrations of Pr3+. Phys. Status Solid. C 8:140–43
    [Google Scholar]
  88. 89. Furukawa Denshi Co. 2016. Pr:LuAG scintillator crystal Note, Furukawa Denshi. http://www.furukawa-denshi.co.jp/cgi-bin/pdfdata/20140428162950.pdf
    [Google Scholar]
  89. 90.  Cho ZH, Farukhi MR 1977. Bismuth germanate as a potential scintillation detector in positron cameras. J. Nucl. Med. 18:840–44
    [Google Scholar]
  90. 91.  Nestor OH, Huang CY 1975. Bismuth germanate: a high-Z gamma-ray and charged particle detector. IEEE Trans. Nucl. Sci. 22:68–71
    [Google Scholar]
  91. 92.  Weber MJ, Monchamp RR 1973. Luminescence of Bi4Ge3O12: spectral and decay properties. J. Appl. Phys. 44:5495–99
    [Google Scholar]
  92. 93.  Melcher CL, Schweitzer JS, Peterson CA, Manente RA, Suzuki H 1996. Crystal growth and scintillation properties of the rare earth oxyorthosilicates. Proceedings of the International Conference on Inorganic Scintillators and Their Applications (SCINT95) P Dorenbos, CWE van Eijk 309–15 Delft, Neth.: Delft Univ. Press
    [Google Scholar]
  93. 94.  Kamae T, Fukazawa Y, Isobe N, Kokubun M, Kubota A et al. 2002. Improvement on the light yield of a high-Z inorganic scintillator GSO(Ce). Nucl. Instrum. Meth. A 490:456–64
    [Google Scholar]
  94. 95.  Shimura N, Kamada M, Gunji A, Yamana S, Usui T et al. 2006. Zr doped GSO:Ce single crystals and their scintillation performance. IEEE Trans. Nucl. Sci. 53:2519–22
    [Google Scholar]
  95. 96.  Roscoe B, Grau JA, Manente RA, Melcher CL, Peterson CA et al. 1992. Use of GSO for inelastic gamma-ray spectroscopy measurements in the borehole. IEEE Trans. Nucl. Sci. 39:1412–16
    [Google Scholar]
  96. 97.  Ficke DC, Ter-Pogossian MM, Miyaoka RS, Lewellen TK 1994. A GSO(Ce) block type detector for high count rate PET applications. IEEE Trans. Nucl. Sci. 4:1859–63
    [Google Scholar]
  97. 98.  Balcerzyk M, Moszyński M, Kapusta M, Wolski D, Pawelke J, Melcher CL 2000. YSO, LSO, GSO and LGSO. A study of energy resolution and nonproportionality. IEEE Trans. Nucl. Sci. 47:1319–23
    [Google Scholar]
  98. 99.  Reeder PL 1994. Thin GSO scintillator for neutron detection. Nucl. Instrum. Meth. 353:134–36
    [Google Scholar]
  99. 100.  Melcher CL 1990. Lutetium orthosilicate single crystal scintillator detector US Patent 4,958,080
    [Google Scholar]
  100. 101.  Melcher CL 1991. Lutetium orthosilicate single crystal scintillator detector US Patent 5,025,151
    [Google Scholar]
  101. 102.  Melcher CL, Schweitzer JS 1992. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 39:502–5
    [Google Scholar]
  102. 103.  Daghighian F, Shenderov P, Pentlow KS, Graham MC, Eshaghian B et al. 1993. Evaluation of cerium doped lutetium oxyorthosilicate (LSO) scintillation crystal for PET. IEEE Trans. Nucl. Sci. 40:1045–47
    [Google Scholar]
  103. 104.  Szupeyczynski P, Melcher CL, Spurrier MA, Maskarinec MP, Carey AA et al. 2004. Thermoluminescence and scintillation properties of rare earth oxyorthosilicate scintillators. IEEE Trans. Nucl. Sci. 51:1103–10
    [Google Scholar]
  104. 105.  Nassalski A, Kapusta M, Batsch T, Wolski D, Möckel D et al. 2007. Comparative study of scintillators for PET/CT detectors. IEEE Trans. Nucl. Sci. 54:3–10
    [Google Scholar]
  105. 106.  Cutler PA, Melcher CL, Spurrier MA, Szupryczynski P, Eriksson LA 2009. Scintillation non-proportionality of lutetium- and yttrium-based silicates and aluminates. IEEE Trans. Nucl. Sci. 56:915–19
    [Google Scholar]
  106. 107.  Dahlbom M, MacDonald LR, Eriksson L, Paulus M, Andreaco M et al. 1997. Performance of a YSO/LSO phoswich detector for use in a PET/SPECT system. IEEE Trans. Nucl. Sci. 44:1114–19
    [Google Scholar]
  107. 108.  Cooke DW, McClellan KJ, Bennett Bl, Roper JM, Whittaker MT et al. 2000. Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5. J. Appl. Phys. 88:7360–62
    [Google Scholar]
  108. 109.  Pepin CM, Bérad P, Perrot A-L, Pépin C, Houde D et al. 2004. Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans. Nucl. Sci. 51:789–95
    [Google Scholar]
  109. 110.  Chen J, Zhang L, Zhu R 2007. Large size LSO and LYSO crystal scintillators for future high-energy physics and nuclear physics experiments. Nucl. Instrum. Meth. A 572:218–24
    [Google Scholar]
  110. 111. Rexon Compon. 2015. LYSO/LSO technical specifications http://www.rexon.com/LSOBLANKSPEC.pdf. Accessed Sept. 28
    [Google Scholar]
  111. 112. Omega Piezo. 2018. BGO and LYSO crystals http://www.omegapiezo.com/crystal-scintillators/. Accessed May 2
    [Google Scholar]
  112. 113. RMD. 2016. Gamma-neutron scintillation detector http://rmdinc.com/wp-content/uploads/2014/10/CLYC-Properties-PDF.pdf. Accessed Feb. 25
    [Google Scholar]
  113. 114.  Bessiere A, Dorenbos P, Van Eijk CWE, Krämer KW, Güdel HU 2005. Luminescence and scintillation properties of Cs2LiYCl6:Ce3+ for gamma and neutron detection. Nucl. Instrum. Meth. A 537:242–46
    [Google Scholar]
  114. 115.  Shirwadkar U, Glodo J, Van Loef EVD, Hawrami R, Mukhopadhyay S et al. 2011. Scintillation properties of Cs2LiLaBr6 (CLLB) crystals with varying Ce3+ concentration. Nucl. Instrum. Meth. A 652:268–70
    [Google Scholar]
  115. 116.  Shirwadkar U, Hawrami R, Glodo J, Van Loef EVD, Shah KS 2012. Novel scintillation material Cs2LiLaBr6-xClx:Ce for gamma-ray and neutron spectroscopy. IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec Anaheim, CA, Oct. 21–Nov. 3, Pap. N41-1
    [Google Scholar]
  116. 117.  Glodo J, Van Loef E, Hawrami R, Higgins WM, Churilov A et al. 2011. Selected properties of Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6 scintillators. IEEE Trans. Nucl. Sci. 58:333–38
    [Google Scholar]
  117. 118.  Doty FP, Zhou X, Yang P, Rodriguez MA 2012. Elpasolite scintillators Rep. SAND2012-9951 Sandia Natl. Lab.
    [Google Scholar]
  118. 119.  Kerisit SN, Gao F, Xie YL, Campbell LW, Wu D, Prange MP 2014. Science-driven candidate search for new scintillator materials: FY 2014 annual report Rep. PNNL-23752 Pac. Northwest Natl. Lab.
    [Google Scholar]
  119. 120.  Gundiah G, Brennan K, Yan Z, Samulon EC, Wu G et al. 2014. Structure and scintillation properties of Ce3+-activated Cs2NaLaCl6, Cs3LaCl6, Cs2NaLaBr6, Cs3LaBr6, Cs2NaLaI6, and Cs3LaI6. J. Lumin. 149:374–84
    [Google Scholar]
  120. 121.  Birowosuto MD, Dorenbos P, De Haas JTM, Van Eijk CWE, Krämer KW, Güdel HU 2008. Li-based thermal neutron scintillator research: Rb2LiYBr6:Ce3+ and other elpasolites. IEEE Trans. Nucl. Sci. 55:1152–55
    [Google Scholar]
  121. 122.  Van Eijk CWE, De Haas JTM, Dorenbos P, Krämer KW, Güdel HU 2005. Development of elpasolite and monoclinic thermal neutron scintillators. IEEE Nucl. Sci. Symp. Conf. Rec Puerto Rico: Oct. 23–29239–43
    [Google Scholar]
  122. 123.  Cusano DA, Holub FF, Prochazka S 1980. Ceramic-like scintillators US Patent 4,242,221
    [Google Scholar]
  123. 124.  DiBianca FA, Georges J-PJ, Cusano DA, Greskovich CD 1985. Rare earth ceramic scintillator US Patent 4,525,626
    [Google Scholar]
  124. 125.  Greskovich C, Duclos S 1997. Ceramic scintillators. Annu. Rev. Mater. Sci. 27:69–88
    [Google Scholar]
  125. 126.  Lempicki A, Brecher C, Szupryczynski P, Lingertat H, Nagarkar VV et al. 2002. A new lutetia-based ceramic scintillator for X-ray imaging. Nucl. Instrum. Meth. A 488:579–90
    [Google Scholar]
  126. 127.  Duclos SJ, Greskovich CD, Lyons RJ, Vartuli JS, Hoffman DM et al. 2003. Development of the HiLightTM scintillator for computed tomography medical imaging. Nucl. Instrum. Meth. A 505:68–71
    [Google Scholar]
  127. 128.  Cherepy NJ, Kuntz JD, Roberts JJ, Hurst TA, Drury OB et al. 2008. Transparent ceramic scintillator fabrication, properties and applications Rep. LLNL-PROC-406543 Lawrence Livermore Natl. Lab.
    [Google Scholar]
  128. 129.  Cherepy NJ, Seeley ZM, Payne SA, Beck PR, Swanberg EL et al. 2014. High energy resolution transparent ceramic garnet scintillators Rep. LLNL-PROC-659775 Lawrence Livermore Natl. Lab.
    [Google Scholar]
  129. 130.  Cherepy NJ 2015. Transparent ceramic scintillators for gamma spectroscopy and MeV imaging Rep. LLNL-PROC-676780 Lawrence Livermore Natl. Lab.
    [Google Scholar]
  130. 131.  Cherepy NJ, Payne SA, Sturm BW, O'Neal SP, Seeley ZM et al. 2011. Performance of europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators. Proc. SPIE 8142:81420W
    [Google Scholar]
  131. 132.  Ginther RJ, Schulman JH 1958. Glass scintillators. IRE Trans. Nucl. Sci. 5:92–95
    [Google Scholar]
  132. 133.  Voitovetskii VK, Tolmacheva NS, Arsaev MI 1960. Scintillating glass for the detection of slow neutrons. Sov. J. At. Energy 6:203–7
    [Google Scholar]
  133. 134.  Voitovetskii VK, Tolmacheva NS 1960. Lithium silicate scintillating glasses for the detection of slow neutrons. Soviet J. At. Energy 6:335–36
    [Google Scholar]
  134. 135.  Ginther RJ 1960. New cerium activated scintillating glasses. IRE Trans. Nucl. Sci. 7:28–31
    [Google Scholar]
  135. 136.  Bollinger LM, Thomas GE, Ginther RJ 1962. Neutron detection with glass scintillators. Nucl. Instrum. Meth. 17:97–116
    [Google Scholar]
  136. 137.  Fujimoto Y, Yanagida T, Koshimizu M, Asai K 2015. Photoluminescence and scintillation properties of SiO2 glass activated with Eu2+. Sens. Mater. 27:263–68
    [Google Scholar]
  137. 138.  Syntfeld-Każuch A, Sibczyński P, Moszyński M, Gektin AV, Czarnacki W et al. 2010. Energy resolution of CsI(Na) scintillators. Rad. Meas. 45:377–79
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-124247
Loading
/content/journals/10.1146/annurev-matsci-070616-124247
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error